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Abstract:

Purpose: The purpose of  this paper is to extend the analysis of  the distribution-free

newsvendor problem under the circumstance of  customer balking, which usually occurs when

customers are reluctant to buy products if  the available inventory falls below a threshold level. 

Design/methodology/approach: A new tradeoff  tool is provided as a replacement of  the

traditional one to weigh the holding cost and the goodwill costs segment: apart from the

shortage penalty, the balking penalty is introduced. Furthermore, such research methodology is

employed in the case of  random yield. 

Findings: A model is presented for determining both an optimal order quantity and a lower

bound of  the profit under the worst possible distribution of  the demand. We also study the

effects of  shortage penalty and the balking penalty on the bias of  the optimal order quantity,

which have been largely bypassed in the existing distribution-free single period models with

balking. Numerical examples are presented to illustrate the result.
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Originality/value: The incorporation of  balking penalty and random yield represents an

important improvement in inventory policy performance for distribution-free newsvendor

problem when customer balking occurs and the distributional form of  demand is uncertain.

Keywords: newsvendor model, distribution-free, balking penalty, random yield

1. Introduction

As a fundamental problem in stochastic inventory control, the newsvendor problem has been

studied for a long time and applied in a broad array of business settings with the objective of

expected profit maximization or expected cost minimization (Wu, Li, Wang & Cheng, 2009).

The newsvendor problem is a classical inventory problem that is very significant in terms of

both theoretical and practical considerations. The model assumes that if any inventory remains

at the end of the period, a discount or disposed is used to sell it. If the order quantity is lower

than the realized demand, the newsvendor forgoes some profit (Khouja, 1999). In fact, the

newsvendor problem has served as a building block for numerous models in inventory

management, supply chain management and coordination, yield management, scheduling,

option pricing models, and many other areas. See Qin, Wang, Vakharia, Chen and Seref (2011)

for a survey of various newsvendor-related models and useful suggestions for future research.

The traditional newsvendor problem assumes that the demand follows a specific distribution

with the known parameters. In many practical situations, however, the true demand

distribution may not be easily and accurately estimated. In this paper, we focus on the

situation where the probability distribution function (pdf) F belongs to a class of pdfs Ŧ with a

given mean m and a given standard deviation s. The order size decision Q based only on the

partial distribution information is often referred to as the “distribution-free decision”. Scarf

(Scarf, 1958), who pioneered this approach, applies it to develop a closed form expression for

the order quantity that maximizes expected profit. Scarf’s results are resurrected by Gallego

and Moon (1993), who provide a simpler proof of optimality of Scarf’s ordering rule and extend

the analysis to the cases of random yields, fixed ordering cost, and constrained multiple

products, as well as the recourse case where there is a second ordering opportunity.

Vairaktarakis (2000) develops a minimax regret approach for the distribution-free multi-item

newsvendor problem under a budgetary constraint and two types of uncertainty. Along similar

research routes, Moon and Silver (2000) focus on the distribution-free scenario by developing

a heuristic method for the multi-item newsvendor problem on the basis of a budget constraint

and fixed ordering costs. Alfares and Elmorra (2005) extend the results obtained by Gallego

and Moon by means of incorporating a shortage penalty cost. Yue, Chen and Wang (2006)

develop previous work on the distribution-free newsvendor problem. They compute the

maximum expected value of distribution information through all F  Ŧ for any order quantity.
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Recently, Lee and Hsu (2011) study the effect of advertising that are explored for the

distribution-free newsvendor problem. They show that the optimal expenditure on advertising,

the optimal order quantity and the optimal lower bound on the expected profit increase with

the advertising effect parameters. Güler (2014) point out that although Lee and Hsu’s result

holds in general, it requires additional assumptions. He provides the necessary and sufficient

conditions on the ground of the statements of Lee and Hsu (2011). Andersson, Jörnsten,

Nonås, Sandal and Ubøe (2013) focus on distribution-free newsvendor problem. By comparing

the performance of the maximum entropy approach with minimax regret and Scarf’s rule on

large samples of randomly drawn demand distributions, they show that the average

performance of the maximum entropy approach is considerably better than either alternative,

and more surprisingly, that it is in most cases a better hedge against bad results. Kamburowski

(2014) reveals that the distribution-free newsvendor problem under the worst-case and best-

case demand scenarios actually reduces to the standard of newsvendor problem with demand

distributions that bound the allowable distributions in the sense of increasing concave order.

