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Abstract 

Purpose: This paper introduces a procedure for solving the staffing problem in a service 

system (i.e., determining the number of servers for each staffing period).  

Design/methodology: The proposed algorithm combines the use of queueing theory to find 

an initial solution with the use of simulation to adjust the number of servers to meet previously 

specified target non-delay probabilities. The basic idea of the simulation phase of the procedure 

is to successively fix the number of servers from the first staffing period to the last, without 

backtracking. 

Findings: Under the assumptions that the number of servers is not upper-bounded and there 

are no abandonments and, therefore, no retrials, the procedure converges in a finite number of 

iterations, regardless of the distributions of arrivals and services, and requires a reasonable 

amount of computing time.  

Originality / value: The new procedure proposed in this paper is a systematic, robust way to 

find a good solution to a relevant problem in the field of service management and it is very easy 

to implement using no more than commonly accessible tools. 
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1. Introduction 

One important problem that arises in the management of a service system with time-varying 

demand is how to schedule the staff to reach a particular level of service quality at a minimum 

cost. This problem has been widely addressed in the literature since 1954, when Edie 

published a pioneering paper about toll-booths. 

Quality of service is usually assessed in terms of service level (i.e., the probability that the 

service to a unit will begin no later than a given number of time units after the arrival of that 

unit to the system) or probability of delay (i.e., the probability of a unit’s waiting time being 

greater than 0). Probability of delay is the measure used in this paper. 

Since this problem is very difficult, it is usually addressed by means of a hierarchical 

procedure consisting of two phases: staffing and scheduling. 

The staffing problem consists of determining, for each daily forecasted demand profile, the 

number of servers that need to be working during each staffing interval over the course of the 

day in order to reach a given service quality level. Staffing intervals are defined as the 

moments at which changes in staffing are allowed (e.g., every half-hour). 

Therefore, assuming that the day is divided into T staffing intervals, the staffing problem 

consists in determining the values of st (t=1,...,T), where st is the number of people on duty 

(servers) at the staffing interval t, with the objective of minimizing the total number of 

working hours required while ensuring a specified service quality level. 

Once the staffing problem has been solved, scheduling decisions (that is, how many workers 

are assigned to each pattern of working time) are made, often by means of a mixed-integer 

linear program (MILP) (Dantzig, 1954), which considers as input the values of st obtained 

during the staffing phase. One example of this is the Kleen City problem, an exercise in linear 

programming modelling presented in Wagner (1975).  

This hierarchical approach does not guarantee an optimal solution; nevertheless, it is usually 

the only reasonable way to deal with the problem. 

The evaluation of a given solution of the staffing problem may be done by means of queue 

theory (Green, Kolesar & Whitt, 2007; Ingolfsson et al., 2007; Stolletz, 2008) or simulation. 

However, the approximation errors given by methods based on queue theory may be fairly 

large (Stolletz, 2008) unless rather restrictive assumptions are fulfilled. 

Anyway, even if an exact evaluating algorithm is available, a procedure is needed to find a 

solution that achieves the required performance with minimum requirements of staff. This is 

the purpose of the simulation-based approach, named LETRIS, that is introduced in this paper. 
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2. State of the art 

The paper by Green et al. (2007) exhaustively describes the state of the art of the staffing 

problem. Therefore, we refer the reader to that paper and limit ourselves to reviewing some 

essential ideas and additional contributions. 

When demand is stationary and the scheduling horizon is long enough for the transient phase 

to be considered negligible, queueing theory can be used to determine the minimum number 

of people (servers) needed to guarantee the required service quality level, provided that there 

is a suitable queueing theory model for the particular distribution of arrival and service times. 

However, when the distribution of the demand varies over time, queueing theory is not 

applicable straightforwardly, since there is no stationary state for the system. 

