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Abstract: Using reverse logistics in production systems can help to reduce costs. 

However, it can also mean introducing a source of uncertainty in the system behavior. 

In this study we present a method for calculating the optimal manufacturing and 

remanufacturing capacities of a system with reverse logistics and steady demand taking 

into account the random behavior of the quantity, quality and timing of units that are 

collected thru the reverse logistics system. The collected units are remanufactured or 

disposed of. We also provide an example to illustrate the method. 
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1 Introduction 

When the reverse logistics is implemented in a production system, managers must 

take into account, in their decisions, that the operations of the system have been 

affected. If they want to operate optimally, the structure of the new system must 

be adapted to reflect the new situation. In particular, the manufacturing capacity 

should be modified as the reverse logistics gives a new source of supply: the 

remanufactured units that are collected at the end of the useful life of a product. 
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The recovery of the waste produced at the end of a product life cycle has become a 

common task in industry. Companies must comply with environmental regulations, 

according to which the manufacturer of a product is responsible for managing the 

waste that it generates. However, it is now possible to make a profit from 

managing products outside their useful life cycle if the process is planned 

appropriately (Rubio, 2003). 

Reverse logistics seek to respond to new logistics management requirements for 

processing products at the end of their useful lives. According to de Britto and 

Dekker (2004), the European Working Group on Reverse Logistics (REVLOG) 

defined the reverse logistics as: 

“The process of planning, implementing and controlling backwards flows of raw 

materials, in process inventory, packaging and finished goods, from a 

manufacturing, distribution or use point, to a point of recovery or point of proper 

disposal”  

Thierry et al. (1995) introduce the concept of “product recovery management” and 

lists five product recovery options: repair, refurbishing, remanufacturing 

cannibalization and recycling. 

According to Guide (2000), a recoverable manufacturing system is characterized by 

the uncertainty in timing, quantity and quality of returns and the place where to 

collect them. This uncertainty affects planning performance and production control 

(Prahinski and Kocabasoglu, 2006) and creates unpredictability in remanufactured 

product inventories. 

Rubio et al. (2008) analyze the main characteristics of articles on reverse logistics 

and Fleischmann and Minner (2003) classify the models for describing systems with 

reverse logistics in two categories: deterministic models (for example Minner and 

Kleber (2001) and Choi et al. (2007)) and stochastic models (for example 

Fleischmann and Kuik, 2003, van der Laan et al., 2004, Buchanan and Abad, 1998 

and Teunter, 2006). These models are used to determine optimal ordering and 

inventory policies supposing that manufacturing and remanufacturing capacities 

are enough to supply the demand. Vlachos et al. (2007), Georgiadis et al. (2006) 

and Georgiadis and Vlachos (2004) present dynamic models for strategic 

remanufacturing and collection capacity planning where these capacities are state 
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variables and a policy is proposed in order to calculate them. Another relevant 

reference is Souza (2008), which mentions other sources regarding single period 

models and used product acquisition. 

In this paper we study a production system with constant demand and stochastic 

returns for a single product and we focus in determining the optimal manufacturing 

and remanufacturing capacities. We also analyze the effects of random 

remanufacturing factors on the system performance. 

In Section 2 we describe the system and outline the conditions of the parameters 

involved, considering two different scenarios. In the first one the company meets 

all demand and in the second scenario not all demand is necessarily met. In 

section 3 we describe the manufacturing and remanufacturing policy for the first 

scenario, provide an approximation of the probability distribution used to 

determine the amount and rate of collected products, present an algorithm for 

calculating the optimal manufacturing and remanufacturing capacities; and we 

calculate optimal values for a specific case study. In section 4 we give an iterative 

process to determine the manufacturing and remanufacturing capacities for the 

second scenario. In Section 5 we describe how to determine the optimal 

manufacturing and remanufacturing capacities when there are n different quality 

types of collected products. Finally, in Section 6 we present the main conclusions of 

the study. 

2 System description 

We consider a system that produces and sells a single product. The product can be 

returned to the company once it has completed its useful life.  The collected units 

are remanufactured and resold as new or are disposed of. The system has the 

following features: 

• The time horizon of the system is discrete with periods of equal length. 

• The company makes the decisions at the end of each period. 

• The demand D (units/period) is known and is the same in each period.  