In addition to the incomplete distributional information of the demand, the balking behavior of

customers is not uncommon in such situations as follows. Considering the operation in a

fashion apparel retailer such as a secondhand clothes shop, it is a realistic phenomenon that

some clothes with slightly different quality are sold with the same prices. Customers rummage

through piles of second-hand clothes for something that look newer. In this case, fewer

inventories mean fewer choices for some ones so that they tend to balk. That is, when the

selection of available clothes falls below some threshold, customers desire for a cloth may pass

up the shop altogether in favor of one with a greater selection. In the same context, having

the exhibition of enough vegetables is very important to attract consumers. As the stock in any

type of display falls below a certain level, the administrator believes that customers tend to

balk at purchasing on account of a perception that the vegetables are no longer fresh. Under

such a scenario, the probability of a customer making a purchase of the product falls below if

its available inventory falls below a threshold level. Such customer balking is very common in

the case of perishable items such as milk, fruit and flowers etc., where the probability of

purchase declines if there are just one or a few items (albeit free of defects) available on the

shelf. The basic model with balking is initially studied by Pasternack (1990), who assumes that

the demand distribution is completely known. Afterward, the distribution-free model with

balking was studied by Moon and Choi (1995), Liao, Banerjee and Yan (2011) and Pal, Sana

and Chaudhuri (2013), who assumed that only the mean and variance of the demand

distribution are known. Cheong and Kwon (2013) study an extension of the distribution-free

model with balking under a service-level constraint. Lee and Jung (2014) investigate the

performance measures of newsvendor model in an environment of customer balking and

derive the explicit expression of several performance measures from the newsvendor model

with customer balking and also provide those upper or lower bound under the circumstance of

the worst demand distribution.
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The existing literatures regard the goodwill cost of the newsvendor just as the shortage

penalty cost. However, the research discovers not only the stockout penalty cost for the

goodwill cost, but also the balking penalty cost, responsible for the penalty for the lost sales of

a customer during balking. The crucial differences between these two penalties involve the

following aspects: first, the balking penalty occurs when the available inventory falls below a

threshold (not zero) level, while the stockout penalty occurs when the inventory falls to zero.

Second, since the impact of stockout on the business goodwill will be worse than the impact of

customer balking in practice, the unit stockout penalty should be larger than the unit balking

penalty. It is obvious that the definition of balking penalty provides another tradeoff standard

for decision-maker to make a decision. Although the balking cost is generally not easy to be

estimated, it is nonetheless a real cost that should not be simply ignored. Any reasonable

estimate and significant of this cost improves the accuracy and profitability of the newsvendor

model.

The purpose of this research work is to extend the optimal order quantity formulas established

by Liao et al. (2011) to the case where balking penalty is employed in the single product case

and the random yield case. We also study the effects of shortage penalty and the balking

penalty on the optimal order quantity of a distribution-free newsvendor, which have been to a

great extend bypassed in the existing distribution-free single period models with balking.

Furthermore, we first apply the random yield to distribution-free newsvendor model with

balking.

The rest of this paper is organized as follows. In Section 2 we formulate the distribution-free

newsvendor models with customer balking penalty. The optimum order quantity and the lower

bound on expected profit are achieved for the single product case. The random yield case is

analyzed in Section 3. In Section 4, numerical experiments are presented. Finally, conclusions

and suggestions for future research are detailed in Section 5.

2. Basic Model with Balking Penalty

We are going to adapt the notations largely used in Moon and Choi (1995). The notions needed

for the model is given as:

• c unit cost of the inventory item

• p the item’s unit selling price

• v unit salvage value, if an item is left unsold at the end of the sales period

• K the threshold inventory level at which balking occurs
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• q probability of a sale during balking, 0 ≤ q ≤ 1

• Q the item’s order quantity, Q >K

• l1 unit penalty for balking, i.e., unit penalty for the lost chance of a sale when the

customer in demand balks, the inventory is less than K(K ≠ 0)

• l unit penalty for stockout, i.e., unit penalty for shortage, the inventory equals zero at

this time, l >l1

• D the item’s random demand

• F the distribution function of the item’s demand, F is continuous, differentiable and

strictly increasing but uncertain

• m the item’s expected demand over the sales period

• s standard deviation of the item's demand

• x+ =max {x,0} the positive part of x 

The expected profit function with balking and shortage penalty, as suggested by Liao et al.

