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Abstract: This paper investigates the effects of demand disruptions on production control 

and supplier selection in a three-echelon supply chain system. The customer demand is 

modeled as a jump-diffusion process in a continuous-time setting. A two-number 

production-inventory policy is implemented in the production control model for the 

manufacturer. The objective is to minimize the long-term average total cost consisting of 

backlog cost, holding cost, switching cost, and ordering cost. The simulated annealing 

method is applied to search the optimal critical switching values. Furthermore, an 

improved analytical hierarchy process (AHP) is proposed to select the best supplier, based 

on quantitative factors such as the optimal long-term total cost obtained through the 

simulated annealing method under demand disruptions and qualitative factors such as 

quality and service. Numerical studies are conducted to demonstrate the effects of demand 

disruptions in the face of various risk scenarios. Managerial insights from simulation results 

are provided as well. Our approaches can be implemented as the “stress test” for 

companies in front of various supply chain disruption scenarios.  

Keywords: supplier selection, demand disruption, simulated annealing, jump diffusion 
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1 Introduction 

Although demand disruptions happen infrequently, they have significant impacts on 

the whole supply chain (Tang, 2006). In 2008, many manufacturers experienced 

the global financial crisis and sudden demand disruptions. Some of the 

manufacturers who could not adapt to the sudden economic change by adopting 

alternative supplier selection and production control strategies had to shut down 

their businesses. For instance, nearly 1000 toy manufacturers closed down in 

Southern China in 2008 because of the nosedived overseas orders from U.S. and 

Europe. Hendricks and Singhal (2005) find that the average abnormal stock returns 

of firms which experienced disruptions are almost –40%, which clearly shows that 

the supply chain disruptions could significantly affect the normal operation and 

financial health of a company. Hence, the main purpose of this paper is to 

investigate the performance of a three-echelon supply chain system under demand 

disruptions in a continuous-time setting, to discuss production control and optimal 

supplier selection problems under demand disruptions, and to provide managerial 

insights on the demand disruptions through numerical studies.  

Production control and supplier selection are important decisions for the 

manufacturers to make in order to maintain low cost and high quality products and 

to be successful in the competition. Production control is used to determine the 

optimal timing and amount to produce so that manufacturers can match the 

demand to the supply with the lowest operation cost. Little research has considered 

optimal production control under demand disruptions. Supplier selection problems 

have been widely studied in literature, but most of the research focuses on 

selecting the suppliers only based on their performances. Little research has been 

conducted to evaluate the suppliers when the manufacturers face demand 

disruptions. We believe that demand disruptions will impact the result of supplier 

selection of the manufacturers. Even less research considers production control and 

supplier selection simultaneously under demand disruptions. In our study, we find 

that the optimal production control policy for different suppliers varies under 

different demand scenarios. We propose a stochastic framework to determine the 

optimal production control policy and supplier selection procedure for a 

manufacturer that is in a three-echelon supply chain setting consisting of suppliers, 

one manufacturer, and customers under demand disruptions. The proposed 

supplier selection procedure is aimed at selecting the best supplier based on not 

http://www.jiem.org�
http://dx.doi.org/10.3926/jiem.2010.v3n3.p421-446


 
doi:10.3926/jiem.2010.v3n3.p421-446  JIEM, 2010 – 3(3): 421-446 – Online ISSN: 2013-0953 

 Print ISSN: 2013-8423 

 

Production control and supplier selection under demand disruptions 423 

X. Chen; J. Zhang 

only suppliers’ performances but also the characteristics of the customer demand 

disruptions. Numerical case studies of this procedure are provided.  

The rest of this paper is organized as follows: Section 2 reviews the relevant 

literature. Model development is shown in Section 3. Section 4 proposes the 

solution procedures for production control and supplier selection problems under 

demand disruptions. Sensitive analysis is discussed in Section 5. Finally, Section 6 

draws the conclusion. 

2 Literature review 

Since the supplier selection process involves many different categories such as 

purchasing, quality, delivery and production, it is a multi-objective problem which 

includes quantitative and qualitative criteria. There are several common 

approaches in the literature used to evaluate suppliers, such as the analytic 

hierarchy process (AHP) and the total cost of ownership (TCO). AHP is used in 

multiple criteria decision-making environments where price is not the only factor, 

while TCO considers many other purchasing relevant costs besides the purchasing 

price. There are also some traditional optimization techniques that are used to 

solve supply chain problems such as dynamic programming and quadratic 

programming, but these optimization algorithms may obtain local optimal 

solutions. Hence, some simulation optimization methods such as genetic algorithm 

and simulated annealing are used to avoid local optimal solution. Table 1 

summarizes typical methods used in supplier selection literature and the 

corresponding representative papers. 

Little research has been conducted in supplier selection under supply chain 

disruptions. Tang (2006) classifies supply chain risks into two categories: 

operational risk and disruption risk. Chopra and Sodhi (2004) categorize supply 

chain risks into nine parts: 1) disruptions 2) delays 3) systems 4) forecast 5) 

intellectual property 6) procurement 7) receivables 8) inventory and 9) capacity. In 

this paper, we divide the supply chain risks into two groups: inherent and 

disruption risks. The inherent risk refers to the organizational intrinsic uncertainty 

such as uncertain lead time, while disruption risk refers to natural disruptions, i.e. 

earthquakes, or man-made disruptions caused by terrorism attacks. 
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Supplier selection 
methods 

Advantage Disadvantage References 

Total cost of 
ownership (TCO) 