• It is a just-in-time production system, so there should be no inventories.  
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• The system has unknown and limited manufacturing and remanufacturing 

capacities, namely X and Y units per period respectively which will be 

calculated by minimizing costs. It is assumed that: 

o X and Y do not change over time. 

o There is sufficient capacity to supply the demand, i.e. X + Y ≥  D. 

o X ≤  D and Y ≤  D because never will be used capacities greater than 

D in order to supply the demand. 

The production costs of the original production system and the remanufacturing 

system are composed of fixed costs Cp and Cr (which depend on the installed 

capacity and, therefore, do not vary provided that the production capacity remains 

constant) and variable costs (per unit of output) cp and cr. It is assumed that Cp is 

an increasing function of X and Cr

The returns have the following characteristics: 

 is an increasing function of Y. 

• The end-of-usage of the product occurs between periods T1 and T2 after it is 

sold. pi is the probability that the end-of-usage of the product occurs i 

periods after it is sold (i = T1,…,T2

• r is the probability of an end-of-usage product being returned and collected. 

Therefore, the probability that a unit sold in period t will be collected in 

period t+i is r·p

). 

i

• There is only one quality type for collected products. Therefore, each unit of 

collected product undergoes the same remanufacturing process. 

.  

• The collected units are remanufactured or are disposed of. A 

remanufactured product has the same usage expectancy and return quality 

as a manufactured product. 

• Each collected unit has a cost of crc

• The cost of disposing of collected units is zero. 

. 
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If we assume that there is no product recovery, the optimal inventory policy is 

such that the inventory costs are zero. Therefore, the costs for each period would 

be Cp(D) + cp

Since there is an inherent degree of uncertainty in the availability of returns, we 

analyze two different scenarios. In the first one there is a supplier with sufficient 

capacity that enables the company meet all demand with a cost per unit of c

·D. When products are collected and remanufactured, the company 

can sell units from either the original production system or the remanufacturing 

system. 

s; it is 

assumed that cs is greater than cp and cr. In the second scenario the company’s 

production policy can sometimes cause supply interruptions; in this case, the 

unmet demand is lost at a shortage cost per unit, b; it is assumed that b is greater 

than cp and cr

 

. 

Figure 1. “Schematic representation of the system”. Source: Own contribution. 

3 Determining the optimal manufacturing and remanufacturing 

capacities of a system with alternative supplier 

The optimal manufacturing and remanufacturing capacities are calculated by 

minimizing the expected value of the cost incurred in each period according to the 

following process: first, for each pair of manufacturing and remanufacturing 

capacities we calculate the minimum expected cost incurred by a system with 

these capacities (to do this we must  determine, for each pair of capacity values, 
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the optimal manufacturing and remanufacturing policy and calculate the expected 

value of the cost associated with the optimal policy); next, in order to determine 

the optimal capacities, we choose the capacities associated with the minimum of 

the expected costs calculated in the previous step. 

The costs incurred by the company during each period depend on the quantity of 

goods manufactured, collected and remanufactured by the company and on the 

goods purchased from the supplier. These amounts will be limited by the installed 

manufacturing and remanufacturing capacities and by the quantity of collected 

product, which is a random value. 

3.1 Optimal manufacturing and remanufacturing policy 

The manufacturing and remanufacturing policy is obtained by solving the 

mathematical program shown below, given the manufacturing and remanufacturing 

capacities X and Y, and the units of product collected during each period, d: 

[MIN] c = Cp(X) + Cr(Y) + cp·x + cr·y + cs·(D - x - y) + crc

s.t.: 

·d 

min{ , }
, 0

x y D
x X
y Y d
x y

+ ≤
≤
≤

≥

 

Where x and y are the quantities of product to manufacture and remanufacture 

respectively. The optimal solution depends on the values of d, X, Y and D, and also 

on the relation between cr and cp

When c

. 

r < cp

1. d < D – X: The company meets total demand using the alternative supplier. 

The optimal values and costs incurred are: 

, three cases can be distinguished: 

x = X ,  y = d  

c = Cp(X) + Cr(Y) + (cp  - cs) ·X + cs·D + (cr – cs + crc)·d  
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2. D X d Y− ≤ < :The optimal values and costs incurred are: 

x = D - d ,  y = d  

c = Cp(X) + Cr(Y) + cp·D + (cr - cp+ crc

3. 

