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Abstract:

Purpose: The aim of  this paper is to develop a dynamic model to simultaneously determine

the optimal position of  the decoupling point and the optimal path of  the production rate as

well as the inventory level in a supply chain. With the objective to minimize the total cost of  the

deviation from the target setting, the closed forms of  the optimal solution are derived over a

finite planning horizon with deterioration rate under time-varying demand rate.

Design/methodology/approach: The Pontryagin's Maximum Principle is employed to

explore the optimal position of  decoupling point and the optimal production and inventory rate

for the proposed dynamic models. The performances of  parameters are illustrated through

analytical and numerical approaches.

Findings: The results denote that the optimal production rate and inventory level are closely

related to the target setting which are highly dependent on production policy; meanwhile the

optimal decoupling point is exist and unique with the fluctuating of  deteriorating rate and

product life cycle. The further analyses through both mathematic and numerical approaches

indicate that the shorten of  product life cycle shifts the optimal decoupling point forward to

the end customer meanwhile a backward shifting appears when the deterioration rate increase. 

Research limitations/implications: There is no shortage allowed and the replacement policy

is not taken into account. 
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Practical implications: Solutions derived from this study of  the optimal production-inventory

plan and decoupling point are instructive for operation decision making. The obtained

knowledge about the performance of  different parameters is critical to deteriorating supply

chains management.

Originality/value: Many previous models of  the production-inventory problem are only

focused on the cost. The paper introduces the decoupling point control into the production

and inventory problem such that a critical element—customer demand, can be taken into

account. And the problem is solved as dynamic when the production rate, inventory level and

the position of  the decoupling point are all regarded as decision variables.

Keywords: decoupling points, production-inventory management, optimal control theory, deteriorating

items, time-varying demand, supply chain management

1. Introduction

With the emergence of a business era that embraces “change” as one of its major

characteristics (Agarwal, Shankar & Tiwari, 2006), the difficulty of success is increasing for

many manufactures to a large extent. Since the customer needs and preferences deeply

influenced the SC’s inner workings such as product functionality, quality, speed of production,

timeliness of deliveries and so on, manufacturers are no longer the sole drivers of the supply

chain. A shift from a ‘‘push’’ to a ‘‘pull’’ environment is well on its way. Hence, there confront a

very practical problem: how to take the customer demand into consideration while designing

an enterprise’ inner works such as production planning and inventory policy, and how to

schedule these operational decisions in adjusting to demand changes.

A decoupling point is a boundary between “push” and “pull” to separates the order-driven

activities from the forecast-driven activities. In terms of the delivery process, the “push” and

“pull” is also equivalent to make-to-stock (MTS) and make-to-order (MTO) strategy

respectively. From the upstream of the supply chain to the decoupling point the schedule is

planned based on the forecast of market demands while the operations are driven by customer

orders rather than prediction from the decoupling point to the down-stream of supply chain. In

other words, the position of decoupling point indicates how deeply the customer order

penetrates into the goods flow (Van Donk, 2001). As shown in Figure 1, between the MTS and

MTO, the feasible positions of the decoupling point exist on any stage of the supply chain.
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Figure 1. feasible positions of a decoupling point

In reality, there are many reasons and effects of shifting the decoupling point forward or

backward to the end customers (Olhager, 2003). Soman, Van and Gaalman (2004) pointed out

that the decoupling point decision is closely related to the production planning, inventory policy

and operational decisions. The backward shifting away from the customer can raise product

variety and customization with lower inventory risks, and the manufacturing efficiency

improves but generally displaying longer customer lead times; meanwhile the forward shifting

will fill customer orders quickly, whereas reduce the product customization (Jeong, 2011). It

was obvious that the advantages of the backward shifting are the disadvantages of the forward

shifting of the decoupling point and vice versa. 

