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Abstract:

Purpose: The purpose of  this work is to develop a mathematical model for simultaneously determining
the  optimal  period  of  preventive  maintenance  actions  and  the  optimal  size  of  buffer  stock  for  a
production unit that is owned by a lessor and leased to a lessee under a lease contract.

Design/methodology/approach: A mathematical model is formulated and  a numerical procedure is
developed for finding the optimal period of  preventive maintenance actions and the optimal size of  buffer
stock to minimize the total expected costs considering both a lessor and a lessee over a lease period.

Findings: The proposed model gives better solutions than those where the maintenance cost to the lessor
and the production inventory cost to the lessee are minimized separately.

Originality/value: The joint determination of  preventive maintenance and safety stock is a topic that has
been extensively studied for decades.  The majority  of  the models reported in the literature implicitly
assume that the firm owns the production unit and maintenance actions are done in-house. However,
equipment acquisition through leasing is a common practice nowadays. Normally, under a lease contract,
the lessor who owns the equipment is responsible for maintenance services. This may lead to a conflict
between the lessor and the lessee concerning the optimal choice of  maintenance actions. To solve this
conflict,  we  propose  a  joint  determination  of  preventive  maintenance  and safety  stock  model  for  a
production unit under a lease. The objective of  our model is to simultaneously determine the optimal
period of  preventive maintenance actions that the lessor needs to perform and the optimal size of  buffer
stock the lessee needs to produce so that the total combined expected costs to both parties over the lease
period are minimized.

Keywords: production,  inventory,  preventive  maintenance,  safety  stock,  buffer  stock,  leased equipment,  lease
contract

1. Introduction
Reliability issues play an important role in designing and analyzing production inventory systems nowadays. The
importance of  these issues stems from the fact that every production unit has a degree of  unreliability and will
fail  at  some time  during  production.  Normally,  interruptions  due  to breakdowns  incur  shortage  costs  and
corrective maintenance costs to the firm. To reduce those costs, the firm can either produce excess safety stocks
to buffer against demands during breakdowns or carry out preventive maintenance (PM) to reduce the likelihood
of  failures. Formerly, these two strategies for coping with breakdowns were separately studied as reported in the
literature. An early unified model was proposed by Cheung and Hausman (1997). In that work, the authors
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investigated the trade-offs between the two strategies and provided optimality conditions for which either one or
both  strategies  should  be  implemented  to  minimize  the  cost  function.  Dohi, Okamura and Osaki  (2001)
modified  the  model  of  Cheung and Hausman (1997)  by  correcting  some assumptions  in  that  work.  They
proposed a new model to determine the optimal times to carry out PM actions and the optimal safety stock level
that minimize the expected cost per unit time at steady-state. Chelbi and Ait-Kadi (2004) studied an unreliable
production unit that continuously supplies input to a subsequent assembly line. They proposed a mathematical
model for finding the optimal periodic preventive maintenance policy and buffer stock strategy. The objective of
the model was to minimize the total expected cost per unit time and ensure the continuity of  supplies to the
subsequent assembly line. Chelbi and Rezg (2006) considered a production system similar to that of  Chelbi and
Ait-Kadi (2004). They proposed a joint determination model to simultaneously determine the optimal duration
after which a PM action must be performed and the optimal buffer stock level given that a required long-term
availability level that must be satisfied. For simplicity, most models in the literature traditionally assume some
restrictive assumptions, such as not allowing breakdowns when building up the buffer stock. By relaxing the
restrictive assumptions, Gharbi, Kenne and Beit (2007) developed a more realistic joint preventive maintenance
and  safety  stock  model  where  breakdowns  can  occur  at  any  time.  Li  and  Zuo  (2007)  developed  a  joint
optimization  of  maintenance  and inventory  model  to  determine  the  number  of  major  failures  that  would
warrant a replacement of  the system and the level of  safety stock where the total expected production inventory
and maintenance cost rate during the system’s lifetime are minimized. Numerical  results obtained by Monte
Carlo simulation showed that the joint model gives better solutions than those where maintenance and inventory
control were optimized separately. Murino, Romano and Zoppoli (2009) studied an unreliable production system
that was maintained using a Condition Based Maintenance (CMB) policy. The purpose of  their work was to
determine, by simulation, various potential maintenance interventions, based on the concept of  thresholds, and
the optimal size of  the buffer  so that  the global  system costs are minimized.  Chakraborty and Giri  (2012)
proposed a joint determination of  an optimal safety stock and preventive maintenance model for an unreliable
and imperfect  production  system,  where  the  production  facility  not  only  fails  from time  to  time,  but  also
produces defective items when it shifts to the out-of-control state. Gan, Zhang, Zhou and Shi (2015) proposed a
model that simultaneously optimized maintenance, buffer stock, and spare parts for an unreliable production
system consisting of  two serial machines. The purpose of  the model was to determine the optimal strategies for
preventive maintenance, buffer stock, and spare parts that minimize the long-term expected costs. Cheng, Zhou
and Li (2015) studied a production system in which an unreliable upstream machine, subject to random failures
and imperfect preventive maintenance, supplies input to a downstream machine. A buffer stock is built between
the  two  machines  to  prevent  interruptions  to  production  due  to  failures  and  preventive  maintenance.  The
objective of  the study was  to determine the  optimal  size  of  the buffer  stock  and the  working age  of  the
upstream machine to initiate preventive maintenance so that the average cost rate is minimized. Zhou and Liu
(2016) applied the theory of  constraints (TOC) to the joint preventive maintenance and buffer stock problem
with the consideration of  quality loss due to system deterioration. The objective of  the proposed model was to
find the optimal PM schedule and buffer size that minimize the average operating costs, consisting of  PM costs,
CM costs, holding costs, and quality loss, over the planning period. The author concluded that the proposed
TOC-based model was superior to the separate maintenance strategy in terms of  lower costs and higher output.
Nahas (2017) developed a joint determination of  buffer stock and preventive maintenance model for a serial
production  line  consisting  of  n  unreliable  machines  with  n-1  buffer  stocking  points.  The objective  of  the
proposed model was to determine the optimal buffer allocation and the optimal PM policy that minimize the
total system costs subject to the desired throughput and limit on the total buffer capacity.