Better for organizations to 
understand and mange 

their costs 

The amount of 
complexity and the 
data requirement 

Degraeve and 
Roodhooft (1999), 

Smytka and Clemens 
(1993) 

Analytic hierarchy 
process (AHP) 

Consider both quantitative 
and qualitative factors 

Difficult to take into 
account constraints 

Bhutta and Huq 
(2002) 

Multi-objective 
programming (MOP) 

Provide suggested 
allocation volume for each 

supplier 

Complex, in some 
cases impractical to 

implement 

Cakravastia and 
Takahashi (2004), 
Narasimhan and 

Talluri (2006), Chan 
(2003) 

Simulation 
optimization 

Use for both qualitative 
and quantitative attributes, 
avoid local optimal solution 

Time consuming, 
difficult to take into 
account subjective 

criteria 

Ding, Benyoucef and 
Xie (2005), Haq and 

Kannan (2006) 

Table 1. “Comparison of supplier selection methods”. 

Lee, Padmanabhan and Whang (1997) investigate the bullwhip effect in a supply 

chain and analyze four sources of the bullwhip effects. Furthermore, Lee, So and 

Tang (2000) discuss the information sharing in a two-echelon supply chain with 

non-stationary end demand. Qi, Bard and Yu (2004) analyze the supply chain 

coordination with demand disruption in a deterministic scenario. Song and Zipkin 

(1996) consider the inventory control under supply breakdown by modeling the 

system as a discrete-time Markov process. Tomlin (2006) studies a single-product 

case in which a firm can source from two suppliers – one unreliable and one 

reliable which is more expensive. Most of the research either are based on discrete 

time setting or consider only inherent risk. Bather (1966) is the first one to 

consider a one-product inventory model where the demand follows the Wiener 

process. Inspired by this paper, a variety of extensions and discussions followed 

this direction. Puterman (1975) investigates a continuous-time stochastic storage 

model which assumes the two-number inventory policy. Harrison and Taylor (1978) 

explicitly compute an optimal policy for the two-number inventory policy in a 

diffusion setting. A review about deterministic and stochastic control theory is 

given by Neck (1984). Bar-Lev, Parlar and Perry (1993) analyze the Brownian 

inventory system with supplier uncertainty by using impulse control. An explicit 

formula of the expected total discounted cost for an infinite time horizon is 

proposed by Dohi, Kaio and Osaki (1993). Beyer (1994) presents a special one-

product inventory model by using the Wiener demand process with a fixed positive 

lead time and a (r, Q) strategy. Duncan, Parsik-Duncan and Zhang (1999) 
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implement adaptive control for stochastic manufacturing systems with hidden 

Markovian demands and small noise. However, little research investigates both the 

inherent and disruption supply chain risks. Therefore, our research is motivated to 

model the supply chain risk which includes both inherent and disruption risks by 

using a jump-diffusion model. We also investigate the effects of demand 

disruptions on production control and the performance of supply chain and on the 

decision for supplier selection problems.  

3 Model development 

In this paper, the following assumptions are made. First of all, the manufacturer’s 

demand is modeled as a jump-diffusion process which consists of the normal 

demand fluctuations and occasional demand disruptions. The jump-diffusion 

process has already been applied in other areas, such as finance and economics, to 

describe the normal price volatility and sudden price jumps (Kou, 2002). The 

demand disruptions in a continuous-time setting have similar characteristics as 

price disruptions. The Wiener process that is the counterpart of white noise in a 

discrete-time setting represents the normal dynamics of demand and the jump 

process is used to demonstrate the significant impact of the outside information 

release or sudden economic changes on demand.  

Secondly, we consider varied jump sizes coming from a Laplace distribution, which 

contains some favorable property such as leptokurtic (Kou, 2002). Thirdly, a (r, Q) 

ordering policy is adapted to model the replenishment decision from suppliers. The 

basic mechanism of the (r, Q) model is that when the inventory position reaches 

the reorder point r, a replenishment order of quantity Q is placed. Fourthly, we 

assume that it will consume one unit of raw material to produce one unit of 

product.   

Finally, a two-number inventory policy that is proved to be optimal in a diffusion 

model (Vickson, 1986) is searched by simulated annealing method and 

implemented for the manufacturer to make production decisions. The mechanism 

of this policy is that 1) when the inventory level 𝑥𝑡  of the finished products at time t 

is less or equal to  𝑥0, where x0 is a lower bound, then a machine which is off at 

time t will be turned on instantaneously; 2) when the inventory level 𝑥𝑡   is greater 

or equal to 𝑥1, where x1 is an upper bound, then the machine which is on at time t 
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will be turned off; 3) when the inventory level is between the lower bound and 

upper bound, i.e. 𝑥0 < 𝑥𝑡 < 𝑥1, then the machine will keep the previous status. If the 

status of the machine is switched, then it will cause a switching cost. Graves and 

Keilson (1981) prove this two-number inventory policy to be optimal in discrete-

time as well. However, the method used to find the critical values of x0 and x1 in 

the diffusion process cannot be applied to find the optimal values in the jump-

diffusion scenario. Hence, a heuristic searching algorithm, simulated annealing 

(SA), is implemented to find the critical values for the jump-diffusion process.  

In the following sub-sections, we present several relevant components about jump-

diffusion model. Firstly, the Wiener process and its generalized form are 

introduced. Secondly, the zero-one jump law used to generate jumps in the 

simulation is presented. Lastly, the model is proposed and discussed. 

