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Abstract:

Purpose: The time required by the algorithms for general layouts to solve the large-scale

two-dimensional cutting problems may become unaffordable. So this paper presents an exact

algorithm to solve above problems. 

Design/methodology/approach: The algorithm uses the dynamic programming algorithm

to generate the optimal homogenous strips, solves the knapsack problem to determine the

optimal layout of  the homogenous strip in the composite strip and the composite strip in the

segment, and optimally selects the enumerated segments to compose the three-stage layout. 

Findings: The algorithm not only meets the shearing and punching process need, but also

achieves good results within reasonable time. 

Originality/value: The algorithm is tested through 43 large-scale benchmark problems. The

number of  optimal solutions is 39 for this paper’s algorithm; the rate of  the rest 4 problem’s

solution value and the optimal solution is 99. 9%, and the average consumed time is only 2.

18seconds. This paper’s pattern is used to simplify the cutting process. Compared with the

classic three-stage, the two-segment and the T-shape algorithms, the solutions of  the algorithm
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are better than that of  the above three algorithms. Experimental results show that the algorithm

to solve a large-scale piece packing quickly and efficiency. 

Keywords: two-dimensional layout, homogenous strip, dynamic programming recursion

1. Introduction

The unconstrained two-dimensional cutting (UTDC) problem refers to a series of small shape

(or part) non-overlapping on a rectangular panel and the optimization objective of the

problems is to find an arrangement for maximizing the material usage. UTDC problem is widely

used in the leather, wood, metal and other manufacturing industries. Although many

researchers have studied the UTDC problem, from the theory of computational complexity

theory, layout problem have been proved to be a quiet difficult combinatorial optimization

problem (Cui, 2013; Han, Bennell & Zhao, 2013; Thomas & Chaudhari, 2013; He & Wu, 2013;

Liu & Liu, 2011; Ji, Lu & Cha, 2012; Huang & Liu, 2006; Jiang, Lv & Liu, 2008).

According to the UTDC problem, the layouts can be divided into the general layouts and the

specific layouts. On the one hand, when the layouts have no any constraint, the layouts are

called the general layouts (Gilmore & Gomory, 1965; Beasley, 1985; Cui, Wang & Li, 2005;

Seong & Kang, 2003; Hifi & Zissimopoulos, 1996; Alvarez-Valdes, Parajon & Tamarit, 2002);

on the other hand, when the layouts must meet some specific production request, the layouts

are called the specific layout. 

Now, there are some exact algorithms for the general layouts (Gilmore & Gomory, 1965; Cui et

al., 2005). But the computation results in the references indicate that the computation time of

these algorithms cannot be intolerable for solving the large scale UTDC problems. So many

researchers have committed to study the specific layouts. The specific layouts have three

advantages: meeting the practical production technology; high computation efficiency; the

results are close to the optimal results. 

There are many advanced specific layouts, for example, Hifi (2001) proposed the classic two-

stage and the three-stage layout; Fayard and Zissimopoulos (1995) presented the two-segment

layout; Cui (2004a) proposed the T-shape layout. Through analysis, the T-shape layout is the

superset of the two-stage layout, and is the subset of the classic three-stage layout; the two-

segment is the superset of the T-shape layout, and is the subset of the classic three-stage

layout. 

This paper propose a new layout－ the three-stage layout based on the homogenous stripe

(3HS). The 3HS layout can meet the need of the cutting technology in the practical production.
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3HS layout is the superset of the classic three-stage, two-segment, T-shape and the classic

two-stage layout, and we will introduce it in the section 2.4. 

The layout decides the layout value. The sequence of the above layouts value from largest to

smallest is follows: the general layout, the classic three-stage layout, the two-segment layout,

the T-shape layout, and the classic two-stage layout. This paper’s 3HS layout is between the

general layout and the classic three-stage layout. 

This paper will introduce 3HS layout in part 2; the exact algorithm for generating the 3HS

layout in part 3; the experiments and results analysis in part 4; conclusion in part 5. 

2. 3HS layout

2.1. Homogenous stripe

The homogenous stripe consists of the same size with same dimension. Figure 1(a) shows

horizontal homogenous rectangular stripes, and its width is the blank width. Figure 1(b) shows

vertical homogenous irregular stripes, and its width is the blank length. 