Most of  the joint determination of  preventive maintenance and safety stock models in the literature are implicitly
based on the assumption that the firm owns the production unit and that maintenance actions, both corrective
maintenance (CM) and preventive maintenance (PM), are done in-house.  However,  nowadays businesses have
several options for acquiring the production facilities. Equipment acquisition through leasing has become a popular
option for several reasons, including rapid technological obsolescence, the high cost of  ownership (Nisbet & Ward,
2001), convenience and flexibility, increased cash flow, tax benefits, and opportunity to transfer upgrade costs to the
lessor (Kelly, Khayum & Price, 2013). According to the Equipment Leasing and Finance Foundation (ELFF), in
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2015, 68% ($1.02 trillion) of  the investment in equipment and software in the US was financed through leases,
loans, and lines of  credit. Of  that 68%, 39% was in the form of  lease (Equipment Leasing & Finance Foundation,
2016). Equipment leasing brings about several new issues to both the lessor and the lessee. One of  those issues is
about maintenance service. When leasing equipment, the lessor, who is the owner of  the equipment, is responsible
for maintenance actions, both CM and PM, with no additional charges to the lessee, who is the user of  the
equipment, according to the lease contract. Maintenance actions are no longer an issue for the lessee, but for the
lessor (Jaturonnatee, Murthy & Boondiskulchok, 2006).

