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Abstract:

Purpose: A decomposition heuristics based on multi-bottleneck machines for large-scale job

shop scheduling problems (JSP) is proposed.

Design/methodology/approach: In the algorithm, a number of  sub-problems are

constructed by iteratively decomposing the large-scale JSP according to the process route of

each job. And then the solution of  the large-scale JSP can be obtained by iteratively solving the

sub-problems. In order to improve the sub-problems' solving efficiency and the solution quality,

a detection method for multi-bottleneck machines based on critical path is proposed. Therewith

the unscheduled operations can be decomposed into bottleneck operations and non-bottleneck

operations. According to the principle of  “Bottleneck leads the performance of  the whole

manufacturing system” in TOC (Theory Of  Constraints), the bottleneck operations are

scheduled by genetic algorithm for high solution quality, and the non-bottleneck operations are

scheduled by dispatching rules for the improvement of  the solving efficiency.

Findings: In the process of  the sub-problems' construction, partial operations in the previous

scheduled sub-problem are divided into the successive sub-problem for re-optimization. This

strategy can improve the solution quality of  the algorithm. In the process of  solving the sub-
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problems, the strategy that evaluating the chromosome's fitness by predicting the global

scheduling objective value can improve the solution quality.

Research limitations/implications: In this research, there are some assumptions which

reduce the complexity of  the large-scale scheduling problem. They are as follows: The

processing route of  each job is predetermined, and the processing time of  each operation is

fixed. There is no machine breakdown, and no preemption of  the operations is allowed. The

assumptions should be considered if  the algorithm is used in the actual job shop.

Originality/value: The research provides an efficient scheduling method for the large-scale

job shops, and will be helpful for the discrete manufacturing industry for improving the

production efficiency and effectiveness.

Keywords: decomposition heuristics; multi-bottleneck; job shop scheduling; critical path

1. Introduction

The job shop scheduling problem (JSP) is a well-known NP-hard problem (Pinedo, 2008;

Qingdaoerji, Wang & Wang, 2013). There are a lot of effective methods for solving the

small-scale JSP. However, there are relatively fewer studies on the large-scale JSP. Some

research (Chen & Luh, 2003; Haoxun, Chengbin & Proth, 1998) proposed a lagrangian

relaxation (LR) approach for the large-scale JSP. In the approach, machine capacity constraints

or operation precedence constraints are relaxed, and the relaxed problem is decomposed into

single machine or single job scheduling sub-problems. These sub-problems are approximately

solved by using fast heuristic algorithms. Shifting bottleneck procedure (SB) (Mönch,

Schabacke, Pabst & Fowler, 2007; Scholz-Reiter, Hildebrandt & Tan, 2013; Braune, Zäpfel &

Affenzeller, 2012) and constraint scheduling algorithm (CSA) (Zuo, Gu & Xi, 2008; Dalfard &

Mohammadi, 2012) decomposes the JSP into a number of single machine scheduling

sub-problems. In each sub-problem, a critical or bottleneck machine is identified and

scheduled, with scheduling decisions at subsequent iteration being subordinated to those

scheduled earlier. Some research (Bassett, Pekny & Reklaitis, 1996; Sourirajan & Uzsoy, 2007;

Lin & Liao, 2012) proposed a rolling horizon heuristic that decomposes the JSP into smaller

sub-problems that can be solved sequentially over time.

Most of the existing methods are proposed for the JSP in which the number of jobs is large.

While, the JSP with a large number of machines has got fewer attentions. According to Zhang,

Li, Rao and Guan (2008), it is relatively easy for solving the JSP when the number of jobs is

larger than the number of machines. Therefore for the problems with the same scale, it is

more difficult to solve the problem with a large number of machines than the problem with a
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large number of jobs. In this paper, a decomposition heuristics based on multi-bottleneck

machines (DH-MB) is proposed for the JSP with a large number of machines. The algorithm

solves the problem by iteratively decomposing the original problem into a series of

sub-problems. It adopts critical path method to detect the multi-bottleneck machines, and

uses the characteristics of bottleneck machines for solving the sub-problems. The final solution

is obtained by the iterative construction and solving of the sub-problems.

The paper is organized as follows: The large-scale JSP problem is formulated in section 2.

