
Journal of  Industrial Engineering and Management
JIEM, 2015 – 8(3): 840-860 – Online ISSN: 2013-0953 – Print ISSN: 2013-8423

http://dx.doi.org/10.3926/jiem.1443

Using LMDI Approach to Analyze Changes in Carbon Dioxide

Emissions of  China’s Logistics Industry

Ying Dai, Jing Zhu, Han Song

College of  Management, Chongqing University of  Technology (China)

daiying  @  cqut.edu.cn  , huangfang@cqut.edu.cn, songhan  @gmail.com

Received: March 2015
Accepted: June 2015

Abstract:

Purpose: China is confronting with tremendous pressure in carbon emission reduction. While

logistics industry seriously relies on fossil fuel, and emits greenhouse gas, especially carbon

dioxide. The aim of  this article is to estimate the carbon dioxide emission in China’s logistics

sector, and analyze the causes for the change of  carbon dioxide emission, and identify the

critical factors which mainly drive the change in carbon dioxide emissions of  China’s logistics

industry.

Design/methodology/approach: The logarithmic mean Divisia index (LMDI) method has

often been used to analyze decomposition of  energy consumption and carbon emission due to

its theoretical foundation, adaptability, ease of  use and result interpretation. So we use the

LMDI method to analyze the changes in carbon dioxide emission of China’s logistics industry

in this paper.

Findings: By analyzing carbon dioxide emission of  China’s logistics, the results show that the

carbon dioxide emission of  logistics in China has increased by 21.5 times, from 45.1 million

tons to 1014.1 million tons in the research period. The highway transport is the main

contributor to carbon dioxide emission in logistics industry. The energy intensity and carbon

dioxide emission factors contributed to the reduction of  carbon dioxide emission in China’s

logistics industry in overall study period.
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Originality/value: Although a lot of  literature have analyzed carbon dioxide emission in many

industry sectors, such as manufacturing, iron and steel, pulp and paper, cement, glass industry,

and so on. However, few scholars researched on carbon dioxide emission in logistics industry.

This is the first study which is in the context of  carbon dioxide emission of  China’s logistics

industry.

Keywords: logistics industry in China, carbon dioxide emission, LMDI

1. Introduction

Many studies have suggested that the concentration of greenhouse gases (GHG) in the

atmosphere has been increasing as a result of human activities (Loo & Li, 2012), and the high

concentration of GHG has caused global warming which was measured by the increase of the

Earth’s average temperature (Chapman, 2007). It was reported that the average global surface

temperature had increased by 0.74ºC over the last 100 years (2014), which was caused by the

GHGin the atmosphere, due to the consumption of numerous fossil fuels. Intensive use of fossil

fuels can be cited as the main reason of the significant increase in anthropogenic GHG that lead

to climate change (Ipek-Tunç, Türüt-Aşık & Akbostanci, 2009). Carbon dioxide (CO2) was the

most important composition and accounted for about 80% share of the greenhouse effect

(Liao, Lu & Tseng, 2011). Figure 1 shows the top five CO2 emission countries in the world. China

has exceed America and become the first source of CO2 emission since 2007, with 8320.96

million tons carbon (MTC) in 2010, which accounted for 26.2% share of the total CO2 emission in

the world (2014). As a signatory of the United Nations Framework Convention on Climate

Change (UNFCCC), China approved the Kyoto Protocol in 2002, and promised that carbon

emissions per unit of GDP would be reduced by 40%-45% in 2020 than 2005 in Copenhagen

world climate meeting in 2009. It is greatly significant for policy makers to analyze the change

in dioxide carbon emission and find the critical factors to achieve the goal of emission reduction.

Figure 1. Top five of total CO2 emission in the world 

(U.S. Energy Information Administration, EIA, 2012)
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Confronted with global warming, CO2 emission as a main composition of GHG was widely paid

attention and researched by most governments, scholars and enterprises in recent years. We

can roughly summarize the researches as the following aspects. The first aspect primarily

focused on the relationships between energy consumption, CO2 emission and economic

activities in different countries and districts, such as China (Wang, Zhou & Zhou, 2011), Russia

(Pao, Yu & Yang, 2011), India (Ghosh, 2010), Europe (Acaravcia & Ozturk, 2010), South Africa

(Menyah & Wolde-Rufael, 2010), Turkey (Halicioglu, 2009), and so on. The research results

showed there were different causal relationships in different countries. The second aspect was

on the forecasting of CO2 emission. For example, Azadeh, Khakestani and Saberi (2009)

forecasted the oil consumption and CO2 emission in Canada, United States, Japan and Australia

during 1990-2005 by using a flexible fuzzy regression algorithm. Olsthoorn (2001) estimated

CO2 emissions from international aviation from 1950 to 2050 through a regression model.

