
Journal of  Industrial Engineering and Management
JIEM, 2016 – 9(5): 1035-1046 – Online ISSN: 2013-0953 – Print ISSN: 2013-8423

http://dx.doi.org/10.3926/jiem.2082

Minimizing the Carbon Footprint of  Material Handling Equipment:

Comparison of  Electric and LPG Forklifts

Francesco Facchini , Giovanni Mummolo , Giorgio Mossa , Salvatore Digiesi , 

Francesco Boenzi , Rossella Verriello

Politecnico di Bari - Department of  Mechanical, Mathematical and Management (Italy)

francesco.facchini@poliba.it, giovanni.mummolo@poliba.it, giorgio.mossa@poliba.it, salvatore.digiesi@poliba.it,

francesco.boenzi@poliba.it, rossella.verriello@poliba.it     

Received: July 2016
Accepted: October 2016

Abstract:

Purpose: The aim of  this study is to identify the best Material Handling Equipment (MHE) to

minimize the carbon footprint of  inbound logistic activities, based on the type of  the warehouse

(layout, facilities and order-picking strategy) as well as the weight of  the loads to be handled.

Design/methodology/approach: A model to select the best environmental MHE for inbound

logistic  activities  has  been  developed.  Environmental  performance  of  the  MHE  has  been

evaluated in terms of  carbon Footprint (CF). The model is tested with a tool adopting a VBA

macro as well as a simulation software allowing the evaluation of  energy and time required by the

forklift in each phase of  the material handling cycle: picking, sorting and storing of  the items.

Findings: Nowadays, it is not possible to identify ‘a priori’ a particular engine equipped forklift

performing better than others under an environmental perspective. Consistently, the application

of  the developed model allows to identify the best MHE tailored to each case analyzed. 

Originality/value: This work gives a contribution to the disagreement between environmental

performances  of  forklifts  equipped  with  different  engines.  The  developed  model  can  be

considered a valid support for decision makers to identify the best MHE minimizing the carbon

footprint of  inbound logistic activities.
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1. Introduction

In the last decade, the average annual increase of  CO2 emissions was about 3%. In 2014 the value of  CO2

emitted in the world reached the new record of  35.7 billion tonnes (Olivier & Muntean, 2015). Taking

into account all Greenhouse Gases (GHGs), equivalent carbon dioxide (CO2eq) emissions reached a total

amount of  about 50 billion tonnes in the year 2014, and are forecasted to rise to 58 billion tonnes of

CO2eq in 2020 (Fichtinger, Ries, Grosse & Baker, 2015). With reference to the logistics and transport

sector, the emissions generated by the related consumption of  energy account for about 2.8 billion tonnes

of  CO2eq and represent about 5.5% of  the total GHGs emissions (Fichtinger et al., 2015). Therefore, the

environmentally sustainable management of  logistic activities became an essential element of  business

strategy and competitive advantage (Dey, LaGuardia & Srinivasan, 2011). Strong pressure exerted by mass

media and European legislation imposed multiple new challenges to business organizations in terms of

better working conditions, workers’ safety and reduction in carbon footprint. 

In recent years, most of  the research concerning environmental impact of  logistics focused on the GHGs

emissions associated with transport activities. There is a growing body of  literature focusing on inventory

management  policies.  The internalization of  the  cost  of  externalities  gives  rise  to new logistic  cost

estimates  (Digiesi,  Mascolo,  Mossa  &  Mummolo,  2016).  Research  by  Boenzi,  Digiesi,  Facchini  and

Mummolo  (2015)  showed  that  the  environmental  performance,  evaluated  as  external  costs,  of  the

inbound logistic activities is strongly related to the storage configuration and to the order picking strategy.

Environmental  impact  due  to  material  handling,  storage,  and  picking  operations  is  a  substantially

unexplored field of  research. In Amjed and Harrison (2013), a warehouse shows eight potential major

research areas which are: warehouse facility design, warehouse layout, inventory management, Mechanical

Handling Equipment (MHE), warehouse staff,  warehouse operations,  onsite facilities  and Warehouse

Management System (WMS). According to Amjed and Harrison (2013), each area of  research is able to

ensure  a  significant  contribution for logistic  sustainability  improvement.  As  far  as  the MHE area  is

concerned, in order to minimize emissions due to order picking activities, a fundamental role is played by

the optimal equipment selection. 

The paper focuses on forklift selection in case warehouse layout and its capacity, as well as size and weight

of  the stored items are given.
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According to Johnson (2008) ‘the carbon footprints of  electric and LPG fork-lifts are, in principle, about equal, while

in actual practice, LPG footprint is smaller than that of  electricity’. On the other hand, Toyota (2002) claims that

the carbon footprint of  a LPG forklift is about twice that of  an electric forklift. Therefore the question is:

‘what is the forklift engine, available on the market that ensures the minimal carbon footprint for the

inbound material handling activities?’ 