)·d  

d Y≥ : The returns are higher than Y. The optimal values are: 

x = D - Y ,  y = Y  

c = Cp(X) + Cr(Y) + cp·D + (cr - cp)·Y + crc

When 

·d 

r pc c≥ we have two cases: 

1. d < D – X. The optimal values and costs incurred are: 

x = X ,  y = d  

c = Cp(X) + Cr(Y) + ( cp  - cs) ·X + cs·D + (cr – cs + crc

2. 

)·d  

− ≤D X d . In this case, the optimal values and costs incurred are: 

x = X ,   y = D - X  

c = Cp(X) + Cr(Y) + (cp – cr)·X  + cr ·D + crc

3.2 Probability distribution of collected product quantity 

·d 

The quantity of product collected during a given period from the quantity of 

product sold in the i-th previous period follows a binomial distribution B(D, r·pi), 

where pi

The quantity of product collected during a given period is equal to the sum of the 

collected products from each of the previous periods. The probability that this value 

will be d is denoted by p(d). 

 is the probability that the product will come to the end of its useful life 

during the i-th period after its sale; r is the probability that the product will be 

returned once it has completed its useful life; and D is the quantity of product sold 

during the i-th previous period. 
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The expected value of combined manufactured and remanufactured products from 

the company is called PM and is calculated using the following expression: 

( )
0

( )
D X

d
PM D D X d p d

−

=

= − − −∑  

When r·pi is sufficiently small, we can approximate the probability distribution of 

collects from a given period to a Poisson distribution with parameter D ·r ·pi. 

Therefore, the total amount of product units collected during a given period follows 

a Poisson distribution with parameter r·D (since the sum of pi

( )( )
!

rD de rDp d
d

−

=

 is 1). In this case we 

obtain: 

 

3.3 Calculating the optimal manufacturing and remanufacturing 

capacities 

If we assume the manufacturing and remanufacturing policy established in Section 

3.1 and the probability distribution of collected product defined in Section 3.2, we 

can determine the expected value of the cost function by using the following 

expression: 

0
( ( )) ( ) ( )

d
E c d c d p d

∞

=

= ⋅∑  

Case cr < cp

0

( ( )) ( ) ( ) ( ) ( ) ( )
D X

p r p s s r s rc
d

E c d C X C Y c c X c D c c c d p d
−

=

= + + − ⋅ + ⋅ + − + ⋅ ⋅  ∑

: 

+  

( ) ( )
Y

p r p rc
d D X

c D c c c d p d
= −

⋅ + − + ⋅ ⋅  ∑ + ( ) ( )p r p rc
d Y

c D c c Y c d p d
∞

=

⋅ + − ⋅ + ⋅ ⋅  ∑  

By reordering the terms we obtain: 

( ( ))E c d = ( ) ( )
0

( ) ( ) ( )
D X

p rc p s p
d

c D c E d C X c c D X d p d
−

=

⋅ + ⋅ + + − − − ⋅∑ + 

( ) ( )
0

( ) ( )
Y

r p r
d

C Y c c Y Y d p d
=

 
− − ⋅ − − ⋅ 

 
∑  
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Where E(d), the expected value of d, is equal to r·D. We can then define the 

following functions for determining the optimal solution: 

( ) ( )1
0

( ) ( ) ( )
D X

p s p
d

g X C X c c D X d p d
−

=

= + − − −∑  

( ) ( )2
0

( ) ( ) ( )
Y

r p r
d

g Y C Y c c Y Y d p d
=

 
= − − ⋅ − − 

 
∑  

g(X, Y) = cp ·D + crc ·r·D + g1(X ) + g2

Therefore, the desired values of X and Y are the solution of the following problem P: 

(Y ) 

[MIN] g(X, Y) 

s.t.: 

 

, 0

X D
Y D
X Y D
X Y

≤
≤
+ ≥

≥

 

Case r pc c≥ : 

The desired values of the capacities X and Y are the solution of the problem P but 

now with the following expressions for g1, g2 

g

and g: 

1(X ) = Cp(X) + (cp – cr)·X  + (cs - cr)· ( )
0

( )
D X

d
D X d p d

−

=

− −∑  

g2(Y ) = Cr

g(X, Y) = c

(Y)  

r ·D + crc·r·D + g1(X ) + g2

Both cases are non-linear programming problems. 