There exist two different approaches in determining the position of the decoupling point,

conceptual model approaches and mathematical model approaches. The conceptual model

approaches intend to provide guidelines using knowledge-based systems or case study for

decoupling point selecting. To provide an efficacious approach in designing decoupling point,

Hoekstra, Romme and Argelo (1992) furnish a concept that the critical concern is to find a

balance in the costs of procurement, production, distribution and storage against the customer

service to be offered. Ben Naylor, Naim and Berry (1999) proposed a PC supply chain case

study to discuss the decoupling point with considering the application of market knowledge.

The mathematical model approaches use mathematical models or simulation to find an optimal

position of the decoupling point. Gupta and Benjaafar (2004) developed models to compute

the costs and benefits of delaying differentiation in series production systems when the order

lead times are load dependent，and applied the queuing theory to seek the optimal position of

the decoupling point. Viswanadham and Raghavan (2000) proposed a Petri nets model for

decoupling point design and performed a simulation based on generalized stochastic Petri nets

to minimize the sum of inventory carrying cost and the delayed delivery cost.
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Most of the mathematical model approaches assume that the decoupling point is the unique

decision variable, or hinge on considering a static or steady state equilibrium of supply chains

over an infinite planning horizon. However, the nature of the problem is dynamic and the

planning horizon is finite. Today it is widely accepted that the product market undergo a life

cycle of introduction, growth, maturity and eventual decline while accompanying with demand

change. In recent years, some researchers discussed production-inventory models under

demand uncertainty with time-varying targets by satisfying some certain state equation, we

refer to the works by Emamverdi, Karimi & Shafiee (2011), Baten & Kamil (2009), Benhadid,

Tadj and Bounkhel (2008), Choi, Reaff and Lee (2005) for detail. These indicate that the

assumption of dynamic environment which is adjusted to the available demand information is

more realistic in the realm of supply chain management.

In addition, many previous works on decoupling point are regardless of the deterioration of

products. Deterioration is defined as decay, damage, spoilage, evaporation, loss of utility or

loss of marginal value of commodity. The examples can be found in electronic components,

fashion goods, medicine, fresh products and others. Since Ghare and Schrader (1963) firstly

introduced the deteriorating items in inventory model and discussed the EOQ model with direct

spoilage and exponential deterioration, the consideration of deteriorating items in inventory

models have received a lot of attention (Sarkar, 2013; Wang, Lin & Yu, 2011; Li, Lan &

Mawhinney, 2010). A manufacturer for deteriorating products has to produce more products

than the market demand, which in turns influence the production planning and inventory

management (Balkhi & Benkherouf, 2004; Cheng & Wang, 2009; Hsu, Wee & Teng, 2007).

In this paper, we consider a production-inventory problem in conjunction with the decoupling

point control such that we can take the customer demand into consideration when scheduling

the operation plan. It worth to note that some realistic situations such as deterioration, time-

varying demand as well as the finite life cycle are adopted in our dynamic model to

simultaneously determine the optimal position of the decoupling point, optimal path of the

production rate and the inventory level. The problem is explicitly solved with optimal control

theory and the behaviors of optimal decoupling point with different parameters are analyzed.

The remainder of this paper is organized as follows. In section 2, we define the notations and

assumptions and proposed the dynamic model. In section 3, the optimal solution of the model

is explored and the analytical solutions are obtained by applying optimization tools. Section 4

presents a practical application in electronic supply chain to address some specific and

convincing values through mathematical and numerical analyses. We draw a conclusion in

section 5.
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2. Problem Description and Basic Model

Table 1 presents the notations and parameters used in this paper.

Notation Description

T Decoupling point in supply chain

P0 Estimated demand rate (i.e., production rate) during the pre-decoupling point

P(t) Production rate at time t during the post-decoupling point

The target production rate at time t during post-decoupling point

tf Length of product life cycle, also represent the planning horizon

D(t) Demand rate at time t

I(t) The inventory level at time t during post-decoupling point

Î(t) The target inventory level at time t during post-decoupling point

θ(t) The deterioration rate occurs at time t 

k Constant cost per unit deviation from target production rate

h Constant cost per unit deviation from target inventory level

Table 1. Model Notations

In addition, the following assumptions are made in this paper:

• The items are subject to deterioration and there is no repair or replacement of

deteriorated items.