Finally, it was case study of CO2 emission decomposition. For example, Ipek-Tunç et al. (2009)

identified the factors that contributed to the changes in CO2 emissions in agriculture, industry

and services. Hammond and Norman (2012) researched on carbon emissions from UK

manufacturing between 1990 and 2007. Sheinbaum, Ozawa and Castillo (2010) analyzed

energy and CO2 emission trends of Mexico's iron and steel industry during the period

1970-2006 using Log mean Divisia index; Schmitz, Kamiński, Scalet and Soria (2011)

represented a detailed analysis of CO2 emissions and energy consumption of European glass

industry. Xu, Tobias and Eichhammer (2012) analyzed the change of energy consumption and

CO2 emissions in China’s cement industry and its driving factors over the period 1990-2009. 

As we know, transport is one of main resources of CO2 emissions. Some research

achievements were made. Steenhof, Woudsman and Sparling (2006) analyzed the change in

GHG emissions produced by Canada’s freight transport using a decomposition analysis

framework. Liao et al. (2011) examined CO2 emissions of truck-only transportation using

activity-based emission modeling and compared those with intermodal coastal shipping and

truck movements. Fatumata and Lee (2009) compared the energy intensity and CO2 emission

of truck freight in Australia, France, Japan, the United Kingdom and the United States from

1973 to the present, using a bottom-up approach relying on national data. Solís and

Sheinbaum (2013) presented a disaggregation of the fuel consumption and its related CO2

emissions from passenger and freight road transport in Mexico. Zhou, Chung and Zhang

(2013) studied CO2 emissions performance of the transport sector throughout China's 30

administrative regions using Data Envelopment Analysis (DEA) models with different return of

scales. Kellner and Igl (2015) examined how the network carbon footprint of a real-world

distribution system was affected by the logistics service provider network that was chosen to

forward goods from production facilities to customers. Xu and Lin (2015) adopted provincial

panel data from 2000 to 2012 and nonparametric additive regression models to examine the

key influencing factors of CO2 emissions in the transport sector in China.
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We can find that many research achievements about CO2 emissions sprang up in different

fields from above listed references. However, few scholars researched on carbon dioxide

emission in logistics industry. A small quantity of scholars researched CO2 of logistics. For

example, Zając (2011) presented of the conception of counting the energy consumption of

logistics warehouse systems. Tang, Wang, Yan and Hao (2014) examined the issue of cutting

emissions by reducing shipment frequency within the framework of periodic inventory review

system. Hammami, Nouira and Frein (2014) developed a deterministic optimization model that

incorporates carbon emissions in a multi-echelon production-inventory model with lead time

constraints. Logistics is a process of planning, implementing and controlling the efficient, cost-

effective flow and storage of raw materials, in-process inventory, finished goods and related

information from point of origin to point of consumption for the purpose of conforming to

customer requirement (Cooper, Lambert & Pagh, 1997). Logistics has played an extremely

important role in economic growth in China (Zhang & Peng, 2009; Peng, 2011; Tan, 2003). On

the other hand, it is a relatively energy-intensity industry, such as haul trucks, shipping and

aircraft, which seriously rely on fossil fuel, and they emit greenhouse gas. Logistics activities

accounted for roughly 5.5% share of global GHG emissions, around 90% of which came from

transport, and the rest come from warehouses, load and unload (McKinnon, 2012).