(2011), based on the earlier work of Moon and Choi (1995), is

 
π F (Q)= ∫

0

Q−K

[pD+v(Q−D)]f (D)dD+ ∫
Q−K

Q−K+K /θ

[p(Q−K +θ (D−Q+K ))+v (K−θ (D−Q+K ))]f (D)dD

+ ∫
Q−K+K /θ

∞

[pQ−l (D−(Q−K+K /θ ))]f (D)dD−cQ .

In the above expression, there is no consideration of balking penalty. As mentioned earlier,

however, the balking penalty may be too significant to be disregarded in many real world

circumstances. Under a balking penalty situation, the lost phenomenon is different from the

case presented by Liao et al. (2011). Using the above framework, we need the following

expected profit function in order to incorporate the balking penalty:

π F (Q)= ∫
0

Q−K

[ pD+v(Q−D)] f (D)dD

+ ∫
Q−K

Q−K +K /θ

[ p (Q−K +θ (D−Q+K ))+v(K−θ (D−Q+K ))−l1(1−θ )(D−Q+K )] f (D)dD

+ ∫
Q−K +K /θ

∞

[ pQ−lθ (D−(Q−K+K /θ ))−l1(1−θ )(D−Q+K )] f (D)dD−cQ

(1)

In the expected profit function above, the first term represents the expected revenue when the

item’s demand during the sales period is between 0 and Q–K units. In this case, there is no

lost sales and balking penalty because the demand is less than the threshold inventory and
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balking does not occur. The second term denotes the expected profit if demand is between

Q-K and Q–K+K/q units. In this case, balking will occur and affect (1–q)(D–(Q–K)) units

among D units demand. Thus, for this range of demand, Q–K + (D–Q+K) units will be sold and

Q–(Q–K+q (D–Q+K)) units will be left unsold. So there is no stockout penalty for this case.

The balking penalty equals l1(1−q)(D−Q+K). The third term captures the expected profit when

the demand is larger than Q–K+K/q units. Now balking occurs for this case, but all items will

be sold out since the demand is large enough. Therefore, the balking penalty equals l1(1−q)

(D−Q+K) and the stockout penalty equals lq (D−(Q−K+K/q)). The last term in the above

expression represents the total cost of ordering the Q units.

Noting that 

E (D−Q+K )+= ∫
Q−K

∞

(D−Q+K ) f (D)dD, (2)

We can rewrite the expected profit in another form as follows (see the Appendix for the

derivation):

π F (Q )=(p−v)μ−(v−v)Q−(1−θ )(p−v+ l1)E (D−Q+K )+−θ (p−v+ l )E (D−Q+K−K /θ )+. (3)

Remark 1

The above model (3) reduces to the profit function of the classical newsvendor problem

(Gallego & Moon, 1993) when K=l=l1=0 and q =1, reduces to the model considered in Moon

and Choi (1995) when l1= l = 0, and reduces to the model considered in Liao et al. (2011)

when l1 = 0.

It is easy to verify that maximizing pF(Q) is equivalent to minimizing CF(Q), representing the

total expected cost, as shown by the following expression:

CF(Q)=(c-v)Q + (1-q)(p-v+l1)E(D-Q+K)++ q (p-v+l)E(D-Q+K-K/q)+. (4)

We can easily verify that the above expression is strictly convex in Q. Furthermore, if the exact

demand distribution in (4) is known, we can find the optimal order quantity via its first partial

derivative with respect to Q to zero and solving for Q, i.e.

(1-q)(p-v+l1)F(Q-K)+ q (p-v+l)F(Q-K+K/q)=p-c+q l+(1-q)l1. (5)

Let QF be the optimal order quantity obtained from (5) when the cumulative distribution of the

demand is F  Ŧ.

Next, we consider the distribution-free approach. Suppose only a partial information about the

distribution F of D is available in the sense that F  Ŧ, where Ŧ is a certain family of
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distributions with a finite mean m and standard deviation s. Since the distribution F of D is

unknown we want to minimize (4) against the worst possible distribution in Ŧ. To this end, we

need the following results cited by Moon and Choi (1995), which are attributed to Gallego and

Moon (1993):

Lemma 1

E (D−Q+K )+≤
[σ 2+(Q−K−μ)2 ]1 /2

−(Q−K−μ)
2

. (6)

Lemma 2

E (D−Q+K−K /θ )+≤
[σ 2+(Q−K−μ+K /θ )2 ]1 /2

−(Q−K−μ+K /θ )
2

. (7)

Lemma 3

For every Q, there exist a distribution F  Ŧ where the bounds (6) and (7) are tight.