• The production rate is greater than the demand rate due to the deteriorating.

• The length of product life cycle (i.e. the decision horizon) is finite. Since in today’s

competitive environment, the product generally undergo a life cycle of introduction,

growth, maturity and eventual decline.

• No shortage is allowed, so the production rate during the pre-decoupling point 

where  is the target production rate at decoupling point.

• All the goal rates must satisfy the state equation.

Consider time t over a finite product life cycle of a single product. At t = 0, the production

process begin with a production rate P0, where P0 is the estimated value of market demand

rate. During the pre-decoupling point, the production rate start with P(t) = P0 from the raw

material procurement to the decoupling point when t shift from t = 0 to t = T. At the decoupling

point, the true demand rate D(t) is realized during the product life cycle from time t = T to

T + T0. When the production during the pre-decoupling point is finished, the inventory level

would be I(L) = P0 T where L is the throughput time of the supply chain. Without loss of
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generosity, we can shift the time axis so that t = L becomes t = 0. Then the problem

transforms to the optimization during the planning horizon, t  [0, T0] with the initial inventory

condition I(0) = P0 T. It follows that the inventory level I(t) evolves at each instant of time t

according to the state equation (also see as Emamverdi, et al., 2011; Jeong, 2011):

(1)

The objective of this paper is to provide appropriate production plan so that it can balance

between the frequent change of the optimal control problem for the frequent change of

production rate and the inventory holding cost for the given target production rate and the

target inventory level with deterioration. The objective consists of two classes: minimizing

inventory cost, and maintaining inventory level. This was also used by Porter and Taylor (1972)

and Riddalls and Bennett (2001). The objective function can be written in the following

quadratic form:

(2)

where penalties h > 0 and k > 0 are incurred for the inventory level I(t) and the production rate

P(t) deviation from target inventory level  and target production rate , h and k are also

called weight coefficients. The objective is to determine the optimal production rate P(t) to

ensure that the deviation from the target production rate , i.e.,  as well as

the deviation of the inventory level I(t) from the target inventory level , i.e., 

are both minimized. In this case, the maintaining of target inventory level is regarded as

minimizing inventory cost via an indirect way, so that we can realize the goal to minimize the

inventory cost (for example the inventory holding cost, deteriorating cost and backlog cost)

despite the exact total inventory is very difficult to be calculated, this approach simplified the

model and make sure the analytical solution is achievable. 

3. Optimal solution 

In this section, we use the Pontryagin’s maximum principle (Pontryagin, 1987; Kamien &

Schwartz, 2012) of optimal control theory to derive the optimal time path of inventory level,

production rate and optimal position of decoupling point for the proposed control problem.
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3.1. Optimal inventory rate and optimal production rate

Denote the Hamiltonian by

(3)

Where λ is the adjoint variable. From the Pontryagin Maximum Principle, we have

(4)

and

(5)

Note that the goal pair ( ) must satisfy the state equation, to be feasible (Emamverdi et

al., 2011; Baten & Kamil, 2009; Benhadid et al., 2008), we get

(6)

From (5), we have , and so, . 

Finding the optimal solutions to minimize the objective (2) with condition (1) is equivalent to

solving the following differential equations

(7)

By the first equation in (7), we have

(8)

Also, differentiating the first equation in (7), we get

(9)

From (6), (7), (8) and (9), the optimal inventory rate (optimal path) is a solution of the

following Riccati equation

(10)
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and the optimal production rate (optimal control) satisfies the following Riccati equation

(11)

with

(12)

Lemma 1. For the optimal control problem that minimizes the objective J of (2) under the

condition (1) with time-varying deterioration rate θ(t), the optimal inventory rate I satisfies the

Riccati equation (10), and the optimal production rate P is determined by the Riccati equations

(11) with (12). 