Section 3 presents the detection method of the multi-bottleneck machines, the decomposition

approach, the solving process, and some strategies in DH-MB. The simulation results are

provided in Section 4. Finally, some conclusions are given in Section 5.

2. Problem formulation

In a job shop scheduling problem, a set of jobs are to be processed on a set of machines. The

number of jobs is n and the number of machines is m. Each job Ji(i = 1 … n) contains m

operations which have the operation precedence constraints and must be processed on each

machine Mk(k = 1 … m) only once. The task of the scheduling is to determine the processing

order for each machine and the starting time for each operation while satisfying some

objectives. The basic assumptions are as follows:

• The processing route of each job is predetermined, and the processing time of each

operation is fixed.

• There is no machine breakdown, and no preemption of the operations is allowed.

• Each machine can process only one job at a time, and each job can be processed by

only one machine at a time.

JSP can also be described by a disjunctive graph model G(N, A, E), in which

N = {0,1, … m · n, *} denotes the set of nodes. Each node corresponds to an operation (0 and

* represent the dummy operations "start" and "finish"); A denotes the set of conjunctive arcs

which connect the operations of each job. The conjunctive arcs have fixed directions according

to the processing route of each job;  is the set of disjunctive arcs, and Ek denotes the

set of pairs of operations to be performed on machine k. A selection Sk in Ek contains exactly

one member of each disjunctive arc pair of Ek . Actually, determining an acyclic selection on Sk

is equivalent to sequencing the operations on machine k. Replacing the disjunctive arc set E by

the conjunctive arc set S, gives rise to the directed graph D(N, A∪S) which corresponds to a
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feasible solution for JSP. Figure 1 illustrates a disjunctive graph for a job shop scheduling

problem with 3 jobs and 3 machines.

Figure 1. An illustration of a disjunctive graph for a job shop

scheduling problem with 3 jobs and 3 machines

The job shop problem can be formulated as follows:

(1)

(2)

(3)

(4)

where, C denotes the set of the last operation of each job; Pj and tj are the processing time

and starting time of operation j respectively; wj and dj are the weight and due-date of the job

to which operation j belongs. Equation (1) is the scheduling objective of the total weighted

tardiness; Equation (2) describes the operation precedence constraints for the operations of

each job; Equation (3) ensures that no job can start in the past; Equation (4) describes the

machine capacity constraints to make sure each machine can process only one job at a time. 

3. The algorithm

In large-scale JSP, the commonly used algorithms hardly satisfy the requirements of solving

time and solution quality simultaneously because the number of scheduling machines and jobs

are very large. Therefore it is very important to reduce the scale and complexity of the

large-scale JSP. A decomposition heuristics based on multi-bottleneck machines (DH-MB) is

proposed for the large-scale JSP to improve the scheduling efficiency and effect. The method
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focuses on two aspects: (1) The large-scale JSP is decomposed into a series of sub-problems

to reduce the computing scale. And then each sub-problem corresponds to a small-scale JSP.

The solution of the large-scale JSP can be obtained by iteratively solving the sub-problems. (2)

According to the principle “Bottleneck leads the performance of the whole manufacturing

system” in TOC (Watson, Blackstone & Gardiner, 2007; Costas, Ponte, Fuente, Pino & Puche,

2014), the bottleneck machines should get more attention than the non-bottleneck machines.

Therefore in the solving process of the sub-problems, the bottleneck operations are scheduled

by genetic algorithm for high solution quality, and the non-bottleneck operations are scheduled

by dispatching rules for the improvement of the solving efficiency.

3.1. The definition of the sub-problem

DH-MB decomposes the operations of the large-scale JSP to construct sub-problems one by

one according to the process routes of the jobs. In a sub-problem of the large-scale JSP, a set

o f n jobs are to be processed on a set of m machines. Each job Ji(i = 1 … n) contains

mi(mi ≤ m) operations which have the operation precedence constraints and consist with the

assumptions of the original JSP. The model of the sub-problem can be formulated as follows:

(5)

(6)

(7)

(8)

where, Csub is the set of the last operations of each job in the sub-problem; Asub denotes the

operation precedence constraints for the operations in the sub-problem; Si is the arriving time

of Ji; fi is the finish time of Ji in the previous scheduled sub-problem;  is the

set of the operations in the sub-problem.