Often, the lease contract will specify the conditions for maintenance services, both CM and PM, that the lessor
must perform over the lease period. Additionally, the lease contract often specifies penalty charges for the lessor if
the leased equipment fails too frequently or repairs are not completed within a reasonable time. Normally,  PM
actions can reduce CM and penalty costs. However, performing PM actions more often than necessary incurs
excessive PM cost. Therefore, in determining the terms of  the lease, the lessor needs to determine an optimal
maintenance  policy  that  makes  an  appropriate  trade-off  between  CM  and  PM  costs.  Optimal  preventive
maintenance models for leased equipment have been presented in detail by numerous researchers. A few examples
include Jaturonnatee et al. (2006), Pongpech and Murthy (2006), Pongpech, Murthy and Boondiskulchock (2006),
Niyamosoth and Pongpech (2007), Murthy and Pongpech (2008), Boonyathap and Jaturonnatee (2010), Zhou, Li,
Xi and Lee (2015), Ben Mabrouk, Chelbi and Radhoui (2016a,b, 2017).

Niyamosoth (2014) developed a mathematical model for determining the optimal buffer stock for an unreliable
production facility undergoing corrective and periodic preventive maintenance based on the work of  Chelbi and
Ait-Kadi (2004). Unlike previous studies that assumed that maintenance actions were done in-house, the authors
studied a case of  equipment leasing where a production unit owned by the lessor, who also provided maintenance
services, was leased to the lessee under a contract. Provided that the optimal maintenance policy was prescribed by
the lessor, the objective of  the model was to find the optimal size of  buffer stock the lessee needs to produce at the
beginning of  each production cycle ensuring a continuous supply to a subsequent assembly line and the total
expected cost for the lessee over the lease period is minimized. The author observed that determining optimal
maintenance policy for the lessor and optimal buffer stocks for lessee separately may lead to a conflict between the
two parties because the optimal choice of  maintenance policy for the lessor may not fit to the optimal production
inventory strategy of  the lessee.

As a result, to solve the conflict between the lessor and the lessee as discussed by Niyamosoth (2014), in this paper
we propose a joint determination of  preventive maintenance and buffer stock model for a production unit under
lease. Our objective was to simultaneously determine the optimal period of  preventive maintenance actions the
lessor needs to perform and the optimal size of  buffer stock the lessee needs to produce at the beginning of  each
production cycle to ensure a continuous supply to a subsequent assembly line. This is done so that the total
expected costs to both parties over the lease period are minimized.

The remainder of  this paper is organized as follows: in Section 2, we define the underlying concepts of  the model,
state the model’s assumptions, and specify the notation used in the model. In Section 3, a mathematical model is
formulated expressing the total expected costs over the lease period. In Section 4, a simple numerical procedure
employed  for  finding  the  optimal  solutions  is  presented. The  fifth  section  is  dedicated  to  the  numerical
experimentation and the sensitivity analysis. Finally, the conclusions of  our work together with a brief  discussion of
our future research is provided in Section 6.