There are close correlations between logistics and transportation. However, logistics presents

some obvious differences with transportation. Transportation can be known as an important

element of logistics. The generalized transportation includes passenger transport and freight

transport, but logistics doesn’t cover passenger transport.. The paper mainly contributes to

reflect changes in carbon dioxide emission of China’s logistics from a more extensive

perspective, on the basis of transportation, storage, distribution, packaging, et al. It is

different with the previous researches which were just based on transportation data, such as

passenger transportation, or freight transportation, or the sum of the two. The main purpose of

this paper is to: (1) estimate the CO2 emission in China’s logistics sector; (2) analyze the

causes for the change of CO2 emission; (3) identify the critical factors which mainly drive the

change in CO2 emissions of logistics sector in China. The remainder of the paper is organized

as follows. Section 2 mainly introduces the decomposition method of carbon dioxide emission

and the source of data. Section 3 describes the statistical analysis of carbon dioxide emission

in China’s logistics industry, and presents the results of carbon dioxide emission

decomposition. Section 4 presents the conclusions and some suggestions for sustainable

logistics.
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2. Methodology

2.1. Decomposition Methods

There are several methods for decomposition analysis of energy consumption and CO2

emission. Especially, two famous decomposition methods, i.e. structural decomposition

analysis (SDA) and index decomposition analysis (IDA), have been widely used, such as

Wachsmann, Wood, Lenzen and Schaeffer (2009), Chang, Lewis and Lin (2008), Lise (2006),

Akbostanc, Ipek-Tunç and Türüt-Aşık (2011). SDA was based on the input-output model, given

to an analytical framework by Leontief (1966). Rose and Casler (1996) reviewed the

development of SDA and its relationships to other methodologies, and presented the

fundamental principles of alternative approaches. IDA was first used to study the impact of

changes in product mix on industrial energy demand (Ang, Zhang & Choi, 1998). Ang (2004)

comprehensively compared the two popular index decomposition analysis methods, namely the

Laspeyres index decompostition and the Divisia index decomposition, and recommended the

log mean Divisia index (LMDI) method for general use due to its theoretical foundation,

adaptability, ease of use and result interpretation, along with some other desirable properties

in the context of decomposition analysis (Liu, Fan, Wu & Wei, 2007). So we use the LMDI

method to analyze the changes in CO2 emission of China’s logistics industry in this paper.

According to the LMDI method firstly introduced by Ang, Zhang and Choi (1998), and the

practical guide presented by Ang (2005), the changes in CO2 emissions from industry may be

studied by quantifying the contributions from five different factors: activity effect, structure

effect, intensity effect, fuel-mix effect and emission-factor effect. About 90% CO2 emissions

came from transport activity in logistics sector (McKinnon, 2012), so we further to divide the

intensity effect into transport intensity effect and energy intensity effect. So we can research

the changes in CO2 emission from logistics industry by quantifying the contributions from the

following six different factors: logistics activity (measured by logistics added-value), transport

intensity, transport mode shift, energy intensity, fuel mix and CO2 emission factors. The

general index decomposition analysis (IDA) identity may be written as shown in Equation (1).

The significance of symbols can be seen in Table 1.

(1)

-844-



Journal of Industrial Engineering and Management – http://dx.doi.org/10.3926/jiem.1443

Symbols Description

i Transport mode

j Fuel type

C Total carbon dioxide emission in study period

Y Logistics activity, measured by logistics added-value

Q Turnover volume of freight transport

Qi Freight turnover volume of the ith transport mode

Eij Consumption of fuel j in ith transport mode

Cij Carbon dioxide emission resulting from fuel j in ith transport mode

T T = Q/Y, transport intensity

Si Si = Qi/Q, transport mode shift

Ii Ii = Ei/Qi, energy intensity

Mij Mij = Eij/Ei, fuel mix

Uij Uij = Cij/Eij, carbon dioxide emission factor

Table 1. Significance of symbols

The change of the aggregate carbon dioxide emission in logistics industry from the base year 0

to the target year t, denoted by Dtot or Etot, can be decomposed to six affect factors as

follows: logistics activity effect (denoted by Dact or Eact), transport intensity effect (denoted

by Dintt or Eintt), transport mode shift effect (denoted by Dstr or Estr), energy intensity effect

(denoted by Dinte or Einte), fuel mix effect (denoted by Dmix or Emix), CO2 emission factors

effect (denoted by Demf or Eemf), as shown in the form of Equation (2) and the additive form

of Equation (3).

(2)

(3)

According to the multiplicative and additive decomposition method recommended by Ang

(2005), each term of Equations (2) and (3) can be calculated applying the LMDI method, which

were shown in Appendix A-Table A1.