3.1 Wiener process 

In a discrete-time time series model, the shocks are assumed to form a white noise 

process that is not predictable. The counterpart of shocks in a continuous-time 

model is the increments of a Wiener process which is also called a standard 

Brownian motion. If we focus on small change ∆wt = wt+∆t − wt associated with a 

small increment ∆t in time, then a continuous time stochastic process {wt} is a 

Wiener process if it satisfies: 

1) ∆𝑤𝑡 = 𝜀√∆𝑡, where ε is a standard normal random variable and ∆𝑤𝑡~𝑁(0,∆𝑡); 

2) ∆wt is independent of wj for all j ≤ t.  

The Wiener process is a special stochastic process with 0 drift and variance 

proportional to the length of time intervals, which means that the mean of the 

change rate is 0 and the variance of the change rate is 1. The generalized Wiener 

process is a stochastic process whose drift has a nonzero rate  𝜇  and the variance 

of the change rate is  𝜎2.  Denote the generalized Wiener process by 𝑥𝑡   and use the 

notation dy for a small change in variable y. Then the generalized Wiener process 

for xt is  𝑑𝑥𝑡 = 𝜇𝑑𝑡 + 𝜎𝑑𝑤𝑡, where wt is a Wiener process.  
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3.2 Zero-one jump law 

According to Hanson (2007), the jump process should follow the zero-one jump 

law, which will be implemented in the later simulation program. Let dt > 0 and λ be 

positive and bounded, then we have  

1) 𝑃𝑟𝑜𝑏[𝑑𝑃(𝑡) = 0] = 1 − 𝜆𝑑𝑡; 

2) 𝑃𝑟𝑜𝑏[𝑑𝑃(𝑡) = 1] = 𝜆𝑑𝑡; 

3) 𝑃𝑟𝑜𝑏[𝑑𝑃(𝑡) > 1] = 0; 

Equation 1. “Zero-one jump law”. 

where P(t) denotes the jump process with a fixed jump rate λ and dP(t) represents 

the differential in P(t) which implies that any jump will be captured in dP(t). The 

first two properties represent that as the jump rate increases, the probability that a 

jump occurs increases accordingly. Property (3) implies that in any particular dP(t) 

the number of jumps will not exceed 1. These rules will be implemented in the later 

simulation study to generate jumps. 

3.3 Proposed model 

Table 2. “Notations”. 

Notation Description 
x the finished products inventory level at time t t 
y the raw material inventory level at time t t 
Q the production rate at time t 
𝜇 the demand rate at time t 

 𝜎2 the variance in demand per unit time 
𝑤𝑡 the standard wiener process 
P the unit backlog penalty cost 
H the unit holding cost 
K the production switching cost per time 
B the ordering cost per time 
T the time length 
X the initial finished inventory level 0 
Y the initial raw material inventory level 0 

S(xt the average production switching cost ) 
C(xt inventory/penalty cost rate at time t ) 
G(xt ordering cost from supplier at time t ) 

mode(t) the machine state at time t 
J the compound Poisson process with intensity 𝜆 and magnitudeν  
G the long-term average cost 
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The jump-diffusion process has been used to model the normal price volatility and 

sudden price jump in finance and economics areas (Kou, 2002). In this paper 

customer demand is modeled as a jump-diffusion process, which includes both the 

normal balances between supply and demand and sudden changes due to external 

extreme events, such as significant information released about products, man-

made disasters or natural disasters. We model the customer demand as a jump-

diffusion process as follows: 

𝑑𝐷𝑡 = 𝜇𝑑𝑡 − 𝜎𝑑𝑤𝑡 − 𝑑𝐽 

Equation 2. “Demand model with jump process”. 

where Dt is the demand at time t and notations for  other variables are shown in 

Table 2. The goal is to determine the optimal critical values for the two-number 

inventory-production control policy in order to minimize the expected total cost 

including inventory holding cost and backlog cost (i.e. the inventory level < 0), 

machine switching cost and ordering cost. Note that production cost is not 

considered in this paper, since it will not affect the final results according to 

Vickson (1986). The objective function is 

𝑚𝑖𝑛 𝐸 �∫ 𝐶(𝑥𝑡)𝑑𝑡
𝑇
0 + 𝑆(𝑥𝑡) + 𝐺(𝑦𝑡)�   

Equation 3. “Objective function”. 

where (𝑥𝑡) = {−𝑝𝑥𝑡      𝑖𝑓 𝑥𝑡 < 0
ℎ𝑥𝑡         𝑖𝑓 𝑥𝑡 > 0 . The state equation follows an Itô stochastic 

differential equation, which is called a jump-diffusion process: 

𝑑𝑥𝑡 = 𝐼(𝑚𝑜𝑑𝑒(𝑡) > 0)𝑞𝑑𝑡 − 𝑑𝐷𝑡 

= (𝐼(𝑚𝑜𝑑𝑒(𝑡) > 0)𝑞 − 𝜇)𝑑𝑡 + 𝜎𝑑𝑤𝑡 + 𝑑𝐽 

Equation 4. “Inventory level with jump process”. 

where I(.) is an indicator function when the inside condition is true, then the value 

is 1, otherwise 0; 𝑚𝑜𝑑𝑒(𝑡) is the machine state, when the machine is on at time t, 

then 𝑚𝑜𝑑𝑒(𝑡)=1; when the machine is off at time t, 𝑚𝑜𝑑𝑒(𝑡)= 0. In our study, 

because the supply condition is integrated in the whole supply chain, the two-

number inventory policy has additional constraints: the machine will be turned off 
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if it is on at time t when the raw material inventory yt level is zero, which means 

the manufacturer runs out of raw material and cannot continue producing. 