3.2. The sub-problem construction

In the process of the sub-problems' construction, if too many operations of one job were

divided into one sub-problem, this job could occupy more resources and finish faster than

other jobs. Therewith some jobs would delay severely, and the resource utilization would be

out of balance. 
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In order to overcome the flaw in the sub-problem construction described above, DH-MB

constructs the sub-problems by separating some operations along the processing route of each

job. The decomposing process follows the principle of “Uniform Distribution Load” to make sure

that the load of each job distributes uniformly in each sub-problem. Then each sub-problem

contains some operations of each job to avoid the phenomenon that some jobs finish in

advance and some jobs delay severely. The decomposing process is as follows:

Step 1: Input the number of sub-problems (P), and then the average load of each job in each

sub-problem can be determined by .

Step 2: Initialize the sub-problem Sk, k = 0. Set Sk = , and the load of each job in Sk is li = 0.

Step 3: Start decomposing the operations of the jobs. For each job, take the first un-separated

operation φ into the constructing sub-problem along the processing route. Set Sk = Sk∪φ and

li = li + piφ.

Step 4: If li < Li and  < m, then return to Step 3; else go to Step 5.

Step 5: Fix c. If all the operations of each job are decomposed, then stop; else make k = k + 1,

return to Step 3.

Figure 2 illustrates the decomposition scheme for a JSP with 3 jobs and 4 machines. In the JSP,

the number of sub-problems is 3, the total load of each job is (26, 12, 18), and then the

average load of each job in one sub-problem is (9, 4, 6). According to the sub-problem

construction method above, the number of operations of each job in S1 is (2, 1, 1), and S2 is

(1, 2, 2), and S3 is (1, 1, 1). 

Figure 2. An illustration of the decomposition scheme for a JSP with 3 jobs and 4 machines
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Theorem: By constructing the sub-problems sequentially, the solution of each sub-problem

doesn't conflict with the processing route of each job in the original large-scale JSP, and the

solution of the original problem can be easily obtained by solving the sub-problems.

Prove: (1) According to the definition of sub-problem, the order of operations in each sub-

problem consists with the operation precedence constraints of the jobs. Therefore the solution

of each sub-problem cannot conflict with the processing route of each job in the original large-

scale JSP. (2) If the original JSP is decomposed into p sub-problems , the sub-problems

have different priority levels which can be noted as S1 ≺ S2 ≺ ... ≺ Sp (X ≺ Y represents that

the operations in X have higher scheduling priority than the operations in Y). For any two

operations Oi and Oj, if (Oi, Oj )  A and Oi  S1, Oj  S2，then S1 ≺ S2 (Zhang & Wu, 2010).

Therefore the operations in adjacent sub-problems also satisfy the operation precedence

constraints of the jobs.

From (1) (2), we can know that this decomposition method doesn't destroy the operation

precedence constraints of each job. And then the solution of the original problem can be

obtained by solving the sub-problems.

3.3. The sub-problem solving

3.3.1. Multi-bottleneck detection based on critical path method

By decomposing the original problem, the number of operations in each sub-problem is not

very large, so it can be solved by genetic algorithm (GA) which is effective for small-scale

JSPs. However in order to improve the solving efficiency, DH-MB adopts different scheduling

strategies for different types of operations. The operations are divided into two types: the

bottleneck operations which are processed on the multi-bottleneck machines and the non-

bottleneck operations which are processed on the non-bottleneck machines. And a detection

method based on critical path is proposed for the multi-bottleneck machines. The method is as

follows：

In a feasible schedule, a critical path is the sequence of operations whose processing time adds

up to the longest overall duration. Each operation on the critical path is a critical operation.

Any delay of a critical operation will directly affect the complete date of the schedule. Shorten

the length of the critical path can shorten the duration of the schedule. Therefore the critical

path restricts the performance of a schedule. The machine on which more critical operations

will be processed may have the greater influence on the performance of the schedule.

According to Zhai, Sun, Wang and Niu (2011), bottleneck is the machine whose schedule

alteration has the greatest effect on the objective of manufacturing system. So the machine on
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which more critical operations will be processed may have the greater possibility to be a

bottleneck machine. 

For a job shop scheduling problem, different schedules may have different critical paths.

Therefore for many different schedules, the machine statistically with larger average value and

smaller fluctuation of critical operation number may have greater possibility to be a bottleneck.