(a) The horizontal homogenous stripe (b) The vertical homogenous stripe

Figure 1. The homogenous stripe

2.2. Composite strip

The composite strip consists of the homogenous stripe. The composite strip can be divided into

the homogenous stripe by series of cuts. When cutting, each knife cuts single horizontal or

vertical homogenous stripe. Figure 2 show the composite strip of the rectangular blanks and

irregular blanks; the Figure 2(a) is the X composite strip of the irregular blanks, and the Figure

2(b) is Y composite strip of the rectangular blanks. 
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(a) The X composite strip (b) The Y composite strip

Figure 2. The composite strip

Figure 3 shows the process of its being cut. The arrow is the cut station, and the number is the

cuts sequence. After the composite strip cut into homogenous stripe, the blank is been

separated from homogenous stripe by the punch. 

Figure 3. The cutting process of composite strip

2.3. Segment

The segment consists of composite strips. The X-segment includes series of X composite strips

from up to bottom (Figure 4(a)), and the Y-segment includes series of Y composite strips from

left to right (Figure 4(b)). In Figure 4, the arrow indicates the composite strip boundary line. In

fact, from the concept, when the Y composite strip in Y-segment is viewed as X-segment, the

Y-segment becomes the X-segment; in other words, Y-segment is a specific X-segment. 
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(a) The X-segment (b) The Y-segment

Figure 4. The segment

2.4. 3HS layout

Figure 5 shows the 3HS layouts. Each 3HS layout composes of many segments. In 3HS layout,

if it consists of some horizontal X-segments from left to right, it is called 3HSX layout (Figure

5(a)); if it consists of some vertical Y-segments from up to bottom, it is called 3HSY layout

(Figure 5(b)). 

(a) The 3HSX layout (b) The 3HSY layout

Figure 5. The types of the 3HS layout

Figure 6 shows 3HSX layout, and the arrow indicates the boundary line. The 3HS layout can be

divided into composite strips by three stages, and composite strips can be divides into blanks

by other two stages or more stages. In Figure 6, first, vertical 1 divides the sheet into three

segments; second, horizontal 2 divides the segments into composite strips; third, vertical 3

divides the composite strips into homogenous strips; last, each is divided into blanks from the

process is same to Figure 1. 
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Figure 6. The 3HSX layout and its cutting process

In 3HS layout, if each blank takes place of the homogenous strip, the 3HS layout turns into the

classic three-stage layout; if the number of the segment is 2, the 3HS layout becomes the

two-segment layout; if segments are X-segment and Y-segment, the 3HS layout turns into the

T-shape layout. In addition, the T-shape layout is the superset of the classic two-stage layout

(Cui, 2004a). Thus, the 3HS layout is the superset of the classic three-stage, two-segment,

T-shape, and the classic two-stage layout. In other words, the solution of 3HS layout is better

than that of the above four layouts. 

3. The algorithm for generating 3HS layout

3.1. Notes and functions

Table 1 lists the various notes and functions used by the algorithms. Most of the notes and

functions will be introduce again when used for the first time, this table help readers quickly

finding. 
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L, W Length and width of sheet

li, vi Length and value of ith blank, i = 1,...,m

wi, w0i, w1i wi is the length of ith regular blank, w0i, w1i are the initial step and progressive step of ith irregular
blank, i = 1,...,m

Ps
(i), Qs

(i) Normal length and width of homogenous strip

P, Q Normal length and width of composite strip

Pssegment Normal size of segment

ns
(i)(x,y) Maximum number of ith blank in x  y homogenous strip

s(x,y) Maximum value of x  y homogenous strip

fs
1(x,y) Value of x  y X composite strip

fs
2(x,y) Value of x  y Y composite strip

gs
1(x,y) Value of x  y X-segment

gs
2(x,y) Value of x  y Y-segment

vSX-3STAGE Maximum value of the optimal 3HSX layout

vSY-3STAGE Maximum value of the optimal 3HSY layout

vS-3STAGE Maximum value of the optimal 3HS layout

Table 1. Notes and function

3.2. The steps of algorithm

Supposed the size of sheet and blank are integer, and the blank direction is fixed. The

algorithm of 3HS layout (3HSA) includes the following steps:

Step 1. Determining the optimal homogenous strip by dynamic programming algorithm;

Step 2. Solving the optimal homogenous strip layout in composite strip by knapsack problem;

Step 3. Solving the optimal composite strip in segment by knapsack problem;

Step 4. Determining the optimal 3HSX layout by knapsack problem;

Step 5. Determining the optimal 3HSY layout by knapsack problem;

Step 6. Solving the optimal 3HS layout. 