Hence, 𝑚𝑜𝑑𝑒(𝑡)’s value can be updated continuously by the following function: 

𝑚𝑜𝑑𝑒(𝑡 + ∆𝑡) = �
1, 𝑖𝑓 𝑚𝑜𝑑𝑒(𝑡) = 0 𝑎𝑛𝑑 𝑥𝑡 ≤ 𝑥0 𝑎𝑛𝑑 𝑦𝑡 > 0
1, 𝑖𝑓 𝑚𝑜𝑑𝑒(𝑡) = 1 𝑎𝑛𝑑 𝑥𝑡 < 𝑥1 𝑎𝑛𝑑 𝑦𝑡 > 0 
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                       

� 

Equation 5. “Machine mode representation”. 

where ∆𝑡 is a small increment of time. Therefore,  𝑆(𝑥𝑡) = k ∗ |changes in mode|, where 

| | denotes the cardinal number, which is the number of changes in machine 

modes.  

Whenever the raw material inventory level yt is less than r, an order of quantity Q 

is placed by the manufacturer to replenish the raw material inventory. 

Hence, G(yt) = b ∗ |ordering|, where |ordering| denotes the number of times that the 

manufacturer places the orders with its supplier. 

Our objective is to determine the optimal production control values 𝑥0 and 𝑥1 in 

order to minimize the expected total cost described in Equation 3. Unfortunately, 

there is no closed-from for 𝑥0 and 𝑥1, therefore, the optimal values of 𝑥0 and 𝑥1 are 

searched by using the simulated annealing algorithm, which is discussed in the 

next section. 

4 Proposed solution procedure 

A simulation optimization procedure is developed to find the optimal values of 𝑥0 

and 𝑥1 and evaluate the effects of demand disruptions on the supplier selection. An 

improved analytic hierarchy process (AHP) is implemented to select the best 

supplier by considering quantitative factors, such as expected total cost obtained 

from simulation optimization, and qualitative factors, such as quality and service. 

The structure of this section is as follows. Firstly, simulated annealing is introduced 

in Section 4.1. Secondly, simulation parameters are represented in Section 4.2. 

Thirdly, numerical results of the effects of demand disruption on the whole supply 

chain are discussed in Section 4.3. Fourthly, the supplier selection problem under 

demand disruption is investigated in Section 4.4. Lastly, a numerical case study of 

supplier selection is presented by using the improved AHP in Section 4.5. 
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4.1 Simulated annealing 

Simulated annealing (SA) is a heuristic-search method which is analogous as the 

way a metal cools and freezes into a minimum energy crystalline structure – that is 

the annealing process – and searches for a minimum in a more general system. 

The major advantages of SA are 1) the ability to deal with arbitrary systems and 

cost functions; 2) statistical guarantee to converge to an optimal solution; 3) the 

ability to code easily even for complex problems; 4) the ability to avoid becoming 

trapped in the local minima/maxima and 5) the general ability to give a “good” 

solution. The original idea is proposed by Kirkpatrick, Gelatt and Vecchi (1983), 

who develop the similarities between statistical mechanics and combinatorial 

optimization and then apply it to a number of problems in optimal design of 

computers. Currently, SA has been widely used in many optimization problems 

(Suman & Kumar, 2006). 

In order to avoid being trapped in the local minima, the upward moves of the cost 

(the moves that worsen the solution) are accepted with a probability determined 

by the Metropolis function �e−∆C T⁄ � , where ∆C denotes the cost change of moves. As 

T, the temperature, decreases, the probability of acceptance of the upward moves 

decreases. The initial temperature needs to be high so that it can find the global 

optimal solutions, but not too high since it will lead to a long processing time. To 

determine a good value of initial temperature, a sequence of random moves can be 

performed and the average cost change in upward moves is computed before the 

start of the actual SA procedure. The Metropolis function �e−∆C T⁄ � is then used to 

determine the initial value of T (Youssef, Sait, & Adiche, 2001). The average cost 

change in upward moves is given as: 

∆𝐶𝑢 =
1
𝑀𝑢

�∆𝐶𝑖

𝑀𝑢

𝑖=1

 

Equation 6. “Average cost change in upward moves”. 

where Mu denotes the number of moves that worsen the solution (upward moves) 

and ∆𝐶𝑖 is the cost change of each upward move i. Hence, the initial value of T can 

be estimated as:  
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𝑇0 =
∆𝐶𝑢

ln(𝑃0)
 

Equation 7. “Initial temperature value”. 

where 𝑃0 is the probability of accepting the upward moves. If we accept the upward 

moves with the probability of 0.5, then  𝑃0 is set as 0.5. The simulated annealing 

algorithm is implemented as follows: 

1) Choose a random design vector 𝑋𝑖 = �𝑥0𝑖 , 𝑥1𝑖� , where �𝑥0𝑖 , 𝑥1𝑖� refers to the two-

number inventory policy at state i. Select the initial temperature, and then 

specify the annealing schedule, i.e. temperature reduction ratio, number of 

iterations before temperature reduction, etc. 

2) Evaluate F(Xi) by a simulation model, where F(Xi) denotes the objective 

function value when the design vector is Xi

3) Adjust step length to obtain a new neighboring design vector X

. 

4) Evaluate F(X

i+1 

i+1

5) If F(X

) by a simulation model. 

i+1) < F(Xi

then X

), i.e. 𝐹(𝑋𝑖+1) − 𝐹(𝑋𝑖) = ∆𝐶 < 0, 

i+1

6) If F(X

 is the new current solution. 

i+1) > F(Xi), then accept Xi+1

7) Reduce the temperature according to the annealing schedule. 

 as the new current solution with 

probability e−∆C T⁄ . 