(Y ) 
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3.4 Numerical example 

We analyze a company that produces and sells a product with the following 

features: 

• Demand D = 100 u/period. 

• Variable cost of manufacturing cp

• Variable cost of remanufacturing c

 = €10/u. 

r

• Variable collection cost c

 = €5/u. 

rc

• Fixed manufacturing costs according to the capacity X: 

 = €1/u. 

2( ) 15 0,05pC X X X= ⋅ − ⋅ . 

• Fixed remanufacturing costs according to the capacity Y: 
2( ) 3 0,01rC Y Y Y= ⋅ − ⋅ . 

• Unitary cost of supply cs

• Probability of product returns r = 0.3. 

 = €30/u. 

• Probability distribution of collected product units: the company configuration 

meets the conditions for using a Poisson distribution with parameter r·D. 

The system, without including remanufacturing, will have a manufacturing capacity 

of 100 units with a cost of €2,000 per period. When the remanufacturing system is 

included, the minimum of g is reached at (X, Y) = (72, 30) and its value is g (X, Y) 

= €1818.70. This gives a PM of 98.70. 

Figure 1 shows the graph of the function g(X, Y). 
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Figure 1. “Total cost depending on the manufacturing and remanufacturing capacities for V = 

98.945”. Source: Own contribution. 

4 Determining the optimal manufacturing and remanufacturing 

capacities of a system without alternative supplier 

The optimal manufacturing and remanufacturing policy is calculated as in section 

3.1, using the same expressions and changing the unit cost of supply cs

The quantity of product units collected during a given period from the quantity of 

product sold in the i-th previous period follows a binomial distribution B(v

 for the unit 

cost of shortage b.  

i, r·pi), 

where vi is the quantity sold during the i-th previous period and r and pi

Since in this case there is a possibility of inventory shortage, the value of v

 are 

defined as in section 3.2. 

i 

behaves randomly and is less than D. We suppose that the system is in a stationary 

state and therefore the probability distributions of the sales are the same in each 

period. The probability distribution of the quantity of collected units, p(d), depends 

on q(v), the probability distribution of the quantity sold in any period, which, in 

turn, depends on p(d). In order to solve this cyclic dependency we use the following 

iterative process (IP1) to compute p(d) where pin(di) is the approximation, in the n-

th iteration, of the probability of the number of collected units corresponding to the 

sales of the i-th preceding period is equal to di and pn(d) is the approximation, in 

the n-th iteration, of the probability of the total number of collected units is equal 

to d: 
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Step 0: Start the process with  

( )0

1
0

v D
q v

v D
=

= 
≠

 

Where q(v) is the probability that the sales in a period will be v.   

Step 1: Compute pn(di) for i = T1,…,T2 and di

( ) ( ) ( ) ( ) ( ) ( )1 1| · · · 1 · ·i i

i i

D D d v d
in i in i n i i n

v k v d i

v
p d p d v q v r p r p q v

d
−

− −
= =

 
= = − 

 
∑ ∑

 = 0,…,D: 

 

Compute pn(d) for d = 0,…,( T2 – T1 

( ) ( )
2

2 1

1

T

i
i T

T

n in i
i T

d d

p d p d

=

=
=

=

∑
∑ ∏

+ 1)·D : 

 
 

Step 2: Calculate the PD of product sold each period qn(v) using pn

( ) ( )

0

0

1 ( )

n n
D X

n
d

v X
q v p v X X v D

p d v D
−

=


 <= − ≤ <

 − =


∑

(d) calculated in 

step 1: 

 

Step 3: Calculate the difference between qn-1(v) and qn

( ) ( )1( ) ( )n nE q v E q v
−

−

(v) where difference means 

some measure of how much is one distribution far from the other (for example the 

quantity  can be used as a measure of the difference). If the 

difference is greater than a tolerance add 1 to n and go to step 1; else take as p(d) 

= pn

The optimal manufacturing and remanufacturing capacities are calculated solving 

problem P of section 3.3 but replacing the unit cost of supply c

(d). 

s with the unit cost 

of shortage b in the expression of g1(X) and replacing crc·r·D with crc

( )
0

( )
D X

d
V D D X d p d

−

=

= − − −∑

·r·V in the 

expression of g(X,Y), where V is the expected value of the product sold:  
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In the case cr < cp

g

, using the expression of V we have: 

1(X) = Cp(X) + (b - cp

g(X, Y) = C

)·(D - V) 

p(X) + b·D + (cp + crc ·r – b)·V + g2

Analogously in the case 

(Y ) 

r pc c≥ we have: 

g(X, Y) = Cp(X) + (cp - cr)·X + b ·D + (cr + crc ·r – b)·V  + g2

When solving the problems it is important to take into account that the probability 

distribution of collected units p(d) depends on X. So we define an iterative process 

(IP2) to find the optimal values: 

(Y ) 

• Step 0: Start the process with X0

• Step 1: Compute PD of collected units using the iterative process IP1 

described above. 