This notwithstanding, the use of “stationary models in a nonstationary manner” (Green et al., 

2007) makes it possible to use queueing theory in many circumstances. To do this, we must 

assume that the model Mt/G/st+G/  is suitable (i.e., arrivals follow a non-homogeneous 

Poisson process, Mt, with a time-varying arrival rate; time services are independently and 

identically distributed (IID) according to a general distribution, G/; the number of servers, st, 

is time-varying; and customers leave the system after waiting for IID times that follow a 

general distribution, G/). Under these assumptions, pointwise stationary approximation (PSA) 

(Green & Kolesar, 1991) yields good results when the standard of quality is high and service 

times and staffing intervals are short. (This approach applies the stationary model at each 

moment of time, using the values of the parameters corresponding to that time.) PSA provides 

the number of servers for each moment of time, thus ignoring staffing intervals; segmented 

PSA assigns to each staffing interval the maximum number of servers computed for the time 

moments belonging to that interval. 

The stationary independent period-by-period (SIPP) method (Green, Kolesar & Soares, 2001) 

has a name that is very descriptive of its main idea, which is the same idea that lies behind 

PSA, i.e., the consideration of independent periods. A stationary model is applied to each 

period (i.e., staffing interval) using the average arrival rate for each interval. (SIPP Max, a 

refinement of SIPP proposed in Green et al., 2001, instead uses the maximum arrival rate 

within each interval.) 

Each customer remains in the system for the length of the service time. When the service time 

is long, there is a significant lag between the arrival-rate peak and the customer-delay peak, 

with the former preceding the latter. Therefore, methods like PSA and SIPP can be improved 

by shifting the arrival rate to the right by an amount corresponding to the mean service time 

before applying the stationary queueing models (see Green et al., 2001; Green, Kolesar & 

Soares, 2003, for the lagged version of SIPP). 
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Green et al. (2007) also discuss other assumptions under which queueing theory provides 

good solutions.  

As indicated in Green et al. (2007), SIPP may be applied even when there is no suitable 

queueing theory model for the system by using simulation as a replacement for the queueing 

model. However, the two main assumptions behind PSA and SIPP (i.e., that the intervals are 

independent and the behaviour of the system in each interval is that of the stationary state) 

obviously do not hold. Therefore, these methods only provide estimates and simulation is 

needed in order to validate and refine the solution when the estimate is not good enough. 

Stolletz (2008), to approximate the behavior of non-stationary M(t)/M(t)/c(t)-queues, 

proposes SBC (stationary backlog-carryover), which is able to deal with temporarily 

overloaded systems, and MAR (modified arrival rate), which performs better than lagged SIPP 

approach. 

Ingolfsson et al. (2007) compare, in terms of accuracy and computing time,  the performance 

of seven methods in computing or approximating service levels for non-stationary M(t)/M/s(t) 

queueing systems with exhaustive discipline. 

Simulation, regardless of the characteristics of the studied system, may evaluate solutions 

with any required accuracy. However, simulation by itself is not a suitable tool for solving the 

staffing problem, since the number of solutions to be compared is usually huge (Green et al., 

2007). It is essential, however, for evaluating a given solution and determining how to modify 

it in order to reduce the cost or reach the prescribed quality level. One approach that is 

generally appropriate is to use a queueing theory model to obtain an initial solution and to 

modify it afterwards by means of simulation. 

The use of simulation in setting staffing levels has been described in several papers. Kwan, 

Davis and Greenwood (1988) use a simulation model to check the solution given by a M/M/s 

model; when the simulated server utilization for a particular period is greater than a specified 

threshold value, the number of servers for that period is increased by one and the simulation 

is repeated; the authors point out that queueing theory underestimates the utilization of the 

servers during a light traffic period when it is preceded by a heavy traffic period. Brigandi, 

Dargon, Sheenan and Spencer (1994) describe a simulation tool conceived for designing and 

evaluating inbound call centers and synthesize some case studies.  

The above-mentioned papers describe the simulation model and how it can be used to 

evaluate a solution, but they give little or no indication about a systematic procedure for 

modifying the initial solution in order to obtain a satisfactory one. This is probably because the 

initial and final solutions are assumed to be very similar. Of course, increases in calculation 
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speed have made it possible to conceive and apply methods that are very demanding in terms 

of computer power and which just two decades ago would have been impractical. 