In this paper, a few different frequently used dispatching rules are adopted and randomly

combined to generate many different feasible schedules (The dispatching rules are FCFS, FCLS,

SPT, LPT, LWKR, MWKR, FOPNR, GOPNR, NINQ, WINQ, EDD, ODD, SL and OSL (Haupt, 1989)).

For each schedule, the critical operation number of each machine is taken as the sample value.

Then the multi-bottleneck machines can be detected by the bottleneck detection model which

is as follows:

(9)

(10)

(11)

Where, vi is the bottleneck possibility of machine i; N is the sample number (It is 500 in the

simulation of Section 4); μi is the average value of the critical operation number of machine i;

bij is the critical operation number of machine i for the sample j;  is the variance value of the

critical operation number of machine i, and reflects the fluctuation of the critical operation

number of machine i; the constant ρ denotes the correction factor which avoids vi too small to

compare (It is 100 in the simulation of Section 4).

In the bottleneck detection model, both the average value and the fluctuation of the critical

operation number are taken into account. The machine with larger vi represents that the

machine has larger average value and smaller fluctuation of the critical operation number.

Correspondingly the machine has greater possibility to be a bottleneck machine. So according

to the bottleneck detection model and the sample value, by sorting the vi of each machine

decreasingly, the higher the machine ranks, the greater possibility the machine will have to be

a bottleneck machine. In the simulation of Section 4, we choose 30% of the machines as the

multi-bottleneck machines whose vi are larger than the average value of vi.
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3.3.2. The solving process for the sub-problem

DH-MB adopts different scheduling strategies for the bottleneck machines and non-bottleneck

machines. For the bottleneck machines which have great impact on the performance of the

system, GA is adopted for an optimal and effective schedule. For the non-bottleneck machines,

a dispatching rule which selects the job with the earliest modified due-date (MOD) is adopted

to get a schedule efficiently. 

If the bottleneck machines and non-bottleneck machines are scheduled independently, there

may be conflictions between the schedules of the bottleneck machines and non-bottleneck

machines. In DH-MB, the scheduling of the non-bottleneck machines is integrated in the

decoding process of the scheduling of the bottleneck machines, thus the bottleneck operations

and non-bottleneck operations can be scheduled parallelly to avoid the coordination between

the schedules of the bottleneck machines and non-bottleneck machines, and the efficient of

DH-MB can be improved obviously.

The GA in DH-MB uses operation-based coding method which can easily decode the

chromosome into an active schedule. The LOX operator and SWAP operator (Wang, 2003) are

adopted to generate new chromosomes for maintaining the population diversity. In the

decoding phrase, the operations in the previous scheduled sub-problem already have fixed

start and finish time, so the chromosome is decoded based on the schedule result of the

previous scheduled sub-problem. The decoding process is as follows:

Let PS denote the set of the operations which are already scheduled; S denotes the set of

operations to be scheduled currently; σi denotes the earliest start time of operations i in S, ϕi

denotes the earliest predicted completion time of operations i in S; C denotes the set of

conflicting operations which satisfy the scheduling condition.

Step 1: Let PS = , S be the set of operations which are the first unscheduled operations on

the processing route of each job. 

Step 2: Get ϕ* = miniS {ϕi} and m* on which the corresponding operation of ϕ* will be

processed. If there is more than one machine, choose one machine randomly.

Step 3: Establish the conflicting operation set C with the operations which are processed on

m* and σi < ϕ*(i  S). 

Step 4: Select one operation s to schedule. 

I f m* is a bottleneck machine, then s is the first unscheduled operation in the decoding

chromosome. If m* is a non-bottleneck machine, then according to the dispatching rule MOD, s =
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arg miniC ,  = maxiC (ϕi, di); if there are more than one operation, select one operation

randomly.

Step 5: Compute and fix the start time and finish time for the operation s.

Step 6: Let PS = PS∪s. Update S. If S = , then the decoding process stops; Otherwise go to

step 2.

Since the operations in the current scheduling sub-problem is partial operations of the original

JSP, the optimal solution in the sub-problem may not have the same optimal performance for

the original JSP. So in order to improve the global optimality of the DH-MB, we propose a

strategy that is evaluating the chromosome's fitness in the sub-problem by predicting the

global scheduling objective (EF-PGSO) of the original JSP. Specifically, in the decoding process

of each chromosome in the sub-problem, we try to obtain a complete schedule by scheduling

the remaining unscheduled operations which are not in the current scheduling sub-problem

using the dispatching rule of MOD, and the objective value of the complete schedule is used as

the evaluation value of the chromosome in the sub-problem. 