2.2. Management of Data

There are no compiled data of logistics industry in the related Chinese yearbooks, but we can

find a statistical index in China Statistical Yearbooks and China Transport Yearbooks, which

included the related statistical data about transport, storage and communications, we can

regard the index as a proximate proxy of logistics industry (Liu & Li, 2007; Zhang & Yu, 2012).

In this paper, we use the “top-down” method to calculate CO2 emissions in logistics industry,

which estimates CO2 emissions on basis of the total amount of fuel consumption. CO2

emissions of the ith transport mode in year t can be calculated by multiplying fuel consumption
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of one fuel type used in the ith transport mode and the CO2 emission factor of the fuel type j.

If different fuels are used in one transport mode, we should summarize the CO2 emission of

different fuel types in the mode (Loo & Li, 2012). For example, the fuel types include coal,

diesel and electricity in railway transport mode. The main energy fuels are gasoline and diesel

in highway transport mode, and they are jet kerosene and aviation gasoline in the aviation

transport. For water transport, the primary fuel is diesel. The energy consumption data of

different freight transport modes can be obtained and calculated from China Statistical

Yearbook, Yearbook of China Transportation and Communication, Compile of China Aviation

Statistics in different stages. Emission factor data came from IPCC Guidelines for National

Greenhouse Gas Inventories (2006), as shown in Table 2.

Fuel type CO2 emission factor
(kg/TJ)

Net calorific value
(TJ/Gg)

Emission factor
(kg CO2/ton fuel)

Coal 96,100 18.9 1816.29

Jet kerosene 71,500 44.1 3153.15

Aviation gasoline 70,000 44.3 3101.00

Motor gasoline 69,300 44.3 3069.99

Diesel 74,100 43.0 3186.30

Table 2. CO2 emission factor by type of transport fuel

Carbon emission coefficients of fuels have changed with an updating in level of fuels. Because

of the relatively short study period, these changes of the emission coefficients can be ignored

when we analyze the macro changes in CO2 emission, we assume that the CO2 coefficients of

coal, kerosene, gasoline and diesel are constant. However, CO2 coefficient of electricity is

continuously changing, due to the fuel mix used and technological improvements in the

generation of electricity. We use the net standard coal consumption rate (g/kw. h) to describe

the energy consumptions which were used to generate one kilowatt hour. We can obtain the

data from China Energy Statistical Yearbook. So, the CO2 emission coefficient is restricted to

the impact of changes in electricity emission rate, which is calculated on basis of the individual

fuels used in power generation (Liu, Fan, Wu & Wei, 2007; Wang, Zhang & Zhou, 2011).

3. Results and Discussion

3.1. Total CO2 Emission in Chinese Logistics Industry

Figure 2 presents the trend of total CO2 emission in China’s logistics industry from 1980 to

2010. It’s obvious that the CO2 emission has a continuously raising trend in the study period. It

has increased by 21.5 times from 45.1 million tons CO2 in 1980 to 1014.1 million tons CO2 in

2010, with the average growth rates was 11.7%, which accounted for 12.2% share of total CO2
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emission of China. The result showed that logistics industry has gradually become one of the

leading source of CO2 emission. The aggregate CO2 emission in logistics has close relationship

with economic growth. Economic growth caused the increasing demand for logistics service,

then, logistics activities increased the energy consumption and thus produced more CO2

emission, especially the transport, which consumed numerous fossil fuels. We can see that the

changing trend was a gentle up-incline before 2007, and suddenly became upward sharply

after 2007 in the Figure 2. Especially in 2007 and 2008, the change of CO2 emission were

remarkable, with the growth rate of 63.5% and 51.1%, respectively, which resulted from

Chinese government’s numerous invests on infrastructure for pursuing the continuous

economic growth.

Figure 2. Total CO2 emission in Chinese logistics industry

We further to analyze the distribution of annual CO2 emission according to the transport modes

to understand the composition of CO2 emission in logistics industry well. Figure 3 shows the

percentages of CO2 emission in different transport modes in each year from 1980 to 2010.