8) Terminate the algorithm if the terminating criteria satisfy, otherwise go back 

to step 3). 

Here, 𝐹(𝑋𝑖) = ∑ 𝑉𝑗(𝑋𝑖)/𝑁𝑁
𝑗=1 , Vj is the total cost at sampling j for design vector Xi, and 

N is the number of samplings. In our study, the function 𝐹(𝑋𝑖) refers to Equation 3. 

4.2 Simulation parameters  

This model consists of two parts, with the first part being a diffusion process and 

the second part being a jump process. The occurrences of jump are governed by a 
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Poisson process and the jump size follows a Laplace distribution. Although the 

problem is studied in a continuous time setting, we discretize the time into small 

intervals. In our simulation study, the total time length is 4500 units and divided 

into 10,000 intervals, thus the small increment of time ∆𝑡 = 4500/10000. The 

variance of the process can be computed as  𝜎2∆𝑡 = 1.8 ∗ (4500/10000)  =  0.81. We 

set the intensity of the Poisson process to be 1%, that is, if the time length is 4500 

units, then there will be 45 jumps during the period, which is consistent with the 

reality that the disruption rarely occurs. The simulation parameters are shown in 

Table 3. 

Parameter Name Notation Value 
Production rate q 1.5 
Demand rate 𝜇 0.9 

Demand volatility  𝜎2 1.8 
Backlog penalty cost p 10 

Holding cost h 1 
Switching cost k 2 
Ordering cost b 2 

Initial inventory level X0 1 
Initial raw material inventory level Y0 5 

Raw material reorder position r 1 
Raw material ordering quantity Q 100 

Table 3. “Simulation parameters”. 

4.3 Numerical results 

The simulation parameter values are shown in Table 3. Table 4 shows the effects of 

demand disruptions, which are considered without supplier selection options, where 

the optimal critical levels of x0 and x1 are found by the SA method. Table 4 shows 

that as the drop magnitude of demand increases, the long-term average cost g 

decreases from 335 to 181. The decreased cost, which mainly comes from machine 

raw material ordering cost and switching cost, illustrates that due to the reduced 

demand, the factory production activity decreases in terms of decreased production 

and ordering activity. As the demand increases, the total cost increases due to the 

increased production and ordering activity.  

It is noted that when the demand jumps downward, the optimal x0 is close to the 

reorder point, which reflects that the lower boundary is kept close to the reorder 

point because of the reduced demand requirement and justifies the intuition that 

the production and ordering activities decrease so that the optimal production 

mechanism looks more passive until the raw material is almost depleted. When the 
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demand jumps upward, the lower boundary increases, which implies that the 

inventory is kept at a relatively high level to meet the increased demand and the 

production activities heat up so that the optimal production mechanism looks more 

active. When the demand jumps downward, the difference between x0 and x1 is 

larger than that when the demand jumps upward. This implies that the wider range 

accounts for more uncertainties and downward jumps have more severe effect on 

the stability of the supply chain.  

We also notice that the total cost difference between downward jumps and upward 

jumps comes from ordering and switching costs. The reason is that when the 

demand increases, the manufacturer needs to order more raw materials and keeps 

producing to meet the increased demand so that there will be more ordering cost. 

Also, the production mechanism has a greater chance to hit the boundary because 

of the smaller range between x0 and x1, leading to a higher switching cost.  

In the following section, we will combine the quantitative effects of demand 

disruptions on the performance of the supply chain with the qualitative factors 

considered in supplier selection problem. In order to study the optimal supplier 

selection under demand disruptions, an improved Analytical Hierarchy Process 

(AHP) is proposed to integrate these quantitative and qualitative factors. 

Case Max. 
Jump in 
Demand 

% of 
variance 

x0 x1 Expected cost 
Inventory 

cost 
Ordering 

cost 
Switching 

cost 
Total 
cost 

1 0 0 1.01 85.08 27.67 184 124 335.67 
2 -0.1 -12.25% 1.03 87.26 32.40 164 108 304.40 
3 -0.2 -24.69% 1.09 109.05 37.67 142 94 273.67 
4 -0.3 -37.04% 1.00 104.30 30.53 118 92 240.53 
5 -0.5 -61.73% 1.01 119.32 55.01 76 50 181.01 
6 0.1 12.25% 1.01 71.68 23.39 208 138 369.39 
7 0.2 24.69% 3.67 62.43 19.94 228 152 399.94 
8 0.3 37.04% 2.95 48.99 24.37 242 170 436.37 
9 0.5 61.73% 38.67 69.14 27.35 294 196 517.35 

Table 4. “Results of jump-diffusion process with various sizes”. 

4.4 Supplier selection under demand disruption  

The proposed supplier selection procedure can be used for multiple suppliers’ case, 

but only three typical types of suppliers are considered in this paper for illustration 

purposes. The characteristics of the suppliers are described in Table 5. Although 
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the example might not exhaustively represent all the suppliers’ cases, the proposed 

method can be applied to a wide range of applications. 

Since delivery time and ordering cost are the main factors to consider in supplier 

selection problems, we represent the suppliers from the perspectives of delivery 

time and ordering cost in our study. The quantitative results can be obtained from 

the simulation program for different delivery time and ordering cost scenarios, 

Table 5 shows that if the supplier is more reliable and provides faster delivery, then 

its ordering cost is relatively higher. Similarly, if the supplier is less reliable and 

provides slower delivery, then its ordering cost is cheaper.  