Corominas, Lusa and Muñoz (2005) and Muñoz (2007) describe an iterative method for 

solving the staffing problem. This method starts from an initial solution given by a queueing 

theory model. At each iteration, the performance of the system is simulated and the results of 

the simulation are used to revise the values of st (t=1,...,T). A computational experience 

shows that the method requires a number of iterations comparable to T in order to converge. 

Nevertheless, the convergence of the method cannot be demonstrated in all cases.  

Feldman, Mandelbaum, Massey and Whitt (2008) introduce the iterative-staffing algorithm 

(ISA). The general idea of ISA is to start with a number of servers that is large enough to 

assure that the probability of delay, t, is negligible. At each iteration, a large number of 

simulations (e.g.: 5,000) is performed in order to estimate Qnt (the distribution of the number 

of customers in the system in the period t, when the solution is that which corresponds to the 

iteration n of ISA). The number of servers for the next iteration is determined such that 

   1 1 1n n

nt t nt t
P Q s P Q s      , where   is the target delay probability. The algorithm 

stops when, between two consecutive iterations,   1 1n n

t t
s s t . The convergence of ISA is 

reported for the model Mt/M/st+M. 

3. LETRIS: a simulation-based approach to solving the staffing problem 

Left-to-right simulation (LETRIS) is a simulation-based procedure for solving the staffing 

problem, assuming that there are no abandonments and, therefore, no retrials, that converges 

to a good solution (which is quite likely to be optimum in many cases) regardless of the 

specific assumptions about arrivals and service. Given a scheduling horizon consisting of T 

staffing intervals and the profile of the stochastic demand within the horizon, the method is 

devised to determine the staffing levels st (t=1,...,T), where st are the positive integers t, 

perhaps bounded from above, in such a way that the probability of delay corresponding to any 

staffing period, pt, t, is no greater than a previously specified threshold,  t , t, and 



1

·
T

t t
t

s  

is minimized, where  t  is the length of the staffing interval t. 

Thus, probability of delay is the quality measure adopted in LETRIS. Among other possible 

measures (e.g., average waiting time or probability of abandonment), the two measures that 

appear in the literature on the staffing problem, as indicated in Section 1, are as follows: 1) 

service level (Green et al., 2007), that is, the probability of not having to wait for more than a 

given time, y (Testik, Cochran & Runger, 2004); and 2) probability of delay. In fact, all 

reasonable measures of performance are positively correlated: any increase in the number of 
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servers has a positive impact on all of them. Green et al. (2007) point out that the probability 

of delay can be seen as a particular case of the service level, considering y=0, which is 

generally easier to compute and tends to be a relatively robust performance measure.  

However, the most important characteristic of probability of delay as a quality criterion in 

LETRIS is the fact that it can be computed in any period t regardless of the behaviour of the 

system during the periods from t+1 to T. Instead, to compute service level for the units 

arriving during period t, we have to know the behaviour of the system during some 

subsequent periods  

The general idea of LETRIS is to successively fix the values of st from t+1 to T, without 

backtracking. That is, firstly, the value of s1 (the minimum number of servers such that the 

estimation of p1, 1̂
p , is no greater than 

1
), is calculated (note that the value of s1 depends 

only on the behaviour of the system within the period t=1.) Next, s2 is calculated, and so forth 

until sT is found.  

 ˆ, , ,
t

SIMUL t s N p  process: 

Input : 

 t staffing period 

 s number of servers in the staffing period 

 N number of runs in the simulation model 

 State of the system, for each of the N simulation runs, corresponding to the end of the staffing period t-1 
when the number of servers during this period is st-1 (previously determined). These N final states will be the 
initial states for the N simulation runs corresponding to staffing period t. For t=1, according to the initial 
conditions of the real system, the N initial states may be the same for the N runs (for instance, the system 
may always be empty at the beginning of the scheduling horizon) or they may have to be drawn from a given 
distribution probability. To define the state of the system, at most st-1+1 values are needed: one for each 
server (an indication that the server is idle—for instance, a negative value—or the time elapsed since the 
server began serving the customer present at the end of the staffing interval t-1, although this time is not 

necessary when the distribution of service time is memoryless, i.e., exponential); plus the number of 
customers in the queue (assumed to be unique).  