3.3. The normal size

The normal sizes have been used by many scholars (Ji et al., 2012; Beasley, 1985; Hifi, 2001;

Fayard & Zissimopoulos, 1995; Cui, 2004a). The normal size is the length and width linear

combination of blank. The layout references (Cui, 2004a) have proved that the blank

maximum number of rectangle x  y is equal to the blank maximum value of rectangle x0  y0,
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and x0 is the optimal normal size that is lessen than x, and y0 is the optimal normal size that is

lessen than y. To different layout, according to normal size features, we should define it

appropriately to improve the solving speed. 

Definition 1. The homogenous strip normal size

According to above description, the homogenous strip consists of blanks with same shape, and

the blank direction is fixed. Therefore, the homogenous strip length normal size Ps
(i) is the

length linear combination of each blank. The equation is follows:

(1)

(1) The homogenous width normal size of regular blank Qs
(i) is follows:

(2)

(2) The homogenous width normal size of irregular blank Qs
(i) is follows:

(3)

The 0 and L are added to the normal size sequence. The Ps
(i) = p1

s, p2
s,..., pM

s represents the

homogenous strip length normal size of ith blank, and M is the number of normal size; and the

Qs
(i) = q1

s, q2
s,..., qN

s represents the homogenous strip width normal size of ith blank, and N is

the number of normal size. 

Definition 2. The composite strip normal size

According to above description, the composite strip composes of homogenous strips. So, the

composite strip length normal size P is the length linear combination of each blank:

(4)

(1) The composite strip width normal size of regular blank Q is follows:

(5)
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(2) The composite strip width normal size of irregular blank Q is follows:

(6)

The 0 and L are added to the normal size sequence. The p1, p2,...,pM represents the composite

strip length normal size, and M is the number of normal size; the q1, q2,...,qN represents the

composite strip width normal size, and N is the number of normal size. 

Definition 3. The segment normal size

According to above description, the segment consists of composite strip. Therefore, the

segment normal width Pssegment is the collection of composite strip length normal size:

(7)

If both the segment width and length belong to Pssegment, then the segment is a normal

segment. 

3.4. The value of homogenous strip x  y 

(1) Solving the maximum number that the homogenous strip x  y includes blanks

Assume that ns
(i)(x, y) is the maximum number of ith blank in the homogenous x  y, and there

is following recursive formula, and x  Ps
(i), y  Qs

(i):

• The maximum number of ith regular blank in the homogenous x  y:

(8)

• The maximum number of ith irregular blank in the homogenous x  y:

(9)

Figure 7 shows the blanks number of the homogenous strip x  y. 
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(a) The rectangular blank (b) The irregular blank

Figure 7. The blanks number of the homogenous strip x  y 

(2) Determining the blank maximum value in homogenous x  y 

Suppose s(x, y) is the maximum value in homogenous x  y, and vi is the ith blank value, then:

(10)

3.5. Determining the homogenous strip optimal layout in composite strip

(1) Determining the homogenous strip optimal layout in X composite strip

Suppose fs
1(x, y) is the value of X composite strip x  y, and x  P; y  Q:

(11)

The solution of above knapsack problem can refer to literature (Kellerer, Pferschy & Pisinger,

2004). 

(2) Determining the composite strip optimal layout in Y composite strip

Suppose fs
2(x, y) is the value of Y composite strip x  y, and x  P; y  Q:

(12)
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3.6. Determining the section optimal layout in segment

Assume that gs
1(x, y) is the value of X-segment x  y, and gs

2(x, y) is the value of Y-segment

x  y. So, there is following formula, and x, y  Pssegment:

(13)

The following equation determines gs
2(x, y):

(14)

3.7. The optimal 3HS layout

Suppose vSX-3STAGE is the value of optimal 3HSX layout:

(15)

Suppose vSY-3STAGE is the value of optimal 3HSY layout:

(16)

Suppose vS-3STAGE is the value of optimal 3HS layout:

(17)

3.8. The steps of generating the optimal 3HS layout

The algorithm for contains the following steps:

Step 1. Determining the normal of homogenous strip, composite strip and segment from Sect.