Table 5. “Supplier characteristics description”. 

Using the simulation optimization procedure presented previously, we find the 

optimal critical values  x0 and x1  and the expected cost for case 4 described in 

Table 4, where the maximum jump in demand is -0.3, i.e. -37.04% of the 

variance. The comparison results are shown in Table 6. The results show that 

Supplier B has the lowest long-term average cost among three of them, Supplier C 

causes the largest long-term average cost and Supplier A has the median cost, 

indicating that the ordering cost is not the only factor affecting the total cost, but 

the delivery time affects the total cost as well, numerically justifying our intuition 

about the effects of delivery time on the total cost.  

Case 4: Max Jump in Demand is 
-0.3, i.e. -37.04% of the variance 

Expected cost 

Sup-
plier 

x0 x1 Inventory cost Order-
ing cost 

Switch-
ing cost 

Total 
cost Backlog cost Holding cost 

A 1.14 33.18 5.14 13.32 118 232 398.46 
B 4.60 48.99 2.93 18.26 88 234 343.19 
C 7.74 27.37 154.6 4.15 58 254 470.75 

Table 6. “Costs comparison for different suppliers”. 

Note that the difference between x0 and x1 for Supplier C is the smallest, which is 

associated with the highest total cost. Because the delivery time for Supplier C is 

the longest, the possibility of causing backlog cost is the largest, which will lead to 

Supplier Reliability Supplier Ordering 
Cost per time (b) 

Delivery Time 
Units (hours) 

A High b=2 50 

B Medium b=1.5 70 

C Low b=1 100 
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the highest inventory cost. In our study it is assumed that the manufacturer wants 

to meet the demand as much as possible, so the penalty cost (p=10) is set to be 

the highest compared to the holding cost (h=1), switching cost (k=2) and ordering 

cost (o=2). Because of the longest lead time for Supplier C, the optimal lower 

boundary level x0 is found to be the highest in order to avoid the penalty cost. 

Table 6 shows that Supplier C has the largest backlog cost compared to those for 

Supplier A and B, which is the largest cost difference among holding cost, ordering 

cost and switching cost. Therefore, Supplier C has the largest total cost due to the 

effects of its longest delivery time.  

Although Supplier A the shortest delivery time, it does not have the least total cost, 

because the highest ordering cost offsets the advantages of shortest delivery time. 

The difference between the lower boundary (x0) and the upper boundary (x1) for 

Supplier B is the largest among Suppliers A, B and C, hence, the holding cost for 

Supplier B is the largest due to the highest chance to hold inventory. Note that the 

optimal switching points x0 and x1 are searched by the simulated annealing 

method, which will find the best balance combination among backlog cost, holding 

cost, ordering cost and switching cost in order to obtain the least total cost. 

Although Supplier B has a longer delivery time than Supplier A and a larger 

ordering cost rate than Supplier C, the numerical results show that it has the least 

total cost because it has a smaller ordering cost than Supplier A and a smaller 

backlog cost than Supplier C.  This implies that Supplier B is somehow more 

balanced in terms of ordering cost and delivery time. Hence, for case 4, Supplier B 

is the best choice for the manufacturer from the perspective of total cost. 

Additionally, the numerical results demonstrate that a single factor does not 

determine the best choice, but the combination of multiple factors. For example, 

Supplier B has neither the least ordering cost nor the least inventory cost, but it 

has the least total cost. 

4.5 Improved AHP for supplier selection 

Since there are many factors to be taken into account when selecting suppliers, we 

combine the results in Section 4.4 with other qualitative factors by using Analytical 

Hierarchy Process (AHP). As discussed in the literature review, AHP is difficult to 

implement under constraints. Hence, by combining the analytical results from 

Section 4.4, we consider not only certain qualitative factors, such as quality and 
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service, but also quantitative factors, such as the total cost under demand 

disruptions. Thus, we will consider the supplier selection problem by using the 

improved AHP.  Table 5 shows the three typical types of suppliers that are used in 

this study. These three different types are representatives of different supplier 

characteristics. Supplier A is highly reliable, but with the highest ordering cost and 

shortest delivery period. Supplier C is the least reliable, but with the lowest 

ordering cost and the longest delivery period. Supplier B is more balanced. The 

preference level is shown in Table 7. For example, if a company moderately prefers 

Supplier A to Supplier B, then a value of 2 is assigned to its particular comparison. 

Rating for Cost criterion is defined in Equation 8. 

Preference Level Numerical Value 
Equally preferred 1 

Moderately preferred 2 
Strongly preferred 3 

Table 7. “Preference level”. 

Ratio (A/B) = CostB/Cost

Equation 8. “Cost ratio”. 

A 

Three criteria for comparison ratings for each supplier are shown in Table 8, in 

which Cost & Delivery contains quantitative information from demand disruptions, 

while product quality and after-sales service represent qualitative information 

chosen by decision-makers. The next step is to prioritize the supplier within each 

criterion in Table 9. The values in each column are divided by the corresponding 

column sum in Table 10. 

Supplier Cost & Delivery Quality Service 
A B C A B C A B C 

A 1 0.86 1.18 1 1.1 1.3 1 2 0.8 
B 1.16 1 1.37 0.91 1 1.2 0.5 1 0.5 
C 0.85 0.73 1 0.77 0.83 1 1.25 2 1 

Table 8. “Supplier criteria”. 