2. Concepts, Assumptions and Notation
The proposed model is based on the following concepts, assumptions, and notation.

2.1. Concepts and Assumptions

In this work, we consider an unreliable production unit that is owned by a lessor and leased to a lessee under a lease
contract for a period of  length, L. According to the lease contract, the lessor is responsible for maintenance, both
CM and PM, throughout the lease period with no additional costs to the lessee. We assume that both CM and PM
are done with random durations. We also assume that CM actions are minimal repairs. Each CM action brings the
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production unit back to the working state, but the failure intensity function after each repair remains unchanged
from the pre-failure state (Barlow & Hunter, 1960). Additionally, PM actions are done periodically by the lessor at
times j T,  j = 1, 2, …, k over the lease period. We assume that PM actions are perfect maintenance. In this case,
each PM action restores the operating condition of  the production unit to its original new condition, i.e., after each
PM action, the production unit has its initial failure intensity function restored (Pham & Wang, 1996). Both CM and
PM actions result in maintenance costs to the lessor. The costs of  CM actions involve all resources required for
unplanned remedial actions purposed to restore a system from a failed to a working state. Alternatively, the costs of
PM actions involve the costs of  planned actions intended to either reduce the likelihood of  failures or to improve
the reliability of  the system (Blischke & Murthy, 2000). In our work, we assume that the j th PM action performed
by the lessor reduces the likelihood of  failure by reducing the failure intensity function by δj, j = 1, 2, …, k, where k
is the number of  PM actions done over the lease period. However, in the case that CM actions are minimal and PM
actions are perfect, we have δ1 = δ2 = ... = δk = λ0(T ), where λ0(T ) is the failure intensity with no PM actions at time,
T (see Figure 1). Additionally, in this work, we assume that the lease contract also specifies two types of  penalties,
Penalty-1 and Penalty-2, to the lessor. The lessor incurs Penalty-1 if  he cannot restore the production unit from
failed state to working state within the repair time limit,  τ. The lessor incurs Penalty-2 whenever a failure occurs
during the lease period. Practically, PM actions can reduce both CM and penalty costs. However, performing PM
actions more often than necessary can result in excessive PM costs. This implies that the lessor needs to determine
the optimal PM actions through an appropriate trade-off  between PM costs and costs resulting from failures. In
addition to the maintenance and penalty costs incurred by the lessor, the system total cost in our work also includes
the operating cost of  the lessee. The lessee’s operating cost in our work consists of  the inventory holding cost and
the shortage cost. In order to ensure the continuity of  supply to a subsequent assembly line at a constant rate α
during repair or preventive maintenance, a buffer stock of  size S is rapidly built up at a rate ω at the beginning of
each production cycle. This results in inventory holding cost to the lessee. At the beginning of  each production
cycle, the production unit produces at a total rate ω + α until the buffer stock of  size S is fully accumulated. The
size of  the buffer stock must be large enough to cover at least the average demands during CM periods within a
time interval of  length T. At the instant j T, j = 1, 2, …, k the production unit has to be paused for a period of  time
to perform PM actions.  During this  period,  a  sufficient buffer  stock must remain to prevent the subsequent
assembly line from stoppage. If  the time to carry out a PM action is longer than the time needed to use up the
remaining buffer stock in PM period, shortage occurs, resulting in shortage costs to the lessee. In this work, we
assume shortage costs are charged on a per unit basis. 

Figure 1. Plot of  a Failure Intensity Function
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2.2. Notation

• F(t ): Failure distribution function.

• f  (t ): Failure density function associated with F(t ).

• λ0(t ): Failure intensity function without PM actions.

• λ(t ): Failure intensity function with PM actions.

• Λ0(t ): Cumulative failure intensity function without PM actions .

• Λ(t ): Cumulative failure intensity function with PM actions .

• N(t ): Number of  failures over [0, t ).

• Y: Repair time.

• G( y): Repair-time distribution function.

• g( y): Repair-time density function .

• T: Scheduled period to carry out PM actions.

• Z: Time required to perform a PM action.

• h(z ): Probability density function associated with Z. 

• Cf  : Average CM cost per failure.

• a: Fixed PM cost.

• b: Variable PM cost.

• δj : Reduction in failure intensity function due to the j th PM action.

• τ : Repair time limit.

• Ct : Penalty cost per unit time if  the repair time takes longer than τ  [Penalty-1].

• Cn : Penalty cost per failure [Penalty-2].

• S: Buffer stock size.

• h: Holding cost per unit per unit time.

• ω, α: production rates.

• π: Shortage cost per unit short.

3. Model Formulation
In this section, we develop a mathematical model to simultaneously determine the optimal preventive maintenance
period, T, and the optimal buffer stock size, S, that minimize the total expected costs, considering both the lessor
and the lessee, over the lease period. The maintenance policy for the lessor is similar to that proposed by Pongpech
and Murthy (2006) except that in our work every PM action is  assumed to be perfect.  Also,  the underlining
production system of  the lessee is based on the work of  Chelbi and Ait-Kadi (2004), where a buffer stock of  size S
was built up at the beginning of  the production cycle to ensure the continuity of  supply to a subsequent assembly
line.
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3.1. Expected Cycle Costs to the Lessor