From Figure 3, we can conclude that the highway transport was a main contributor to CO2

emission, it accounted for 76.8% (or 778.47 million tons CO2) share of total CO2 emission in

2010. The reasons were that the demand for highway transport was increasing in recent years

due to its convenience and flexibility, and the highway transport mainly relied on the fossil

energy. Next to highway transport, waterway transport ranked the second, which accounted for

18.1% (or 183.37million tons CO2) of total CO2 emission in 2010, and it is noticed that the

statistical data of waterway transport included ocean transport in China Statistical Yearbook.

Railway transport ranked the third with reduction from 32.3% share in 1980 to 2.53% in 2010.

The main reason is the replacement of the coal-fired steam locomotives with diesel/electric

locomotives (Wang, Zhang & Zhou, 2011). The freight aviation transport had small proportion

and ranked the fourth, which only accounted for 1.69% share of total CO2 emission, however,

its growth rate was the most obvious, it increased by 89.4 times, from 0.19 million tons CO 2 in

1980 to 17.12 million tons CO2 in 2010. It may be explained by the changing of production
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mode, for example, the Just-In-Time (JIT) requests to reduce the inventory as far as possible,

which made promptness of delivery become an important factor. In order to satisfy customer’s

requirements, more and more suppliers choose the aviation transport due to its quick speed.

Figure 3. Percentage of CO2 emission in different transport modes

3.2. Intensity of CO2 Emission in Logistics Industry

The CO2 emission intensity of logistics can be defined as the CO2 emission per unit of logistics

output, which can be measured by the added value of logistics and the turnover volume of

freight transport. So we analyze the CO2 emission from two aspects, i.e. CO2 emission per

added value of logistics (million tons CO2 per billion Yuan) and CO2 emission per turnover

volume of each transport mode (million tons CO2 per billion km-tons). As shown in Figure 4, it

presents the changing trend of CO2 emission of logistics in China. In general, the CO2 emission

of logistics tends to flat in the period of 1980-2006. However, there were dramatic changes in

intensity of CO2 emission between 2006 and 2010, with increasing from 3.06 million tons CO2

per billion Yuan in 2006 to 8.74 million tons CO2 per billion Yuan in 2010 (constant price in

1980). There are some reasons for the obvious changes in intensity of CO2 emission, for

example, Chinese government invested vast funds in infrastructure for economic growth from

2006 to 2010, which boosted the increase of logistics demand rapidly, and it exceeded the

technological updating speed for energy conservation and emission reduction. On the other

hand, the transport mode obviously changed from lower energy consumption mode to higher

energy consumption mode in 2006-2010. The turnover volume ratio of railways to total

turnover volume of freight transport decreased from 24.71% in 2006 to 19.49% in 2010; the

ratio of highway transport increased from 10.98% in 2006 to 30.59%, especially in 2008, the

turnover volume of highway transport increased by 1.89 times than last year, from 1135.5

billion ton-km to 3286.8 billion ton-km. So the economic growth and energy mix are important

factors for the changing in intensity of CO2 emission.
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Figure 4. CO2 emission intensity of logistic industry

As shown in Figure 5, we present the chart of changes in the intensity of CO2 emission

according to transport mode, for comparing the CO2 emission difference of different transport

modes. It is easy to find out that the railway transport owns the lowest CO2 emission intensity

and presents a declining trend, it was because the economies of scale of railway transport

increased and steam locomotive was replaced by electric locomotives. The aviation transport

has the highest CO2 emission intensity, due to high energy intensity and less loading capacity,

but it is decreasing in recent years, which attributed to the improvement of aviation fuel

quality. Next to aviation transport, the CO2 emission intensity of highway transport was the

second and presented an increasing trend in recent years. The diesel and gasoline are

important fuel energy of highway transport, which are the main source of CO2. The sharp

increasing of freight transport volume resulted in the increasing of transport intensity, which

caused that the increasing of carbon emission exceeded the increasing of logistics output, on

the other hand, the continuous use of transportation facility would make the vehicle condition

worse, which can increase the emission intensity.

Figure 5. CO2 emission intensity in different transport modes
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3.3. Decomposition Results of CO2 Emission from Chinese Logistics Industry

In this paper, we used logarithmic mean Divisia index (LMDI) method to explore the

multiplicative and additive decomposition of CO2 emission in China’s logistics industry. The

decomposition results are based on Equations (2) and (3) and the LMDI formula in Appendix

A-Table A1, as shown in Table 3 and Table 4. Figures 6-7 showed the radar charts for

multiplicative decomposition and the bar charts for additive decomposition of CO2 emission in

logistics industry by using the numerical results presented in Tables 3-4, respectively.