Process: 

Simulate N times the behaviour of the system during the staffing period t, using as the initial state at each 
run, n, the final state given by the simulation run n of the previous period (t -1). 

Output: 

 t̂
p , estimation of the probability of delay. 

 State of the system, at the end of staffing period t, for each of the N simulation runs. 

Figure 1. SIMUL process  

A key feature of the procedure with regard to computational burden is that, at each period t, 

the configuration and the simulated behaviour of the system in past periods are given, and we 

need only simulate the behaviour of the system within the period t, regardless of future 

periods, in order to set the value of st. 
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Figure 1 describes the SIMUL process, which is a crucial component of LETRIS. Figure 2 

outlines the LETRIS procedure.  

 Define: 

o The scheduling horizon. 

o The stochastic process of arrivals. 

o The distribution of service times. 

o The T staffing intervals. 

o The upper bounds, St, on the number of servers 
   0 ; 1,...,

t t
s S t T

. 

o The admissible probabilities of delay, 


t ,t . 

o The initial state of the system (or the set of feasible initial states, with their respective 
probabilities). 

o N. 

 Choose and apply the most suitable queueing theory model to calculate the initial values, 
0

t
s , of 

t
s t . 

 Simulate N times the arrivals throughout the scheduling horizon and associate the corresponding service 
time with each customer. 

 For t=1 to T: 

o Perform  ˆ, , ,
t t

SIMUL t s N p  

o If 
t̂ t

p , until ( 
t̂ t

p  or st=1), repeat: 

          st =st-1;  ˆ, , ,
t t

SIMUL t s N p  

If 
t̂ t

p ,  1
t t

s s  

o If 
t̂ t

p , until ( 
t̂ t

p  or st=S), repeat: 

         
 1

t t
s s

;
 ˆ, , ,

t t
SIMUL t s N p  

Figure 2. LETRIS procedure 

The procedure tends to minimize the total number of required working hours. However, it 

does not guarantee an optimal solution for the broader scheduling problem if servers cannot 

be scheduled on an interval-by-interval basis (which is the operationally normal situation). 

Moreover, although, given  
  1,..., 1s t , st is optimal for the period t, we cannot preclude 

the possibility that an increase   in 


s  may allow a reduction greater than   in some values 

of st ( t ), or, if the durations of the staffing intervals are different, the possibility that the 

reduction multiplied by the duration of the corresponding staffing interval may be greater than 

  multiplied by the duration of the staffing interval  . 

The confidence interval associated with the estimator t̂
p

 
at level 1  is equal to 

 





ˆ ˆ· 1
ˆ ·

t t

t

p p
p t

N
, where, for high enough values of N, 


t  is the corresponding value of the 

standard normal distribution. Given that the worst case is ˆ 0.5
t

p , it follows, if we impose 
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 






ˆ ˆ· 1

·
t t

p p
t

N
, that 




2

24·

t
N  (of course, in most applications the required value of N will 

be smaller, since the prescribed value of 
t
 will be much smaller than 0.5). 

The convergence of the procedure is guaranteed, provided that the upper bounds, St, are high 

enough to achieve the required delay probability at every iteration (i.e., for every value of t), 

since 
t̂

p  monotonically decreases as st increases, given that the arrival and service times do 

not depend on st, due to the way in which the simulations are performed (i.e., N streams of 

arrivals and, for every stream, the service time corresponding to each customer are generated 

and stored at the beginning of the procedure and then used for all the simulation runs). Let 
t
 

be an integer equal to the absolute value of the difference between 0

t
s  and st (i.e., the 

difference between the initial values provided by the queueing model and the final values that 

LETRIS yields). If the estimation of pt were to coincide with the true value, the number of 

iterations required to converge at each staffing period would be equal to  1
t

 (therefore, the 

volume of computation would be proportional to  



1

· 1
T

t
t

N ).  

4. A computational experiment 

Of course, the computing time required to apply LETRIS, for given hardware and software, 

depends on the characteristics of the system to be staffed. Therefore, we devised an 

experiment intended only to illustrate the behaviour of the procedure for a specific set of 36 

scenarios. 