In order to answer to the question, this paper proposes to integrate a carbon footprint calculator with a

simulation-based model.

The paper is organized as follows: in Section 2, scope and methodology of  the model are presented; in

Section 3 and 4, the model is applied to different cases and results obtained are presented and discussed;

finally, in Section 5, conclusions are detailed.

2. Scope and Methodology

The main object is to identify the best environmental MHE for inbound logistic activities. Consistently, a

model to select the MHE with the lowest impact in terms of  Carbon Footprint (CF) has been developed.

Two main classes of  MHE have been considered in the model: forklifts powered by fossil fuel and by

electricity. Basically, the CF of  inbound logistic activities depends on forklift energy consumption and on

the time required to complete a process. The material handling process considered in the model consists

of  three main steps:

1. the unloaded forklift leaves the loading/unloading area (ALU) of  the warehouse and reaches the

storage area (SA) whose access point is located in the middle of  front side; a constant carrying

speed has been assumed; 

2. the forklift stops at SA and picks the number of  items in order to both maximize the utilization

ratio and to minimize the number of  movements and travels required. A special equipment is

adopted in order to saturate available capacity of  the forklift ensuring the safe loading.

3. the loaded forklift leaves the SA and reaches the loading/unloading area (ALU) of  the warehouse.

In this phase, the travel speed of  the forklift depends on the weight of  the load carried up and on

the power source of  the forklift. In any case, the travel speed cannot exceed the ‘safe speed’

suggested  by  occupational  safety  guidelines  for  Powered  Industrial  Trucks  (ANSI,  2012)

consistently with the truck type, the carried load, the operating surface conditions, as well as other

safety issues. 
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Energy (E) and time (t) required by the forklift for picking  Q items from the warehouse are strongly

related to the number and features of  the items stocked in the warehouse, to the distance between ALU

and SA as well as to the loading capacity of  the forklift. Consistently, the Carbon Footprint (CF) of

material handling activities is evaluated by means of  Equation (1) for both fuel engine equipped forklifts

and electrical powered forklifts:

(1)

Where:

• EHR: Emission Hourly Rate [kgCO2/h];

• t: total cycle time [h].

The EHR can be calculated by means of  Equations (2) and (3) for fuel engine equipped forklifts and for

electrical powered forklifts, respectively:

(2)

(3)

Where:

• FEF: Fuel Emission Factor [kgCO2/ kWh];

• FCHR: average Fuel Consumption Hourly Rate [kWh/h];

• EEF: Electricity Emission Factor [kgCO2/kWh];

• ECHR: average electric Energy Consumption Hourly Rate [kWh /h];

• η: overall  efficiency of  the electric energy transfer process from the production origin to the

battery energy storage (product of  the efficiencies of  all the involved electric equipment and of

the electrochemical charging efficiency of  the battery);

The total time (t) considered in the model can be defined as the product of  the average cycle time ( ) and

the cycles number (N). The average cycle time ( ) consists of  the roundtrip translation time and of  the

lift time. The cycles number (N) represents the number of  roundtrips required to complete the process.

Under the hypothesis that all the items in the storage are identical (same weight W and dimensions) and

stackable,  it  is  possible  to  define  the  Batch  Size  (BS)  of  the  forklift  as  the  maximum number  of

transportable units, in order to maximize its utilization. The BS can be calculated as the lower integer of

the  ratio  between  the  rated  Load  Capacity  (LC)  of  the  forklift  and  the  weight  (W)  of  an  item.
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Consequently, the cycles number (N) is calculated as the upper integer of  the ratio between the storage

capacity (Q) and the batch size (BS). The total time (t) is at last expressed by Equation (4). 

(4)

Where:

• d: average distance travelled in a cycle [m];

• st: average translation speed [km/h];

• h: average lifting height [m];

• sl: average lift speed [km/h];

• BS: forklift batch size.  and, consistently, utilization , in which LC is the rated

load capacity of  the forklift truck and W is the weight of  an item. 

The average distance travelled ‘d’  includes the distance travelled from ALU and SA and the distance

travelled in  the  storage area  for picking items.  The latter  is  evaluated according to standard criteria

pertaining  the  minimal  distance  traveled  in  condition  of  equiprobable  access  to  the  stocked  items.

Considering the  front  side  (U) end the depth (V)  of  the  SA,  the  average distance travelled is  d  =

U/4+V/2.

Introduced the subscripts also for the term t and for its components, the CF comparison condition to

identify the best MHE is expressed by Inequality (5):

(5)

A  difference  greater  than  zero  indicates  a  preference  for  the  electric  forklift.  The  environmental

preference condition can be rewritten as in Inequality (6).