In the distribution-free newsvendor problem, our aim is to find the most unfavorable

distribution for each Q and then maximize the expected total profit over Q. Using the above

three lemmas, the objective is to minimize the upper bound of CF(Q) which is CF(Q).

∇ CF (Q)=(c−v )Q+(1−θ )(p−v+l1)
[σ 2+(Q−K−μ )2 ]1/2

−(Q−K−μ)
2

+θ (p−v+ l )
[σ 2+(Q−K−μ+K /θ )2 ]1 /2

−(Q−K−μ+K /θ )
2

.

(8)

From (8), its second partial derivative with respect to Q is

2(∇C F (Q))
Q2

=θ (p−v+ l)σ 2 [σ 2+(Q−K−μ+K /θ )2 ]−3 /2

2
+(1−θ )(p−v+l1)σ

2 [σ 2+(Q−K−μ)2]−3 /2

2
>0. (9)

Therefore, (8) is convex in Q and to obtain the optimal CF(Q), we only need to compute its

first partial derivative with respect to Q and set it equal to zero, which leads to the following

optimality condition:

q (p-v+l)[s2+(Q-K-m+K/q)2]-1/2(Q-K-m+K/q)+(1-q)(p-v+l1)[s2+(Q-K-m)2]-1/2(Q-K-m)=

 p+v+q l+ (1-q) l1-2c.
(10)
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By solving Equation (10) above for Q, we, thus, find the optimal value, Q*, which is the optimal

order quantity against the worst possible distribution. The resulting maximum distribution-free

expected total profit, pF(Q*), can then be computed by substituting this value into (3).

Remark 2

In order to estimate the value of information concerning the exact distributional form of

demand, we follow the notion of the expected value of additional information (EVAI) suggested

by Moon and Choi (1995). 

pF(QF)-pF(Q*).

This is the largest amount that we would be willing to pay for the knowledge of F. This

quantity can be regarded as the expected value of additional information (EVAI).

Theorem 1

The optimal order quantity Q* is an increasing function of l and l1.

Proof. Theorem 1 can be proved taking the first partial derivatives of (10) with respect to each

parameter and determining their signs. 

Let 

H(l,l1)=q (p-v+l)[s2+(Q-K-m+K/q )2]-1/2(Q-K-m+K/q)+

(1-q)(p-v+l1)[s2+(Q-K-m)2]-1/2(Q-K-m)-(p+v+q l+(1-q)l1-2c)=0.
(11)

Then by the Implicit Function Theorem, from (11), we have

Q✳

 l
=−

H (l , l1)

 l
/

H( l , l1)

Q✳ . (12)

By (9), we get
H (l , l1)

Q✳ >0 , while

H (l , l1)

l
=θ {[σ 2+(Q−K−μ+K /θ )2 ]−1/2

(Q−k−μ+K /θ )−1}<0.

Thus

Q✳

 l
>0.
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Similarly, by
H (l , l1)

 l1

=(1−θ ) {[σ 2+(Q−K−μ)2 ]−1/2
(Q−k−μ)−1}<0 , we can easily obtain

Q✳

 l1

>0.

From Theorem 1, when unit penalty for stockout l and the unit penalty for stockout l1 increase,

the decision-maker should increase the order quantity because a large order quantity may

increase sales and prevent shortage.

Example 1

This example is adapted from Liao et al. (2011), incorporating an additional balking penalty

cost parameter. An inventory item has the following characteristics: the unit selling price is

$60, the unit cost is $35, the unit lost sale cost is $25 and the unit balking penalty cost is $10,

the unit salvage value is $15. The mean and standard deviation of demand are, respectively,

850 and 150 units, but the distribution form is unknown. The balking inventory level and the

unit chance of a sale, respectively, are 200 units and 0.9. From Equation (10), the optimal

order quantity of the distribution-free model, Q*, is calculated to be 917 units and the resulting

expected profit, pF(Q*), obtained from (3), is $16,305.