Dtot Dact Dintt Dsrt Dinte Dmix Demf

1980-1990 2.359 2.083 1.025 1.260 0.870 1.009 0.999

1990-2000 1.756 1.903 0.868 1.093 0.955 1.020 0.998

2000-2005 1.642 1.095 1.614 0.929 0.962 1.041 0.999

2005-2010 3.308 1.182 1.468 1.832 1.021 1.022 0.998

1980-2010 22.495 3.314 1.729 2.005 0.947 2.076 0.997

Table 3. Multiplication decomposition of CO2 emission in logistics industry

ΔCtot ΔCact ΔCintt ΔCstr ΔCinte ΔCmix ΔCemf

1980-1990 61.270 52.385 1.770 16.489 -9.949 0.614 -0.039

1990-2000 80.352 91.902 -20.154 12.649 -6.637 2.837 -0.245

2000-2005 119.834 21.976 115.751 -17.786 -9.451 9.676 -0.331

2005-2010 707.602 98.889 227.156 357.898 12.130 12.635 -1.108

1980-2010 969.058 372.969 170.351 216.454 -17.053 227.328 -0.992

Table 4. Additive decomposition of CO2 emission in logistics industry

3.3.1. Total Change in Carbon Dioxide Emission Between 1980 and 2010

Figures 6-7 describe the results of the multiplicative and additive decomposition analyses of

logistics industry in China. According to the analysis, we can conclude that the total CO2

emission had changed greatly, with the accumulated increasing of 969.1 million tons CO2

emission from 1980 to 2010, and logistics activity, transport intensity, transport mode shift and

fuel mix are important factors in increasing the CO2 emission of logistics sector in China.

However, the energy intensity and the factors that influenced CO2 emission contributed to the

reduction of CO2 emission in overall research period, which factors had multiplicative indexes

less than one and additive indexes below zero, as shown in Figure 6.
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Figure 6. Radar chart for CO2 emission decomposition in 1980-2010

Figure 7. Bar chart for CO2 emission decomposition in 1980-2010

Logistics activity is the most important factor contributing to the increase of CO2 emission in

logistics industry, which increased 373 million tons CO2 emission, with 38.5% share of total

CO2 emission change. The main reason was that the rapid economic growth boosted the

demand for logistics service, with the increasing of freight turnover volume from 1202.7 billion

kilometer-tons in 1980 to 14183.7 billion kilometer-tons in 2010, thus indirectly resulting in

the increase of energy consumption and CO2 emission. China’s economy has continuously

developed in recent thirty years since reform and opening-up. However, China is still at the

primary stage of motorization and the economic growth is at the cost of consuming a great

deal of natural resource. In addition, the integrated logistics system cannot operate efficiently

because of the outdated logistics technology and management method, which resulted in low

energy efficiency and high carbon emission intensity.
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Next, fuel mix is another important factor to the increase of CO2 emission in logistics sector,

which caused the accumulated increasing of 227.3 million tons carbon emission, with 23.5%

share of total CO2 emission change. Transport mode shift ranked the third, with the increasing

of 216.5 million tons carbon emission and 22.3% share. In fact, there was a tight relationship

between fuel mix and transport mode shift, transport mode determined the fuel type. The

decomposition results have shown that the transport modes and energy structure are

unreasonable in China, and the petroleum is still the primary energy source in logistics

activities at present. Transport intensity ranked the fourth, with the increase of 170.4 million

tons carbon emission and 17.6% share. Because of the development of global economy,

change of production and management mode, the transport distance increased and the

transport intensity increased from 56.4 km-tons per Yuan in 1980 to 122.2 km-tons per Yuan

in 2010, which caused the increase of energy consumption and emission.