Theorem 1. For the optimal control problem that minimizes the objective J of (2) under the

condition (1) with constant deterioration rate, i.e., θ(t) = constant, the optimal production rate is 

(13)

and the optimal inventory rate is 

(14)

Where , and 

(15)

Proof. Let . Solving the equation (11) with constant deterioration rate θ and initial

conditions (12), we have 

Where k1 and k2 are determined by the following equations

(16)
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Solving the above equations, we can get (15).

From (1) and (6), we have

(17)

with

I(0) = I0 (18)

and so, 

(19)

The proof is complete.

The optimal production rate and optimal inventory rate in the case with constant deterioration

rate are illustrated by numerical simulation shown in the Figure 2, where the parameters are

taken as .

Figure 2. Optimal production rate and optimal inventory rate for parameters
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3.2. Optimal decoupling point

From the initial condition in Equation (1),

I0 = I(0) = P0 T, (20)

Where T is decoupling point in a supply chain. Equation (20) implies that the initial inventory

level at the beginning of planning horizon is equal to the production quantity at the decoupling

point T with the estimated demand rate P0.

Let J = J(T) be the optimal objective function for the optimal control problem that minimizes

the objective J of (2) under the condition (1) with constant deterioration rate, then J(T) can be

differentiated as follows:

(21)

Notice that

(22)

(23)

Hence,

and

(24)

From the analyses, we can draw a conclusion as follows.
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Theorem 2. The optimal objective function is convex on decoupling point. There exists the

unique optimal decoupling point expressed as: 

4. Discussion and application

In real life scenario, many industries suffer from deteriorating items such as electronic

component industry, fashion products, food and agricultural industry, to name a few. To further

grip the implication of decoupling point on deterioration supply chains, the electronics supply

chain dealing with the optimal control of decoupling point as well as the production-inventory

plan is discussed in this section.

It is worthy to note that an electronics supply chain is a system of facilities that encompasses

suppliers, manufacturers, transporters, retailers and customers. The suppliers give

manufacturers their materials, semi-finished components and accessories through transporters

by a large batch with a long lead time. The electronic manufacturers located in the middle

echelon of the supply chain composes and produces final products and delivery them to

retailers with small batches. Finally, the retailers sell the products to end customers. The

supply chain members need to make responsive decisions on the position of optimal

decoupling point, quantity of products, timing of production duration, and inventory level to

guarantee the lowest cost as well as the flexibility of supply chain to commit the market share.

 

4.1. Behavior of the deterioration rate

The electronics industry is well known as a fertile field that enjoys huge profit along with

considerable market demand. Unfortunately, the timely deterioration accompanied with rapid

increasing in cost deeply confused the electronic enterprises. It forced them to take full

consideration about deterioration in decision making. Therefore, we attack the behavior of the

deteriorating rate on optimal decoupling point.

According to our model, the production planner estimates the demand rate P0 during the pre-

decoupling point and decides the target production rate  at decoupling point, from the

assumption of no shortage we have . To take account of the deterioration rate on the

position of optimal decoupling point, we have the following proposition.
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Proposition 1. The optimal decoupling point is monotonically decreasing with deterioration

rate, the position of decoupling point shifts backwards to upstream suppliers with respect to

deterioration rate increasing.

Proof. From Theorem2, we have

(25)

Notice that the 1 – 2θtf is non-negative if and only if θ ≥ 0 is enough small, and

. Therefore,  when . This

completes the proof. 

The relationship between the optimal decoupling point and deterioration rate is illustrated by

the numerical simulation shown in Figure 3, where the parameters are taken as h = 2, k = 3

.