3.4. The connection of the adjacent sub-problem

In DH-MB, the solving process of each sub-problem corresponds to a time window in the whole

scheduling time domain. At the end of each time window, not all the jobs can complete at the

same time. Figure 3 shows a schedule of one sub-problem Sk (k is not the last serial number of

the sub-problems). At time t1, all the decomposed operations of job J1 in Sk are scheduled, and

there are still unscheduled decomposed operations of job J2 and J3 left. Therefore after time t1,

j o b J2 and job J3 are scheduled without considering the resource utilization of the rest

undecomposed operations of job J1 in Sk+1. If the sub-problem Sk+1 is directly constructed

following on the scheduling result of Sk without any process, then the earliest start time of the

first unscheduled operation of job J1 in Sk+1 will be delayed because job J2 and job J3 have used

the resource in advance in Sk. So the global optimal performance of DH-MB will be weakened

along with the solving sequence of the sub-problems.
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Figure 3. An illustration of the schedule of one sub-problem Sk

In order to avoid the one-sidedness in the solving process of the sub-problems, we propose a

strategy that divides partial operations in the previous scheduled sub-problem into the

adjacent sub-problems for re-optimization (DPO-AS). 

The re-optimization operations are:

(12)

Where, σi is the starting time of operation i; cj is the completion time of job Jj.

The strategy can strength the connection between the solutions of the sub-problems, and the

construction of the next sub-problem is closely linked to the solution of the previous scheduled

sub-problem. All the sub-problems are dynamically constructed in the solving process of the

sub-problems. Therefore all the jobs can be scheduled with equal resource competition, and

the global optimization of DH-MB can be improved. 

3.5. The specific steps of DH-MB

Step 1: Initialization. Input the sub-problem number P, then the average load of each job in

each sub-problem is . Let NC =  denote the set of scheduled operations. Let

NNC = N denote the set of unscheduled operations. Set the serial number of the current sub-

problem k=1, the current sub-problem Sk = , and the re-optimization operations set NJ = .

Step 2: Multi-bottleneck detection. According to the multi-bottleneck detection method in

section 3.3.1, determine the bottleneck machines in the large-scale JSP.

Step 3: Construct Sk according to the sub-problem construction method in Section 3.2 and the

strategy DPO-AS in Section 3.4.
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3a: Let li = 0, i = 1 ... n denote the load of job i. Add the re-optimization operations in the

previous scheduled sub-problem into Sk, and calculate the load of job i , where

 is the re-optimization operations of job i.

3b: According to the processing route of job i, take the first operation φ from the set of

unscheduled operations. Let Sk = Sk∪φ, then li = li + piφ.

3c: if li < Li and φ < m, go to 3b; otherwise go to Step4.

Step 4: Solve the sub-problem Sk according to scheduling method in Section 3.3.2. 

Step 5: Determine the re-optimization operations NJ according to Section 3.4 and fix the

schedule of the operations in Sk except NJ. Let NC = NC∪(Sk\NJ), NNC = NNC\(Sk\NJ).

Step 6: If NNC = , then the algorithm stops; Otherwise let k=k+1, and go to step 3.

4. Simulation results and analysis

4.1. The generation of the testing instances and DH-MB parameters

In order to analyze the performance of DH-MB, 12 JSP instances are generated for simulation.

The instances contain 1 small-scale instance (S1), 2 medium-scale instances (M1 and M2) and

9 large-scale instances (L1~L9). In each instance, the processing route of each job is a

random permutation of m machines, the (integral) processing time of each operation follows a

uniform distribution U [1, 100], and the due-date of each job is set according to reference

(Feng, Leung & Tang, 2005):

(13)

Where r=1.5. 

In DH-MB, the parameters of GA are:

• The mutation probability pm = 0.1;

• The population size popsize = 50;

• The number of generations GN = 200;
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• The number of exiting iterations GN_exit = 20; (If the performance of the optimal

solution is not improved in 20 iterations, then the algorithm exits and exports the

optimal solution.)