(6)

For an average travelled distance much greater than the average lifting height, the lift time for both

the types of  forklift  can be neglected. In general,  the product of  the two terms (h/d) and (s t/sl)

should  be  evaluated  for  both  types  of  forklift,  but,  in  most  practical  cases,  it  can  be  assumed

negligible (h/d st/sl << 1). Under this hypothesis, the CF preference condition can be expressed as in

Inequality (7), in which it is a function of  the forklift utilization. 
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(7)

The model is validated by means of  a tool allowing to evaluate the energy and the time required by the

forklift in each phase of  the material handling cycle: empty truck travel, item picking and transport, item

unloading. The tool is based on a VBA macro and on the simulation software: ‘FlexSim Simulator Software®

-  Express  free  version (download at:  https://www.flexsim.com/free-trial/).  The VBA macro gets  data  (times

required for Material Handling Cycle) from the simulation software, and calculates the related Carbon

Footprint according to (1).

The order-picking strategy  considered for  the  warehouse management  is  based on a  picker-to-parts

system employing workers and counterbalance forklifts. In the following, the assumptions adopted are:

• No priority rules are established among items;

• number of  items to be handled, within a given time horizon, is given;

• an item consists of  a single product or a batch of  products;

• items stocked in the warehouse are of  prismatic form and are characterized by the same sizes (dx,

dy, and dz) and weight (W);

• stackable units storage configuration is adopted; 

• items are stocked in stockpiles of  same height and each stockpile does not exceed 4 [m];

• a storage configuration is univocally identified by the numbers (nx,  ny,  nz), of  items stored along

the x, y and z-axis, respectively.

• Q is the storage capacity of  the warehouse: Q = nx· ny· nz

• times of  the transient phases (acceleration and deceleration of  the forklift)  (Chao-Hsien-Pan,

Ming-Hun & Wen-Linag, 2014) and forklift waiting times are negligible in the cycle time;

• warehouse  layout  is  of  a  Rectangular  type (Figure  1),  with  a  storage  area  (SA)  and  a  single

loading/unloading area (ALU);

• each stockpile is accessed from a front storage area (FSA) due to limited aisles width;

• the distance between the loading/unloading area (ALU) of  the warehouse and the storage area

(SA) is given. 
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Figure 1. Layout of  the warehouse

(screenshot from FlexSim Simulation

software®) 

3. Numerical Simulation of  Material Handling

In order to evaluate the tool effectiveness, the model has been applied to a full scale numerical case. Two

counter-balance forklifts equipped with LPG and electric engine are considered. 

The data employed for the environmental preference evaluation are listed in Table 1. In detail, the data

specified for the LPG powered forklift  are the FEF and the FCHR for the considered truck model

(Equation 2). For the electric powered forklift (Equation 3), the ECHR is specific to the truck model and

the reported EEF is taken from (Eurostat, 2015). This value is derived considering the average mix of

production sources of  electricity in EU countries. The overall efficiency η of  electric energy storage can

be assumed equal to 0.85, considering, optimistically,  90% energy efficiency for the battery charging

process and around 95% for all the other ancillary equipment.

LPG powered forklift
FEF [kgCO2/kWh] FCHR [kg/h] LCV [kWh /kg] EHR [kgCO2/h]

0.227 (*) 6.6 (**) 13.1 19.6

Electric powered forklift
ER [kgCO2/kWh] ECHR [kWh /h] η

4.84
0.388 (+) 10.6 (**) 0.85

(*) source: (IPCC, 2006)
(**) source: Technical data sheet (Hyster H6.0-7.0FT and J4.0-5.0XN), based on the VDI 2198 cycle.
(+) source: (Eurostat, 2015)

Table 1. Emission factors of  fuels and consumption data of  the considered forklifts (IPCC, 2006)

Forklift  characteristic  features like load capacity,  fork height,  translation maximum speed and engine

power are listed in Table 2.

The stocked prismatic items are characterized by the following sizes: dx=0.8 [m], dy=1.2 [m], and dz = 0.5

[m]. In the following, the plan of  the simulations adopted is summarized. For each case, the model, on
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the basis of  the input parameters, allowed to evaluate the CF required for material handling activities,

consistently with the adopted assumptions.

Energy
source

Load
capacity 

[kg]

Fork
height 
[mm]

Translation
speed 
[km/h]

Average
Lifting/Lowering speed

[km/h]

Power
[kW]

Cost
[k€]

LPG 6000 3340 25.0 1.91 77 ≈45

Electric 4000 3300 20.0 1.69 64.4 ≈45

Table 2. Technical specifications of  the forklifts

By varying the number (Q) and the features (size and weight) of  the items to be stocked, as well as the

distance between the loading/unloading area and the storage area (ALU-SA), more than 600 numerical

cases have been simulated. For each case considered, the model identified the MHE minimizing the CF

of  the material handling activities. As an example, results obtained in case of  ALU-SA=20 [m], three values

of  Q and three different items (differing by weight) are shown in Table 3.