The decomposition result showed that energy intensity caused the CO2 emission to reduce by

17.1 million tons between 1980 and 2010, and it accounted for 1.8% share of total change in

absolute value. It may attribute to the effective strategies which aimed at improving energy

efficiency, such as introducing advanced logistics technologies, updating logistics facilities and

equipment, improving fuel quality, and so on. In recent years, Chinese government is making

efforts to save energy and reduce emission in logistics sector. The CO2 emission factor has

small effect on the change in CO2 emission in logistics industry, with the reduction of only 1

million tons carbon emission. It was because that we assumed the carbon emission coefficients

of coal, diesel, gasoline and kerosene were constant. The carbon emission coefficient of

electricity was calculated on basis of the individual fossil fuels used in power generation.

3.3.2. Change of Carbon Dioxide Emission in Different Periods

We divided the study period into multi-stages in order to examine the factors that caused the

change in CO2 emission of logistics well. Chinese administration departments take five years as

a plan cycle when they make macro policies. We suppose that there are no obvious differences

in two continuous five-year plans. So we divide the research period into three sub-stages, i.e.

1980-1990, 1990-2000 and 2000-2010. Additionally, taking account of rapid economic growth

and policy adjustment in recent ten years, we further divided the period 2000-2010 into

2000-2005 and 2005-2010. Figures 8 - 9 showed the radar charts for multiplicative

decomposition and the bar charts for additive decomposition of CO2emission in logistics

industry in different sub-stages, respectively.
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Figure 8. Radar chart for CO2 emission decomposition in multi-stages

Figure 9. Bar chart for CO2 emission decomposition in multi-stages

The change in CO2 emission in different sub-stages (in turn, 1980-1990, 1990-2000, 2000-

2010, accounted for 6.3%, 8.3%, 85.4% share of the total CO2 emission change, respectively,

with the increasing of 61.27, 80.35, 827.43 million tons carbon emission in the study period.

The CO2emission of China’s logistic industry had greatly increased in the period of 2000-2010.

Especially, in the stage of 2005-2010, it accounted for 73% share of total CO2 emission in

research period, with the increasing of 707.6 million tons carbon emission. Global economy

was in recession in that time, Chinese government endeavored to pull domestic demand by

investing plenty of money in public service and infrastructure to deal with world financial crisis

in 2008. China’s GDP ranked the second place, which is next to America and exceeded Japan in

the world in 2010. As previously mentioned, economic growth would make the demand for

logistics service increase, and it enhanced the energy consumption and CO2 emission.
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From Figures 8-9, we can conclude that the changes in CO2 emission and the influence factors

have extreme similarities between the stages of 1980-1990 and 1990-2000. For example,

logistics activity was the leading factor that caused the increase of CO2 emission, with 85.5%

and 114.4% share of the total change in the two periods, respectively; the energy intensity

and the emission factor had positive roles in reducing the CO2 emission due to the updating

and innovation of logistics technologies and logistics equipment. However, the critical factors to

changing in carbon emission were transformed in recent ten years. For example, logistics

activity, transport intensity and fuel mix had adverse effect on the change in carbon emission

from 2000 to 2005; herein, transport intensity was the first primary contributor to the increase

of carbon emission. Transport structure, energy intensity and emission factor had positive role

in decreasing carbon emission. From 2005 to 2010, all decomposition factors leaded to the

increase of CO2 emission, except for emission factor. Transport structure played the most

important role in increasing CO2 emission with 358 million tons CO2 emission, which accounted

for 50.6% share of total CO2 emission. The effect resulted from the change of transport model

from lower energy consumption model such as railway transport to higher energy consumption

model such as highway and aviation transport. Transport mode shift mainly depended on

customer’s demand for transportation service, such as cost, security, convenience,

promptness, flexibility, and so on.

4. Conclusions and Policy Implications

4.1. Conclusions

Carbon dioxide emission has a tight link with economic growth and energy consumption. As an

emerging and important industry in China, the logistics industry is promoting economic

growth; on the other hand, it consumed a great deal of energy and emitted plenty of CO2, and

it was the main reason for global warming. In order to examine the change in CO2 emission of

China’s logistics industry, we firstly calculated the carbon dioxide emission of logistics industry

in the period of 1980-2010; and further analyzed the factors that influenced the changes in

CO2 emission of logistics industry by using logarithmic mean Divisia index (LMDI) method. We

can draw some conclusions from the present study as follows:

1. Carbon dioxide emission in China’s logistics industry has a continually rising trend in the

study period. It has increased by 21.5 times, from 45.1 million tons CO2 in 1980 to

1014.1 million tons CO2 in 2010, with the average annual growth rate of 11.7%, which

accounted for 12.2% share of total CO2 emission of China.