We compare DH-MB with the following frequently-used scheduling methods:

• Dispatching Rules (DR): three dispatching rules (EDD/MDD/SL) are selected and the

optimal result of the three dispatching rules is taken as the final result;

• Standard Genetic Algorithm (SGA): the parameters of SGA are the same to DH-MB;

• Constraint Scheduling Algorithm (CSA) (Zuo, Gu & Xi, 2008).

Considering the randomness of the GA, we use DH-MB and SGA to schedule each instance for

10 times, and the average of the objective values of the 10 schedules is selected as the final

value, the average of the solving time in seconds of the 10 schedules is selected as the

running time. Table 1 shows the final value and the running time of each instance using

different scheduling methods. Table 2 shows the percentage of the value of DH-MB better than

other methods which can be calculated as follows:

(14)

Where, WT(X, IS) is the final value of instance IS calculated by method X.

From Table 1 and Table 2, we can see that the performance of DH-MB is slightly inferior to the

other scheduling methods for the small-scale instance (S1). That is because DH-MB

decomposes the original problem into a few sub-problems, and the schedules which is optimal

for the sub-problems is not equal to be optimal for the original problem. 

Instance
Scale
(n*m)

DR SGA CSA DH-MB

Value Time Value Time Value Time Value Time P

S1 10*10 617 0.06 575.5 1.82 542 0.55 623 2.18 4

M1 20*10 8685 0.13 9194.2 4.13 6459 9.23 6907 4.77 10

M2 30*10 20693 0.20 25855.7 13.75 18010 26.44 18556 6.36 7

L1 50*20 64433 0.69 79898 160.63 61238 676.70 56050.8 27.98 16

L2 50*30 58921 0.72 71087.9 73.59 125035 1833.08 46651.1 41.81 26

L3 50*50 43413 1.17 52480.4 536.59 170496 1089.06 32092.4 70.34 42

L4 80*20 156394 0.84 235787 515.87 235994 2130.08 140381.4 49.71 15

L5 80*30 162733 1.19 227059.2 437.49 * * 140193.5 70.65 24

L6 80*50 154721 1.80 191417.3 301.13 * * 128455.6 131.75 44

L7 100*20 261982 1.11 386866.5 624.86 * * 235509.3 74.02 18

L8 100*30 260848 1.50 377001.4 783.05 * * 232450.2 119.00 24

L9 100*50 253036 2.30 338438.4 770.14 * * 214532.8 215.82 48

The note of * represents the feasible schedule cannot be obtained within 1 hour.
P is the number of sub-problems for DH-MB.

Table 1. The results of different scheduling methods
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Instance IS Scale
n*m

DR SGA CSA

S1 10*10 -0.96% -7.62% -12.98%

M2 20*10 25.74% 33.11% -6.49%

M3 30*10 11.52% 39.34% -2.94%

L1 50*20 14.95% 42.55% 9.25%

L2 50*30 26.30% 52.38% 168.02%

L3 50*50 35.28% 63.53% 431.27%

L4 80*20 11.41% 67.96% 68.11%

L5 80*30 16.08% 61.96% *

L6 80*50 20.45% 49.01% *

L7 100*20 11.24% 64.27% *

L8 100*30 12.22% 62.19% *

L9 100*50 17.95% 57.76% *

The note of * represents there is no feasible solution in 1 hour of computing.

Table 2. The percentage of the value of DH-MB better than other methods (δ)

However, with the scale of the instances increasing, the solution quality obtained by DH-MB is

obviously better than DR and SGA, and the solving efficiency is also better than SGA. The

reason can be analyzed as follows: For DR, the dispatching rules can get feasible schedules

quickly, but cannot ensure the optimality of the schedules; For SGA, the increasing of the

problem's scale will lead to the great expansion of the solving space, also the premature

convergence and randomness are usually associated with SGA itself, so the possibility of

obtaining the optimal solution will decrease. In addition, the time consumed by the

chromosome decoding process in SGA increases greatly with the number of the operations

increasing, therefore the solving efficiency of SGA is inferior to DH-MB.