The following assumptions define the scenarios: 

 Scheduling horizon: 8 hours. 

 Staffing intervals with equal length of 15 minutes each. Therefore, T=32. 

 Target non-delay probability:   0.1
t

t . 

 Nonstationary Poisson arrivals, with the arrival rate following a uniform distribution 

           U 1 · ' ,(1 )· 'r r , where: 

         ' · 1 ·sin 2 / 8A ,   130h , A takes three values  0.1,0.5,1.0  and r 

follows a uniform distribution   U 0,R , where R takes the three values 0.05, 0.15 and 

0.25. Combining the three values of A and the three values of r yields nine different 

patterns of arrivals. 
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 Service times such that   112h , following four different distributions: exponential, 

 
 

10,2·U ,      
 

1 12 3 , 3U  and D (therefore, with standard deviations equal to 

     
 

 

1 1 11 1
, · , 1 · ,0

3 3
, respectively). Combining the nine patterns of arrivals with 

the four service time distributions yields 36 scenarios. 

 There is no customer abandonment. 

 There is no upper bound on the number of servers. 

When



1t t

s s , it is assumed that, before leaving the system, the extra servers finish the 

services that are active at the final instant of the t-1 staffing interval.  

The values 0

t
s  were computed by applying lagged SIPP to the M/M/s model. 

The calculations were performed on a 3.2 GHz Pentium IV PC with 1.5 GB of RAM using a 

program coded in Java 2 SDK v. 1.4.2. 

The parameter N (i.e., the number of run simulations) was set to 10,000.  

Table 1 shows the average computing times (excluding those of the queuing model) for the 

nine possible values of the pair (A, r). These times include the time needed to generate the 

arrivals and service times and to calculate the st values. 

A  r  0.05 0.15 0.25 

0.1 827.29 827.9 857.2 

0.5 1016.1 1037.9 1045.4 

1.0 1358.4 1357 1713.3 

Table 1. Computing times (in seconds) for the nine combinations of the A and r values 

The computing times needed to generate and store the arrival times range from 7 seconds 

  0.1, 0.05A r  to 54 seconds   1.0, 0.25A r . The times needed to generate the 

service times are obviously very similar for the various combinations of A and r. However, the 

greater the variance of the arrival rate, which depends mainly on the value of A, the greater 

the time required to calculate the st values for a specific distribution of service time (from 

about 800 seconds for A=0.1 and r=0.05 to about 1,350 seconds for A=1.0 and r=0.25). 

These times do not depend very greatly on the service time distribution; however, they tend 

to be smaller than average for the exponential distribution and larger than average for the D 

distribution.  
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The discrepancies, 
t
, between the initial and final values of st are never negative or greater 

than 1, except in the first staffing period, when they can be as high as 3 or 4 (SIPP tends to 

overstaff the first period when the system is supposed to be initially empty). 

Table 2 shows the average values for the total relative discrepancy, in percentage terms (i.e., 

  0100 /
t t

t t

s ), for the nine possible values of the pair (A, r). These values tend to be 

smaller than average for the exponential distribution and larger than average for the D 

distribution. 

A  r  0.05 0.15 0.25 

0.1 3.31% 3.21% 3.21% 

0.5 2.23% 2.59% 2.38% 

1.0 2.33% 2.39% 2.18% 

Table 2. Relative discrepancies for the nine combinations of the A and r values 

5. Conclusions 

This paper introduces a procedure, called LETRIS, for solving the staffing problem, when there 

are no abandonments and, therefore, no retrials. LETRIS combines the use of queuing theory 

to find an initial solution with the use of simulation to adjust the number of servers for every 

staffing interval in order to meet previously specified target non-delay probabilities.  

The basic idea of the simulation phase of the procedure is to successively fix the number of 

servers from the first staffing period to the last, without backtracking.  

The procedure finishes in a finite number of iterations, provided that the upper bounds on the 

number of servers are high enough to achieve the required delay probability at every iteration 

(i.e., for every value of t), and its application requires a reasonable amount of computing 

time.  

Future research may deal with the extending LETRIS to consider abandonments and retrials 

and the case when the upper bounds on the number of servers are not high enough. 
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