 Quality 
 A B C 
A 1 1.1 1.3 
B 0.91 1 1.2 
C 0.77 0.83 1 
 2.68 2.93 3.5 

Table 9. “Prioritizing Quality”. 
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 Quality  
 A B C Row Average 
A 0.3734 0.3750 0.3714 0.3733 
B 0.3394 0.3409 0.3429 0.3411 
C 0.2872 0.2841 0.2857 0.2857 
    1 

Table 10. “Row average for Quality”. 

The row averages shows the companies ranks in each criterion. The results are 

shown in Table 11. For example, for the Cost & Delivery criteria, Supplier B is the 

most preferred, followed by Supplier A, and then Supplier C. The next step in AHP 

is to rank the criteria in order of importance in Table 12. Following the similar 

procedure, we could obtain the row averages for each criterion in Table 13. 

 Criteria 
Supplier Cost & Delivery Quality Service 

A 0.3325 0.3733 0.3705 
B 0.3861 0.3411 0.1997 
C 0.2814 0.2857 0.4298 

Table 11. “Supplier preferences for each criteria”. 

Criteria Cost & Delivery Quality Service 
Cost & Delivery 1 0.9 1.5 

Quality 1.11 1 1.2 

Service 0.67 0.83 1 

Table 12. “Criteria ranking”. 

Criteria Cost & Delivery Quality Service Row Average 
Cost & Delivery 0.3600 0.3293 0.4054 0.3649 

Quality 0.4000 0.3659 0.3243 0.3634 
Service 0.2400 0.3049 0.2703 0.2717 

    1 

Table 13. “Criteria weights”. 

An overall score for each supplier is computed by multiplying the matrix of 

company’s preference by the matrix of criteria. Equation 9 shows the results. Note 

that Supplier A has the highest overall score, which is 0.3576, and Supplier B has 

the lowest overall score, which is 0.3191. Based on these scores, Supplier A should 

be selected.  
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    �
𝑆𝑢𝑝𝑝𝑙𝑖𝑒𝑟 𝐴
𝑆𝑢𝑝𝑝𝑙𝑖𝑒𝑟 𝐵
𝑆𝑢𝑝𝑝𝑙𝑖𝑒𝑟 𝐶

� = �
0.3325 0.3733 0.3705
0.3861 0.3411 0.1997
0.2814 0.2857 0.4298

� × �
0.3649
0.3634
0.2717

� = �
0.3576
0.3191
0.3233

� 

Equation 9. “Supplier weight matrix”. 

From the perspective of total cost, Supplier B has the least total cost presented in 

Table 6. However, if the manufacturer considers other qualitative factors, such as 

quality and service, then Supplier A has an overall advantage over other suppliers, 

so it is the best choice for the manufacturer. The improved AHP can integrate the 

quantitative factors, such as expected long-term cost under demand disruptions, 

with qualitative factors, such as quality and service, to make the best decision 

based on a broader point of view. Note that if decision makers have different 

weights for different factors, their selection of supplier may change according to 

the weights assigned to the factors. 

5 Sensitivity analyses 

In this section, we conduct sensitivity analyses in order to obtain deeper insights of 

effects of demand disruptions. Firstly, by fixing critical value x0 and x1, we can 

obtain the total cost in Table 14 which shows that the total cost increases for each 

case in comparison to that in Table 4. This indicates that the optimal critical values 

could save more cost for the integrated supply chain system. Next, considering 

Case 5 in Table 4, we fix x0, but change x1 from 25 to 160. The cost structure is 

shown in Table 15. Figure 1 shows the graph of the total cost versus x1. 

Case Max. 
Jump in 
Demand 

% of 
variance 

x0 x1 Expected cost 
Inventory 

cost 
Ordering 

cost 
Switching 

cost 
Total 
cost 

1 0 No Jump 1.01 85.08 27.67 184 124 335.67 

4 -0.3 37.04% 1.01 85.08 38.65 118 112 268.65 
5 -0.5 61.73% 1.01 85.08 38.91 74 86 198.91 
8 0.3 37.04% 1.01 85.08 18.85 250 168 436.85 

9 0.5 61.73% 1.01 85.08 140.38 292 196 628.38 

Table 14. “Total cost for fixed x0 and x1

 

”. 
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x0 

 
x1 

Expected cost 
Inventory 

cost 
Ordering 

cost 
Switching 

cost 
Total 
cost 

1.01 160 55.07 76 50 181.07 
1.01 140 55.07 76 50 181.07 
1.01 119.32 55.01 76 50 181.01 
1.01 100 47.18 76 82 205.18 
1.01 85 38.91 74 86 198.91 
1.01 65 32.00 74 100 206.00 
1.01 45 23.85 74 134 231.85 
1.01 25 14.70 74 218 306.70 

Table 15. “Total cost for fixed x0

 

 in case 5”. 

Figure 1. “Graph of the total cost for fixed x0

In Figure 1, g_inv denotes the inventory cost, g_ord denotes the ordering cost, 

g_switch denotes the switching cost and g_total denotes the total cost. The figure 

shows that the total cost is declining as x

 in case 5”. 

1 increases. When x1 is between 120 and 

160, the total cost is almost the same, which indicates that x1=119.32 is the 

optimal value for a minimum total cost. The figure also shows that the switching 

cost declines as the range of critical switching points increases, which matches our 

intuition that the wider the range, the less frequently the switch occurs. As x1
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increases, the inventory cost rises as the result of increasing holding cost, while 

the ordering cost keeps almost constant. In order to further investigate the effects 

of parameters’ changes on the supplier selection choice, the modified supplier 

characteristics are summarized in Table 16, in which the delivery time is selected in 

a much smaller scale, while the ordering cost is kept the same. 
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Table 16. “Supplier characteristics comparison”. 