Figure 3. The relationships between the optimal decoupling point and deterioration rate where,

From the Proposition 1 we can imply that in order to minimize the inventory cost which is

increased gradually with deterioration rate, the optimal decoupling point moves backwards to

the upstream of supply chain as far as possible. It was demonstrated that with the purpose to

maximal channel profit in practical, the optimal decoupling point of personal computer (PC)

supply chains flowing closer to suppliers when compared with television (TV) supply chains

since a higher deterioration rate happens to PC in common. By contrast, the length of make-

to-stock of PC supply chains should be condensed to decrease the WIP (work in process). A
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production-inventory plan for PC supply chain would be hatched in view of fulfilling customer

orders, following which an operational decision would be devised considering the reduction in

inventory level and enhancement of customization.

4.2. Effect of the length of product life cycle

Since the modern business era is characterized by the frequently fluctuating in consumer

demands, the tendency of rapid updating in generation and sustained shortening in product life

cycle scattered over the electronic industry. Satisfying the variety demand of consumers and

achieving shorter order-to-delivery times while allowing customers to customize their orders

have played a significant role on an electronic firm’s way to successful. Hence, we performed

analysis about the length of product life cycle to examine the influence on optimal solution and

practical decision.

In our model, a finite length of product life cycle (i.e. the finite planning horizon) is assumed

for a more realistic setting. Additionally, we will also talk about the infinite horizon for

comparison. The following proposition about product life cycle tf holds:

Proposition 2. The optimal decoupling point is monotonically an ascending function of the

product life cycle tf, the decreasing of product life cycle results in forward shifting to end

customers. Anyway, if tf → , the optimal decoupling point T* has a l imit as

Proof. From Theorem 2, we get

(26)

Hence,  when . 

Take tf → , then . These complete the proof.
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The relationship between the optimal decoupling point and final time is illustrated by the

numerical simulation shown in Figure 4, where the parameters are taken as h = 2, k = 3

Figure 4. The relationships between the optimal decoupling point and final time where

.

Proposition 2 denote that under the consideration of infinite planning horizon that is tf → ,

the optimal decoupling point is determined by the initial value while regardless of the change

of target settings. The assumption of finite horizon conducts that the optimal decoupling point

moves downstream to the end customers with the shortening of product life cycle. It can be

implied that the optimal decoupling point of mobile phone supply chains is closer to end

customers when compared to PC supply chains since the mobile phone market updating more

frequently than computer. It denote that the there is more difficult for mobile phone

manufactures to allow the customer customize their orders. This maybe one of the most

important reasons that no mobile phone enterprise sells their product like Dell, a computer

manufacture who is famous for its direct marketing which characterized by customization.

However, the forward shifting of decoupling point can seize the initiative opportunity to expend

the market share and satisfy the customer demand with quick response.

5. Conclusion

In this paper, we generalize and reformulate the model presented by In-Jae Jeong (2011). A

combination of decoupling point and deterioration supply chains is put forward to explore a

way for enterprises to achieve flexible and agile supply chain with deteriorating items while

chasing for cost minimization. A dynamic model with deteriorating items was proposed to
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simultaneously determine the optimal position of decoupling point and production-inventory

plan. By using the optimal control theory and analytical approach, we derived the closed form

of the optimal decoupling point as well as the optimal time path of production rate and

inventory level when the goal rates satisfy the state equation. 

These results from mathematical and practical clearly reflect two major properties. The first

one is that, under the deteriorating items, the optimal decoupling point is convex function on

time and there exists the unique optimal decoupling point. The second one is that the optimal

decoupling point changes is closely connected with the environments changes, such as

deterioration rate and the length of the product life cycle. The position of optimal decoupling

point shifts backwards to upstream suppliers with respect to deterioration rate increasing,

while shifts forwards to end customers obviously with product life cycle decreasing. The logical

manner of surveyed system characteristics can be considered as a validation for the proposed

model and the performed computations.

Based on the findings presented herein, it is possible to extend the results of this research in

several different directions. Further researches can spare effort to develop a tradeoff policy

between different production policies. The inclusion of more realistic assumptions is necessary

such as the time-varying penalty costs. Moreover, a consideration of delivery lead time to

customer may enhance our understanding of the decoupling point phenomena.
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