We then assume that the item’s demand is normally distributed with the same mean and

standard deviation cited above. By (5), the optimal order quantity, QF, now turns out to be 930

units and, using (6), the expected total profit, pF(QF), with exact distribution information, is

computed to be $17,492. Thus the EVAI yielded by the knowledge of the exact demand

distributional form is $1,187. Based on this example, it appears that our approach results in a

less than 7.5% profit penalty due to a lack of knowledge about the distribution of demand.

3. The Random Yield Case

Let us now assume that the quantity ordered or produced Q is not perfect. Consider a

production environment where the decision to release Q units for production results in G(Q)

good units, where G(Q) is a random variable. Let us also assume that each unit ordered or

produced has the same probability r, of being good. Thus, if Q is an integer, the yield G(Q) is a

binomial random variable with mean Qr and variance Qrr where r= 1-r. This model can also

be used in a non-manufacturing setting, when an order for Q units results in the delivery of

exactly Q units, each of which is good with probability r. We assume that the yield G(Q) is

independent of the demand D.
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We are interested in determining the optimal order quantity to maximize expected profit

against the worst possible distribution of the demand. The expected profit expression (3)

becomes:

pF(Q) = (p-v)m-cQ+vrQ-(1-q)(p-v+l1)E(D-G(Q)+K)+-q (p-v+l)E(D-G(Q)+K-K/q)+. (13)

As before, we transform the profit maximization problem into one of cost minimization. We find

it easier to minimize the expected cost

CF(Q) = (c-vr)Q+(1-q)(p-v+l1)E(D-G(Q)+K)+-q (p-v+l)E(D-G(Q)+K-K/q)+. (14)

Since we know the distribution of G(Q), our knowledge of the distribution of D-G(Q) is more

than just its mean m-Qr and its variance s2+Qrr. Thus, applying Lemma 1 to D-G(Q), we

obtain

E (D−G (Q)+K )+≤
[σ 2+Q ρ ρ̄+(ρ Q−μ−K )2 ]1/2

−(ρ Q−μ−K )
2

. (15)

E (D−G (Q)+K−K /θ )+≤
[σ 2+Q ρ ρ̄ +(ρ Q−μ−K+K /θ )2 ]1 /2

−(ρ Q−μ−K +K /θ )
2

. (16)

We substitute (15) and (16) into (14) to obtain the upper bound on expected cost

∇ CF (Q)=(c−v ρ )Q+(1−θ )(p−v+l1)
[σ 2+Q ρ ρ̄ +(ρ Q−μ−K )2 ]1 /2

−(ρ Q−μ−K )
2

+θ (p−v+ l )
[σ 2+Q ρ ρ̄ +(ρ Q−μ−K+K /θ )2 ]1 /2

−(ρ Q−μ−K +K /θ )
2

.

(17)

From (17), its second partial derivative with respect to Q is 

1
8

ρ 2{(1−θ )(p−v+ l1)
4σ 2−ρ̄2+4 ρ̄ μ+4 ρ̄ K

[σ 2+Qρ ρ̄ +(ρ Q−μ−K )2 ]3 /2
+θ (p−v+ l) 4σ 2−ρ̄2+4μ ρ̄+4K ρ̄−4 ρ̄ K /θ

[σ 2+Qρ ρ̄ +(ρ Q−μ−K+K /θ )2 ]3 /2 }. (18)

It is easier to find that 4s2-r2+4rm+4rK > 0, thus if the condition (19) holds, we can verify that

is strictly convex in Q.

4s2-r2+4mr+4Kr -4rK/q> 0. (19)

When the condition (19) holds, in order to minimize the upper bound, we need to compute its

first partial derivative with respect to Q and set it equal to zero, which leads to the following

optimality condition:

2(c−v ρ )+(1−θ )(p−v+ l1)ρ { 1
2

[σ 2+Q ρ ρ̄ +(ρ Q−μ−K )2 ]
−1/2

[ ρ̄ +2(ρ Q−μ−K )]−1}
+θ (p−v+l ) ρ {1

2
[σ 2+Q ρ ρ̄+(ρ Q−μ−K +K /θ )2 ]

−1 /2
[ ρ̄ +2(ρ Q−μ−K+K /θ )]−1}=0.

(20)

By solving Equation (20) above for Q, thus we can find the optimal value, Q0, which is the

optimal order quantity against the worst possible distribution. The resulting maximum
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distribution-free expected total profit, pF(Q0), can then be computed by substituting this value

into (13).