 = (1 - r)·D. 

• Step 2: Determine (Xn, Yn) solving problem P which optimizes the value of 

the expected cost gn(Xn,Yn

• Step 3: If the desired accuracy in g

). 

n(Xn, Yn

We recalculate the numerical example of section 3.4 but replacing the unit cost of 

supply c

) is not reached then go to step 

1; otherwise finish the process.  

s with the unit cost of shortage b = €30/u and with product end-of-usage 

occurring between periods 1 and 6 with probabilities p1 = 0.1, p2 = 0.2, p3 = 0.2, 

p4 = 0.25, p5 = 0.15, p6

The minimum of g is reached at (X, Y) = (72, 30) and its value is g (X, Y) = 

€1820.90. This gives a value of V = 98.61. 

 = 0.1. 

We have used the following tolerances in step 3 of each iterative process: 

For IP1:   
( ) ( )

( )
1

1

( ) ( )
0.001

( )
n n

n

E q v E q v
E q v

−

−

−
<   

For IP2:  
( ) ( )

( )
1 1 1

1 1 1

, ,
0.001

,
n n n n n n

n n n

g X Y g X Y
g X Y

− − −

− − −

−
<  
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The main process (IP2) converges in 3 iterations and for each iteration IP1 

converges in 3 iterations. 

5 System with n quality types of collected products 

In this section we consider a specific case in which the collected units are defined 

according to a series of different quality types and we calculate the optimal 

manufacturing and remanufacturing policy. The procedure outlined in this section 

can be considered a generalization of the one described in the previous section 3.1. 

The configuration is similar to that of a system in which all collected products are of 

the same quality (Section 2). The variable remanufacturing costs are cj

• p

, j=1,…,n. 

and the returns have the following characteristics: 

i

• There are n different quality types for collected products. 

 and r are defined in the same way as for a single quality. 

o Rj

o a

, j=1,…,n is the probability that a collected product is of quality type j. 

j

It is assumed that c

 units of remanufacturing resource are required to remanufacture one 

unit of collected product of quality type j (j=1,…,n). 

s is greater than cp and cj

The manufacturing and remanufacturing policy is obtained by optimizing the linear 

equation shown below, given the manufacturing and remanufacturing capacities, X 

and Y, and the units of collected product of quality type j (j=1,…,n) available in 

each period, d

 (j=1,…,n). 

j:  
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[MIN] 
1 1

( ) ( )
n n

p r p j j s j
j j

c C X C Y c x c y c D x y
= =

 
= + + ⋅ + ⋅ + ⋅ − − 

 
∑ ∑  

s.t.: 

1

1

1

1,...,
, ,..., 0

n

j
j

n

j j
j

j j

n

x y D

x X

a y Y

y d j n
x y y

=

=

+ ≤

≤

⋅ ≤

≤ =

≥

∑

∑  

Where x is the quantity of product to manufacture and yj

s.t.: 

 are the quantities of 

collected product of quality j (j=1,…,n) to remanufacture. By modifying slightly the 

notation we obtain the following formula: 

 [𝑀𝐴𝑋]�𝑆𝑗 · 𝑦𝑗

𝑛+1

𝑗=1

 

1

1

1

1 1

1,..., 1
,..., 0

n

j
j

n

j j
j

j j

n

y D

a y Y

y d j n
y y

+

=

=

+

≤

⋅ ≤

≤ = +

≥

∑

∑  

Where the objective function has been reversed and the notation has been changed 

as follows: 

• The variable x is redefined as yn+1

• The objective function parameters are compacted: 

 = x 

o Sj = cs - cj 

o S

for j=1,…,n 

n+1 = cs - cp 
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o dn+1

o a

 = X 

n+1

By using the constraints of the problem, the dual problem and the complementary 

slackness theorem we obtain the following expressions: 