ID Q [units] Weight [kg/units] nx [units] ny [units] nz [units]

#01 1500 2000 25 15 4

#02 1500 3000 25 15 4

#03 1500 3500 25 15 4

#04 6500 2000 50 26 5

#05 6500 3000 50 26 5

#06 6500 3500 50 26 5

#07 16000 2000 64 50 5

#08 16000 3000 64 50 5

#09 16000 3500 64 50 5

Table 3. Input parameters for different numerical simulation

In the case study analyzed, the ratio ‘h/d’ is also evaluated. The previous illustrated condition (see Section

2), in order to simplify Expression (6) into Inequality (7), can be rewritten as:

(8)

The ratios between the translation speed and the lifting speed are equal to 13 and to 12, for the LPG

forklift and for the electric forklift, respectively; therefore, the more stringent condition is set by the value
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13. Considering that, at most, stockpiles are constituted by 5 stacked units (see Table 3) and considering

the item height, the average lift height of  the process is around 1 [m]. In order to satisfy condition (6), the

average cycle travelled distance has to be much greater than 13 [m]. This condition is respected since the

distance travelled from ALU to SA is yet 20 [m] and distances travelled inside the SA have to be added to

it,  when considering the average cycle travel.  Consequently,  the lift  time can be neglected. As above

mentioned,  the  travel  speed  of  the  forklift  depends  on  the  weight  of  the  load  carried  up.  In  the

simulation  software,  the  variation  of  the  transfer  speed  with  the  load  carried  up by  the  forklift  is

considered by means of  the following relation: 

(9)

The characteristic ratio ‘k’ is a function of  the forklift utilization. High values of  the forklift utilization

imply low values of  ‘k’, since the speed must be reduced for technical and safety problems. Oppositely,

low values of  the forklift utilization imply high values of  ‘k’. Consistently, the enviromental preference

condition (7) can be customized as in equation (10).

(10)

It can be assumed a variation of  the value k in the following range according to the utilization value. 

Figure 2. correlation between translation speed and forklift utilization in the simulation model
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4. Results

In the following, main results obtained are discussed. For each case, results and corresponding trends are

depicted in Figure 2. 

For the storage capacity Q = 1500 items (Figure 3a), the electric forklift performs better for “light” and

“medium” weight (W≤3000 [kg]). On the contrary, the LPG forklift performs better than the electric

ones for “heavy” (W>3000 [kg]) loads. This is due to the different forklifts load capacity. Indeed, the load

capacity  strongly  affects  the  BS  and forklift  the  utilization.  In  turn,  the  latter  influences  the  speed

employed and consequently the time required for the process.

In Figure 3b, results obtained in the case of  items with a ‘low’ weight (equal to 2000 [kg]) are depicted.

Coherently, the electric forklift has a lower CF than the LPG one. Considering a weight equal to 2000

[kg], the utilizations of  the two forklift are the same and equal to 1. Unitary utilization means transit

speed considerably lower than the maximum speed. Specifically,  the translation speed of  the electric

forklift is lower than that of  the LPG forklift. Consistently, the electric forklift time is higher. However,

the time increase is compensated by the lower value of  EHR, since the EHR is equal to 4.84 [kgCO2/h]

for the electric forklift and 19.6 [kgCO2/h] for the LPG forklift (Table 1). 

Figure 3. (a) CF vs. Weight value of  items in case of  1500 units; (b) CF vs. Q values in case of  item Weight equal to 2000 [kg]

In the simulation tests carried out, the following main conclusions are obtained:

• The electric  powered  forklift  allows  better  performance  (lower  CF)  than  the  LPG powered

forklift for low-mid weight of  the units (see figure 3);

• CF is almost the same for higher values of  Q (greater warehouse capacity).
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5. Conclusion

In order to give a contribution to the disagreement between environmental performance of  forklifts

equipped with electric or LPG engines, in this paper a tool has been developed in order to identify the

best MHE minimizing the carbon foot-print of  inbound logistic activities. The equipment ensuring the

minimal environmental impact has to be evaluated for each case. However, to a first approximation, as a

general result, electric forklifts have to be considered preferable for low-mid weight units.

The developed model can be considered a valid support for decision makers. 

Further research will be carried out in order to consider different sizes of  the items to be stored, to

include additional operational and design parameters (e.g. inventory turnover index, picking priority rules

different layouts such as fishbone, transversal, etc.) as well as load/unload/transport times. The aim is

enabling the model for the application to more complex scenarios, thus ensuring greater flexibility and

increasing the number of  industrial case studies to which it could be applied.
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