Theorem 2

The optimal order quantity is an increasing function of l and l1 when (19) holds.

Proof

Theorem 2 can be proved taking the first derivatives with respect to each parameter and

determining their signs as in the proof of Theorem 1. 

Let

H (l , l1)=2(c−v ρ )+(1−θ )(p−v+ l1)ρ { 1
2

[σ 2+Q ρ ρ̄ +(ρ Q−μ−K )2 ]−1/2
[ ρ̄+2(ρ Q−μ−K )]−1}

+θ (p−v+ l )ρ { 1
2

[σ 2+Q ρ ρ̄ +(ρ Q−μ−K +K /θ )2 ]−1/2
[ ρ̄ +2(ρ Q−μ−K +K /θ )]−1}=0.

(21)

Then by the Implicit Function Theorem, from (21), we have

Q0

 l
=−

H (l , l1)

 l
/

H (l , l1)

Q0
. (22)

By (18) and (19), we have

H (l , l1)

Q0
>0. (23)

Since

 { [ ρ̄ +2(ρ Q−μ−K +K /θ )]
2 [σ 2+Q ρ ρ̄ +(ρ Q−μ−K+K /θ )2 ]

1 /2 }
2

=1−
4σ 2−ρ̄2+4 ρ̄ (μ +K−K /θ )

4[σ 2+Q ρ ρ̄+(ρ Q−μ−K+K /θ )2 ]
<1.

We can easily obtain

H (l , l1)

l
=θ ρ { [ ρ̄ +2 (ρ Q−μ−K +K /θ )]

2[σ 2+Q ρ ρ̄+(ρ Q−μ−K +K /θ )2 ]1/2
−1}<0. (24)

 Therefore 

Q0

 l
>0.
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Similarly, by
H (l , l1)

 l1

=(1−θ )ρ { [ ρ̄ +2 (ρ Q−μ−K )]
2[σ 2+Q ρ ρ̄+(ρ Q−μ−K )2]1 /2

−1}<0. , we get 

Q0

 l1

>0.  

The results for Theorem 2 and Theorem 1 are similar. However, in Theorem 2, since the effect

of random yield, we add the condition (19) to ensure the uniqueness of optimal order quantity

Q0. Fortunately, in general, the condition (19) easily holds in real life and it is just a sufficient

condition.

Inference 1

The optimal order quantity Q0 is a decreasing function of r when (19) holds.

Discussion 

We can use the Implicit Function Theorem to prove Inference 1 as in the proof of Theorem 1.

However, it is hard to prove Inference 1 because it is difficult to judge positive or negative of

∂H(l, l1)/∂r. By intuition, the reasoning behind Inference 1 maybe that the decision-maker

should increase the order quantity in order to provide protection against defective items when

the probability of good items decrease, which implies that Inference 1 holds. We explore this

issue further in Section 4, where the results of our numerical experiment are reported.

Example 2

Using the data of Example 1, we assume that for each unit of Q, the probability of being good

is r = 0.9. Hence the condition (19) holds. From (20), we obtain the order quantity Q0 = 991.

The order quantity based on perfect quality, Q*, calculated in Example 1, is 917. Naturally, the

order quantity increases in order to provide protection against defective items.
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4. Numerical Experiments

4.1. Robustness Analysis

In order to investigate the robustness and effectiveness of our distribution-free model (without

the random yield case) developed in this paper. Specifically, we randomly generate an array of

100 test problems, where each relevant parameter of these 100 samples is drawn from a

uniform distribution. Table 1 shows the distributions for the date set. For modeling demand,

three different distributions, viz. normal, t and uniform are adopted. The normal and t

distributions each has a mean of 800 units and a standard deviation of 150 units, whereas the

uniform distribution has limits of 540 and 1,060 units, i.e. a mean of 800 and a standard

deviation of 150 units.

In each distributional form, we compute the optimal expected total profits by applying the

known distribution and the distribution-free cases, i.e. pF(Q*) and pF(QF). To ascertain the

effectiveness of our approach, we compute the ratio of these two measures, i.e. pF(QF)/pF(Q*).

Table 2 shows the means of these ratios for the 100 cases under the three distributions. From

this table, it is clear that most of the ratios are quite close to 1, which enables us to use the

distribution-free ordering rule in those circumstances when it is almost impossible or rather

difficult to find the actual distributional form of demand.