 = 0 

1

1

n

j
j

y D
+

=

≤∑  

1

n

j j
j

a y Y
=

⋅ ≤∑  

1,..., 1
j j

y d j n≤ = +  

1,..., 1
D j Y j j

a S j nµ µ µ+ ⋅ + ≥ = +  

( ) 0 1,..., 1
j j j

y d j nµ− = = +  

1

1

0
n

j D
j

y D µ
+

=

− =
 
 
 
∑  

1

0
n

j j Y
j

a y Y µ
=

⋅ − =
 
 
 
∑  

( ) 0 1,..., 1
D j Y j j j

a S y j nµ µ µ+ ⋅ + − = = +  

, , , 0 1,..., 1j j D Yy j nµ µ µ ≥ = +  

Where , , 0 1,..., 1
j D Y

j nµ µ µ ≥ = +
 
are the dual variables. Four different cases can be 

distinguished depending on the values of dj

1. The company is unable to cover all demand and all collected products can be 

remanufactured. Then, 

 (j=1,…,n+1), Y and D: 

1

1

n

j
j

d D
+

=

<∑  and 
1

n

j j
j

a d Y
=

⋅ <∑  

And the optimal values are:  
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- 0D Yµ µ= =  

- 1,..., 1j j j jy d S j nµ= = = +  

2. The company is unable to cover all demand and not all collected products 

can be remanufactured. Then, 

1

1

n

j
j

d D
+

=

<∑  and  
1

n

j j
j

a d Y
=

⋅ ≥∑  

The optimal values are:  

- 1 1n ny d+ += , 1 1n nSµ + +=  

Defining:  

- /j j jS aα =  

There is a subscript k such that the optimal solution is: 

- 0Dµ =  

- j jy d= , ( )j j j kaµ α α= −  if j kα α>  

- 
1

1

1 k

k j j k
jk

y Y a d d
a

−

=

 
= − ⋅ ≤ 

 
∑ , 0kµ =  

- 0jy = , 0jµ =  if j kα α≤  

3. The company can cover all demand and all collected products can be 

remanufactured. Then  

1

1

n

j
j

d D
+

=

≥∑  and 
1

n

j j
j

a d Y
=

⋅ <∑  

Optimal values: there is a subscript k such that the optimal solution is: 

- D kSµ = , 0Yµ =  
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- j jy d= , j j kS Sµ = −  if j kS S>  

- 
1

1

k

k j k
j

y D d S
−

=

= − ≤∑ , 0kµ =  

- 0jy = , 0jµ =  if j kS S≤  

4. The company can cover all demand but not all collected products can be 

remanufactured. Then 

1

1

n

j
j

d D
+

=

≥∑  and 
1

n

j j
j

a d Y
=

⋅ ≥∑  

Optimal values: no analytical expression could be found for optimal solution 

and must be calculated case by case. 

6 Conclusions 

In the preceding sections we studied the behavior of a system with reverse 

logistics for manufacturing and remanufacturing a product under steady demand. 

The optimal manufacturing policy is constant when there is no reverse logistics, the 

company satisfies all the demand and no inventories are required. 

We can draw several conclusions about the effects of uncertainty on the amount 

and rate of returns in the system and use them to compare it with an equivalent 

system without reverse logistics. First of all we saw that the optimal manufacturing 

policy becomes more complex when the system has to take into account product 

returns. Also, using the method that has been described for calculating the optimal 

manufacturing and remanufacturing capacities, we found that the manufacturing 

capacity can be set at a lower value than the demand and so the demand could not 

be totally met unless we use an alternative supplier. Finally, if the company could 

operate with inventories, the optimal capacities could change, so the uncertainty 

on returns also influences the inventory system.  

The basic structure of the problem P, in section 3.3 is closely related to the 

newsvendor problem and its applications in stochastic inventory control. We would 

expect it to be possible to find structural properties of solutions to this problem 
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which considerably would help to solve it. We leave this study as a topic of future 

research.  

In the last section, we described a system with n different return qualities and 

determined the optimal policy for a given period. We saw that the complexity 

increases and that could be optimal to remanufacture although the cost of 

remanufacture were higher than the original manufacturing costs. 

A continuation of this work is study the dependency of the optimal manufacturing 

and remanufacturing capacities with parameters r and crc
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