From Table 1, we can also see that the performance of DH-MB is better than CSA for the large-

scale instances. Although the performance of CSA is better than DH-MB for the small-scale and

medium-scale instances (S1, M1 and M2), the solution quality of CSA deteriorates rapidly with

the scale of the instances increasing. The reason can be analyzed as follows: CSA divides the

job shop problem into a number of single-machine scheduling sub-problems, and schedules

them sequentially. Once a machine is scheduling, the other scheduled machines will be re-

optimized meanwhile. For small-scale JSP, the re-optimization of CSA can improve the solution

quality. However, because the objective function for each sub-problem cannot exactly reflect

the characteristics of the global objective function of the original JSP, the optimum schedules

for the single-machine scheduling sub-problems may be quite far from the optimal solution of

the original JSP. For DH-MB, it also divides the job shop problem into a number of sub-

problems, and solves the sub-problems one by one. But it adopts the strategies of EF-PGSO

and DPO-AS to improve the solution quality. So the performance of DH-MB is better than CSA

for the large-scale JSPs.
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4.2. The influence of the strategies of DH-MB for the performance

In order to analyze the influence of the strategies (EF-PGSO and DPO-AS), we compare the

performance of DH-MB with and without the strategies to solve the JSP instances. We denote

the DH-MB without the strategy of EF-PGSO as DH-MB-l, and the DH-MB without the strategy

of DPO-AS as DH-MB-2. Table 3 shows the result of the calculation.

Instance
IS

Scale
n*m

DH-MB DH-MA-1 DH-MA-2

Result Time Result Time Result Time

S1 10*10 623 2.18 606 0.75 2081 2.01

M1 20*10 6907 4.77 6923.8 2.84 18869 3.87

M2 30*10 18556 6.36 19438 5.04 35851.4 5.89

L1 50*20 56050.8 27.98 56755.4 17.28 108128.4 22.61

L2 50*30 46651.1 41.81 51443.4 34.66 117249.2 38.76

L3 50*50 32092.4 70.34 37002.2 66.55 84840.8 68.03

L4 80*20 140381.4 49.71 152863.8 38.91 317588.6 44.75

L5 80*30 140193.5 70.65 156486.2 63.52 295859.8 68.12

L6 80*50 128455.6 131.75 140734.6 83.72 270814.8 98.35

L7 100*20 235509.3 74.02 250300.6 65.63 521989 69.24

L8 100*30 232450.2 119.00 254477.6 95.64 495349.8 107.31

L9 100*50 214532.8 215.82 229453.8 157.65 502296 183.35

Table 3. The influence of the strategies of DH-MB to the JSP instances

From Table 3, we can see that DH-MB-1 can save the solving time. The reason is that DH-MB-1

doesn't schedule the unscheduled operations which are not in the scheduling sub-problem.

However, the solving process doesn't consider the global objective of the original JSP, and the

optimal solution for the scheduling sub-problem may not be also optimal for the original JSP.

So the solution of each sub-problem has local effect in DH-MB-1, and the solution quality of

DH-MB-1 inferior to DH-MB. Therewith the strategies of EF-PGSO in DH-MB are beneficial to

improve the solution quality of the original JSP.

From Table 3, we can also see that the efficient of DH-MB-2 is higher than DH-MB, but the

solution quality of DH-MB-2 is inferior to DH-MB. That is because that the strategy of DPO-AS

enhance the interconnection of the adjacent sub-problems which can guide the solving process

to the global optimization. DH-MB-2 without the strategy of DPO-AS isolates the sub-problems

with each other, and there is no coordination and interaction between the sub-problems.

Therefore DH-MB-2 can save solving time at the cost of solution quality. So the strategies of

DPO-AS in DH-MB is also beneficial to improve the solution quality of the original JSP.
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5. Conclusion

In this paper, a decomposition heuristics based on multi-bottleneck machines is proposed for

large-scale job shop scheduling problems. In the algorithm, the original problem is

decomposed into a series of sub-problems to reduce the problem scale and solving complexity.

The critical path method is adopted to detect the multi-bottleneck machines, and the

characteristics of the bottleneck machine is used in the sub-problems' solving to improve the

solving efficiency. The principle of “Uniform Distribution Load” and two strategies (DPO-AS and

EF-PGSO) are proposed to improve the solution quality. 

Simulation results show that, the performance of DH-MB is slightly inferior to other methods

for the small-scale and medium-scale instances, but DH-MB has better performance for the

large-scale instances. The algorithm can get satisfactory solutions within reasonable

computational time for large-scale JSPs. In the end, we also analyze the influence of the two

strategies (DPO-AS and EF-PGSO) to DH-MB, and the results verified their effectiveness on

improving the solution quality.
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