Table 17 shows that for case 4 the Supplier C has the lowest total cost among 

three suppliers and Supplier A has the highest total cost. Note that in Table 17 the 

inventory costs are actually the holding costs because the backlog costs for 

Supplier A, B and C are almost 0 in the numerical results. In our study, the 

production rate is larger than the demand rate since it is assumed that the 

manufacturer wants to satisfy the demand as much as possible. Hence, when the 

delivery time among Supplier A, B and C is so small that the effects can be 

neglected, the difference in inventory cost is not significant compared to other cost 

factors. Recall that Table 6 shows Supplier C has the largest inventory cost 

because of its longest delivery time, leading to the largest backlog cost. However, 

the results in Table 17 show that the ordering cost is the dominant factor in 

determining the best supplier while there is not much difference in the inventory 

cost. This implies that the delivery time indeed is an important factor, but its 

relative difference of length among various suppliers plays a significant role in 

determining the least total cost option. In addition, the difference between x0 and 

x1 is very close among Suppliers A, B and C, leading to quite close inventory costs 

and implying that the ordering cost is the dominant factor in determining the 

option with the least total cost. 

Case 4: Max Jump in Demand is 
-0.3, i.e. -37.04% of the variance 

Expected cost 

Sup-
plier 

x0 x1 Inventory 
cost 

Ordering 
cost 

Switching 
cost 

Total cost 

A 1.65 48.19 15.89 118 234 367.89 
B 1.18 48.03 15.45 88.5 238 341.95 
C 1.76 48.99 15.99 59 234 308.99 

Table 17. “Cost comparison for changed delivery time units”. 

By following the same improved AHP procedures discussed in Section 4.5, Supplier 

C has the highest overall score, which is 0.3536. Therefore, Supplier C should be 

selected. However, in Section 4.5, Supplier A is selected.  

Company Reliability Supplier Ordering 
Cost (b) 

Delivery Time 
Units (hours) 

A High b=2 3 
B Medium b=1.5 5 
C Low b=1 7 
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    �
𝑆𝑢𝑝𝑝𝑙𝑖𝑒𝑟 𝐴
𝑆𝑢𝑝𝑝𝑙𝑖𝑒𝑟 𝐵
𝑆𝑢𝑝𝑝𝑙𝑖𝑒𝑟 𝐶

� = �
0.3061 0.3733 0.3705
0.3294 0.3411 0.1997
0.3645 0.2857 0.4298

� × �
0.3649
0.3634
0.2717

� = �
0.3480
0.2984
0.3536

� 

Equation 10. “Supplier weight matrix”. 

We also investigate Case 5 in Table 4, which has a larger downward demand jump 

size. The supplier characteristics are described in Table 5. Table 18 shows that 

Supplier B has the lowest long-term average cost among the three suppliers. 

Compared with the results in Table 6, the results show that as downward demand 

jump occurs, the total cost for each supplier decreases, but the total cost of 

Supplier A has the largest decreasing amount. This implies that the demand 

disruption pattern will impact the total costs of different suppliers. By following the 

improved AHP procedures, Supplier A has the highest overall score according to 

Equation 11 and should be selected, the same selection decision as that in Section 

4.5. 

Case 5: Max Jump in Demand is -0.5, i.e. 
-61.73% of the variance 

Expected cost 

Company x0 x1 Inventory 
cost 

Ordering 
cost 

Switching 
cost 

Total cost 

A 4.24 48.99 21.53 74 146 241.53 
B 4.06 55.71 21.42 55.5 146 222.92 
C 1.62 20.83 26.53 37 254 317.53 

Table 18. “Cost comparison for changed demand size”. 

    �
𝑆𝑢𝑝𝑝𝑙𝑖𝑒𝑟 𝐴
𝑆𝑢𝑝𝑝𝑙𝑖𝑒𝑟 𝐵
𝑆𝑢𝑝𝑝𝑙𝑖𝑒𝑟 𝐶

� = �
0.3516 0.3733 0.3705
0.3810 0.3411 0.1997
0.2674 0.2857 0.4298

� × �
0.3649
0.3634
0.2717

� = �
0.3646
0.3172
0.3182

� 

Equation 11. “Supplier weight matrix”. 

6 Conclusions 

This paper studies a three-echelon supply chain system which consists of suppliers, 

one manufacturer, and customers under demand disruptions. We model demand 

disruptions by using a jump-diffusion model. The objective is to minimize the total 

cost under different demand disruption scenarios. In order to avoid local optima, 

the simulated annealing algorithm is used to search the optimal critical values for a 

two-number production-inventory policy. Various jump scenarios are tested in our 

simulation study.  
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Numerical studies show that the demand jump size and direction will significantly 

affect the performance of the whole supply chain and the decision of supplier 

selection and that the downward jump has a more severe effect on the stability of 

the supply chain system. It is also shown that delivery time and ordering cost are 

important factors when selecting the best supplier, but the choice could vary 

according to different risk scenarios.  

The common AHP process could not take constraints into account. Hence, the 

proposed improved AHP, which combines with simulation results based on demand 

jump scenarios, could not only release the extent of the supplier reliability in the 

face of supply chain disruptions but also provide quantitative analysis for senior 

management for different risk scenarios. Hence, it is recommended for companies 

to run the “stress test” which involves estimating how the company will perform 

and which supplier should be selected under unusual market moves. For example, 

different future demand scenarios could be generated by using the jump-diffusion 

model and then analysis of supplier selection could be conducted by using the 

improved AHP process. 
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