2. The highway transport is the main contributor to carbon dioxide emission in logistics

activities, which accounted for 76.8% (or 778.47 million tons CO2) share of total carbon

dioxide emission in 2010. The waterway transport ranked the second, which accounted
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for 18.1% (or 183.37 million tons CO2) of total carbon emission; railway, aviation and

pipeline accounted for 2.5%, 1.7% and 0.9%, respectively.

3. According to the results of decomposition, logistics activity, transport mode shift,

transport intensity and fuel mix are critical effect factors to the increase of change in

CO2 emission, however, the energy intensity and CO2 emission factors were contributing

to the reduction of carbon dioxide emission in China’s logistics industry in overall study

period. Therein, logistics activity is the most important factor contributing to the

increase of CO2 emission in logistics during the period of 1980-2010, which increased

373 million tons carbon emission, with 38.5% share of total CO2 emission change.

4. The critical effect factor caused the change in CO2 emission in logistics sector would

vary with the change of external environment factors, such as economy level, logistics

technology and equipment, energy price, labor cost, production and management

mode, and so on.

4.2. Policy Implications

Facing the rapid growth in demand for logistics services due to economic growth, it’s difficult to

decrease total CO2 emission in logistics industry, because there are tight relations between

economic growth, logistics demand, energy growth and carbon emission. However, we can take

some strategies to improve energy efficiency and reduce CO2 emission per unit of energy

consumption, which can offset the increase of total CO2emission, such as: (1) Optimize social

logistics system and update logistics facility and equipment. Logistics is an extremely complex

economy activity. It is significant to optimize the social logistics system for energy

conservation and emission reduction. Nevertheless, logistics has been paid attention in recent

years, and the current logistics system is unreasonable in China, such as unscientific layout of

logistics network, underdeveloped traffic condition, outdated warehouse, and so on. The

administration departments should further to optimize social logistics system by relocating and

constructing gather and distribution centers, junction stations, and building modern warehouse

for improving logistics operation efficiency, reducing energy consumption and emission. (2)

Encourage transport mode to shift from high emission to low carbon mode. The research result

showed that the transport mode has critical effect on the change of CO2 emission. Railway

transport and waterway transport have low energy intensity and strong transport capacity;

however, due to the flexibility and convenience of highway transport and aviation transport’s

promptness, the share of freight turnover volumes present an increasing trend in recent years

in China. Policy makers can encourage people to choose lower energy consumption transport

by making transport pricing policy. (3) Introduce advanced information communication

technology. Information communication technology (ICT) helps operators to make efficient

route plan and schedule, vehicle loading, driving time and travel distance, and it can avoid
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traffic congestion and reduce energy consumption and emission (Liao et al., 2011). ICT was

generally utilized in truck transport in developed countries; however, few operators use it in

China. So it is necessary to introduce advanced information communication technology. (4)

Increase investment on designing high fuel efficiency and low emission engine. Efficient engine

design and fuel economy standard play a great role in cutting fuel demand, which can improve

trucks fuel economy (Schipper, 2009). However, because of the limited technology resource,

China’s transport carrier emission standard is still lower than international emission standard.

Scientific and technological administrations should increase investment and organize R&D team

to design high fuel efficiency and low emission engine. (5) Improve electricity generation and

fuel refining technology. The development of energy technology has a little positive effect in

decreasing the energy consumption and carbon emission in recent years in China, but it’s very

limited. Energy and environment administration division should make effort to improve the

electricity generation and fuel refining technology for reducing the carbon coefficients. For

example, the power stations can adopt new energy technologies, such as nuclear power, wind

power, solar power and biomass power to generate electricity. In addition, high quality fuel can

release more energy and less emission, and the petroleum companies should explore and

introduce new fuel refining technology to improve the purity of fuel oil.
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Appendix A

The LMDI formula for each factor in the decomposition analysis (see Table A1)

Effect factors Multiplicative decomposition Additive decomposition

Logistics output(act)

Transport mode(str)

Transport intensity(intt)

Energy intensity(inte)

Fuel mix(mix)

Emission factor(emf)

Table A1. Calculation formula of decomposition
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