3.3. 

Step 2. Determining the optimal homogenous strip from Sect. 3.4. 

Step 3. Determining the optimal composite strip by equations (11) and (12). 

Step 4. Determining the optimal segment by equations (13) and (14). 

Step 5. Determining the optimal 3HS layout from Sect. 3.7. 

-1177-



Journal of Industrial Engineering and Management – http://dx. doi. org/10. 3926/jiem. 1127

3.9. The time complexity of the 3HSA

The time it takes for determining the normal size of composite strip and section from Sect. 3.3

is O(mL). 

The time it takes for determining the optimal homogenous strip from Sect. 3.4 is O(mLW). 

The time it takes for determining the optimal composite strip with equation (11) and (12) is

O(LW2 + WL2). 

The time it takes for determining the optimal segment with equation (13) and (14) is

O(L2 + W2). 

Therefore, the total t ime it takes for determining the optimal 3HS layout is

O(LW2 + WL2 + L2 + W2). Because mL << mLW, W2 << LW2 and L2 << L2W, therefore, the time

complexity is = O[LW (m + L + W)]. 

4. The computation results

As we known, there is no report about the algorithm for generating 3HS layout. The section

illustrates the efficiency of this paper algorithm by 43 conventional benchmarks. The

benchmark problems use computer with Pentium 4 CPU, clock speed with 2.8 GHz, main

memory with 512MB. The problems can be downloaded from website http://www.laria.u-

picardie.fr/hifi/OR-Benchmark. The section compares the 3HS layout with the classic three-

stage, two-segment, and T-shape and general layouts. 

3HS The algorithm of generating optimal 3HS layout

3STAGE Hifi’s (Hifi, 2001) algorithm of generating optimal three-stage layout

2SEGMENT The algorithm of Reference (Fayard & Zissimopoulos, 1995) to generate optimal

two-segment layout

T-shape The algorithm of Reference (Cui, 2004a) to generate optimal T-shape layout

GENERAL The algorithm of Reference (Cui, Wang & Li, 2005) to generate optimal general

layout

According to the above description, the sequence for layout value of above layouts is follows:

GENERAL, 3HS, 3STAGE, 2SEGMENT, T-shape. Suppose VN, V3HS, V3STAGE, V2SEGMENT and VT-shape

is layout value of the above five algorithms respectively. Therefore, VN V3HS V3STAGE V2SEGMENT

VT-shape. Table 2 shows the experiment results, and the note “▲” indicates that the layout value

reaches the optimal result. The Table 3 and Table 4 show statistical results.
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ID VN V3HS V3STAGE V2SEGMENT VT-shape

H 12,348 ▲ 12,192 12,192 12,132
HZ1 5,226 ▲ ▲ ▲ ▲

M1 15,024 ▲ ▲ ▲ ▲

M2 73,176 ▲ 72,564 72,564 72,564
M3 142,817 ▲ ▲ ▲ ▲

M4 265,768 ▲ ▲ ▲ ▲

M5 577,882 ▲ ▲ ▲ ▲

B 8,997,780 ▲ ▲ ▲ ▲

U1 22,370,130 22,368,528 22,351,950 22,351,950 22,351,950
U2 20,232,224 ▲ 20,194,715 20,118,655 20,118,655
U3 48,142,840 48,095,058 48,095,058 48,042,264 48,029,748
UU1 242,919 ▲ 241,260 241,260 241,260
UU2 595,288 ▲ ▲ ▲ ▲

UU3 1,072,764 ▲ ▲ ▲ ▲

UU4 1,179,050 1,178,295 1,178,295 1,178,295 1,178,295
UU5 1,868,999 ▲ 1,868,985 1,868,985 1,868,985
UU6 2,950,760 ▲ ▲ ▲ ▲