Data p c v K q l l1
Range [60, 120] [30, 60] [10, 30] [150, 300] [0.5, 1] [20, 30] [10, 20]

Table 1. Distributions for randomly generated parameter values

Distribution Normal Uniform t
Mean ratio 1.0691 1.0785 1.0742

Table 2. Results of comparative examples

4.2. The Effect of Penalties

Our second numerical study is geared at understanding the influences of shortage penalty l

and balking penalty l1 on the optimal order quantity, Q*, under the worst possible distribution

of the demand. Applying the dates of Example 1, we only need the unit shortage penalty l or

the unit balking penalty l1 changes. The results of these calculations are presented in Figures

1-2.
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Figure 1. The influence of shortage penalty on the optimal order quantity Q*

Figure 2. The influence of balking penalty on the optimal order quantity Q*

Figure 1 and Figure 2 demonstrate that the optimal order quantity Q* is increasing in unit

shortage penalty l and in unit balking penalty l1. Therefore, when unit penalty for stockout l

and the unit penalty for stockout l1 increase, the decision-maker should increase the order

quantity in order to provide protection against balking and shortage.

4.3. The Effect of Random Yield 

Finally, the effect of random yield on the optimal order quantity, Q0, under the worst possible

distribution of the demand is studied. Using the dates of Example 2, we only need the

probability r changes. Result is presented in Figure 3.
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Figure 3. The effect of random yield on the optimal order quantity Q0

From Figure 3, it is apparent that the optimal order quantity, Q0, is decreasing in the

probability r. Specially, the optimal order quantity reduced to 917 when r = 1, which is the

optimal order quantity without random yield case. In addition, we can experiment the

inference 1 is correct by Figure 3. Therefore, the decision-maker should increase the order

quantity in order to provide higher protection against defective items when the probability of

good items decrease.

5. Conclusions

We have extended the distribution-free newsvendor model with customer balking developed by

Moon and Choi (1995) and Liao et al. (2011), by taking the penalty for balking to the model

because in real life there is always a cost associated with balking. New models and results

have been accomplished for the single product case and the random yield case. We also

investigate the effects of penalty for balking and shortage as well as random yield on Q* under

the worst possible distribution of the demand, which have been largely ignored in the existing

distribution-free single period models with balking. Numerical results from our computational

experience demonstrate the robustness and effectiveness of our enhanced model in terms of

expected total profit with the comparison of the known demand distribution case. The

incorporation of balking penalty and random yield, thus, represents a profound enhancement

in inventory policy performance, when customer balking occurs and the distributional form of

demand is unknown.

There are a considerable amount of other questions that need to be further explored. For

example, other extensions of our model include multiple item, the fixed ordering cost,

supplying option and lead time, and resource constraints, etc. Finally, we hoped that the

results obtained in this paper will be instructive for both researchers and practitioners and
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provide some insights for developing related newsvendor models with multiple ordering

opportunities.
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Appendix A.

Derivation of pF(Q)

Each term in (1) can be represented as follows: 

∫
0

Q−K

[ pD+v (Q−D)] f (D)dD−cQ=(p−v)(μ−Q+K )−( p−v )E (D−Q+K )+ (A1)

∫
Q−K

Q−K+K /θ

[ p (Q−K +θ (D−Q+K ))+v ( K−θ (D−Q+K ))−l1(1−θ )(D−Q+K )] f (D)dD

=(θ p−θ v )E (D−Q+K )+−(θ p−θ v)E (D−Q+K−K /θ )+− ∫
Q−K

Q−K +K /θ

l1(1−θ )(D−Q+K )F (D)dD

+(pQ−pK+vK ) [ 1−F (Q−K )]−pQ [ 1−F (Q−K +K /θ )] .

(A2)

∫
Q−K+K /θ

∞

[ pQ−lθ ( D−(Q−K +K /θ ))−l1(1−θ )(D−Q+K )] f (D )dD

=pQ [ 1−F (Q−K +K /θ )]−lθ E (D−Q+K−K /θ )+− ∫
Q−K +K /θ

∞

l1(1−θ )(D−Q+K ) f (D)dD.
(A3)

By adding Equations (A1), (A2) and (A3) and simplifying them, we can get pF(Q) as in the text.
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