UU7 2,930,654 ▲ ▲ ▲ ▲

UU8 3,959,352 ▲ ▲ ▲ ▲

UU9 6,100,692 ▲ ▲ ▲ ▲

UU10 11,955,852 ▲ ▲ ▲ ▲

UU11 13,157,811 13,147,305 13,146,050 13,141,175 13,127,726
HZ2 8,226 ▲ ▲ ▲ ▲

MW1 3,882 ▲ ▲ ▲ ▲

MW2 24,950 ▲ ▲ ▲ ▲

MW3 37,068 ▲ ▲ ▲ ▲

MW4 59576 ▲ ▲ ▲ ▲

MW5 189,924 ▲ ▲ ▲ ▲

BW 2,307,817 ▲ ▲ ▲ ▲

W1 162,867 ▲ ▲ ▲ 161,424
W2 35,159 ▲ 34,656 34,656 34,656
W3 234,108 ▲ ▲ ▲ ▲

UW1 6,036 ▲ ▲ ▲ ▲

UW2 8,468 ▲ ▲ ▲ ▲

UW3 6,302 ▲ 6,226 6,226 6,226
UW4 8,326 ▲ ▲ ▲ ▲

UW5 7,780 ▲ ▲ ▲ ▲

UW6 6,615 ▲ ▲ ▲ ▲

UW7 10,464 ▲ ▲ ▲ ▲

UW8 7,692 ▲ ▲ ▲ ▲

UW9 7,038 ▲ ▲ ▲ ▲

UW10 7,507 ▲ ▲ ▲ ▲

Table 2. The computation results of different layouts

From tables, we can draw conclusions: 1) The optimal results of this paper’s algorithm are

equal or very close to the general algorithm; 2) The optimal results of this paper’s algorithm

are better than the classic three-stage, two-segment, T-shape. 

Layouts 3HS 3STAGE 2SEGMENT T-shape

The optimal number of problems 39 32 32 31

Table 3. The optimal number of different layouts

Table 3 lists the optimal number of different layouts, and these statistical data come from Table

2. In 43 classical benchmark problems, the number of 3HS layout’s optimal results is 39, and

the results ratio of the rest 4 problems and optimal is 99.9%; the number of 3STAGE,
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2SEGMENT and T-shape layout’s optimal results is 32, 32 and 31 respectively. Therefore, the

results of this paper algorithm are better than other layouts. 

3STAGE 2SEGMENT T-Shape

3HS 9 10 10

3STAGE 3 5

2SEGMENT 4

Table 4. The better number problem of different layouts

Table 4 lists the optimal number of different layouts, and these statistical data come from Table

2. In 43 classical benchmark problems, 1) there are 9 problems that the 3HS layout is better

than 3STAGE and 2SEGMENT, and 10 problems for T-shape; 2) there are 3 problems that the

3STAGE layout is better than 2SEGMENT and 5 problems for T-shape; 3) there are 4 problems

that the 2SEGMENT layout is better than T-shape. The 3HSA total time it takes for solving 43

problems from table 2 is 93.74s, and each problem’s average time is 2.18s. Therefore, the

time is reasonable in practical application. 

5. Conclusions

It is very difficult to solve UTDC problem. Although there are exact algorithms, the practical

computation results indicate these algorithms only solve small scale problems efficiently. These

algorithm’s time it takes for solving large scale problems is unaffordable. Therefore, people

usually solve the problem by two types algorithms, first, the algorithms for generating specific

layouts, which not only meet the practical production technology, but also solve large scale

problems efficiently within reasonable time, for example, the classic three-stage layout,

two-segment layout and T-shape layout; second, the results of genetic algorithm is close to

general layout algorithm. 

The paper presents an exact algorithm for generating 3HS layout. On the one hand, 3HSA is a

specific layout algorithm and its optimization result is better than the classic three-stage,

two-segment and T-shape layout, and 3HSA not only improves sheet utilization within

reasonable time, but also meets the shearing and punching process need. On the other hand,

3HSA is the heuristic algorithm, and the computations results show that the optimization result

of 3HSA is very close that of general algorithm. Therefore, 3HSA can solve a large-scale

rectangular piece packing efficiency. 
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