In this work, the production unit owned by the lessor is leased to the lessee for a period of  L. During the lease
period, the lessor performs PM actions with a period of  T, incurring PM costs to the lessor. For simplicity, we
assume that PM actions are perfect. Additionally, failures occurring within the PM period T are rectified by making
minimal repairs incurring CM costs to the lessor. Moreover, the lessor also incurs two types of  penalties, Penalty-1
and Penalty-2. Penalty-1 occurs if  the repair time exceeds a time limit  τ. Penalty-2 is imposed whenever a failure
occurs during the lease period. Thus, the cycle costs incurred by the lessor consist of  1) CM costs, 2) PM costs,
3) Penalty-1 costs, and 4) Penalty-2 costs. The details for each cost are given as follows:

1) CM Costs

Let  N(t ) denote the number of  failures over [0,  t ). The expected number of  failures over [0,  T ) is given by
Jaturonnatee et al. (2006) as:

(1)

where λ0(t ) is the failure intensity function without PM actions.

Assuming that average CM cost is Cf  per failure, the expected CM cost in a cycle is given by:

(2)

2) PM Costs

We assume that each PM action incurred both fixed and variable costs, which depended on δj, the reduction in
failure intensity function due to j th PM action. Therefore, the cost of  j th PM action is given by Cp(δj ) = a + bδj,
j = 1, 2, … k, where a > 0 is the fixed cost and b ≥ 0 is the variable cost (Jaturonnatee et al., 2006). However, in the
case  that  CM  actions  involve  minimal  repairs  and  PM  actions  are  perfect  maintenance,  we  have
δ1 = δ2 = ... = δk = λ0(T ). Thus, the cost of  a PM action in a cycle is given by:

(3)

3) Penalty-1 Costs

For each failure occurring within the PM period, T, if  the repair time Y is longer than the repair time limit τ, the
lessor incurs Penalty-1. Let Ct be the penalty cost per unit time if  the repair is not completed within τ and φ1 be the
Pentalty-1 cost in a cycle. Then, the expected Penalty-1 cost in a cycle is given by:

(4)

where g( y) is the repair-time density function.

Using integration by parts, we can rewrite (4) as the following:

(5)

where G( y) is the repair-time distribution function.

4) Penalty-2 Costs

During the PM period, T, the lessor incurs Penalty-2 whenever a failure occurs, regardless of  the repair time. Cn is
the penalty cost per failure and φ2 is the Penalty-2 cost in a cycle. Then, the expected Penalty-2 cost in a cycle is
given by:
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(6)

Combining all these costs, we obtain the expected cycle cost to the lessor given by:

(7)

3.2. Expected Cycle Cost to the Lessee

At the beginning of  each PM cycle, the production unit produces at a rate ω + α, rapidly building up a buffer stock
of  size S at a rate ω, incurring inventory holding costs and fulfilling the demand of  the subsequent assembly line at
a rate α. A shortage occurs in case that the time to carry out a PM action is longer than the time needed to use up
the remaining buffer stock in the PM period, incurring shortage costs. Thus, the cycle cost to the lessor consists of
1) inventory holding costs, and 2) shortage costs. The details for each cost are given as follows:

1) Inventory Holding Costs

The evolution of  the buffer stock in our work is based on that proposed by Chelbi and Ait-Kadi (2004) as in
Figure 2.

Figure 2. Evolution of  the buffer stock.

At the beginning of  each PM cycle, a buffer stock of  size S is rapidly built up at a rate ω. This buffer stock is used
to guard against the demands of  the subsequent assembly line during CM and PM actions. Assuming that CM
actions are minimal repairs, the mean time between failures (MTBF ) in the interval (0,  T ) is given by Ebeling
(2010):

(8)

Failures occurring during the PM cycle are rectified through CM actions with the mean time to repair (MTTR) is
given by:

(9)

Given that the demand rate of  the subsequent assembly line is α, the buffer stock decreases at a rate α during the
CM period. As a result, the remaining buffer stock, R, at a point in time to carry out a PM action, T, is given by:

(10)
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Letting h be the inventory holding cost per unit per unit time and IHC denote the inventory holding cost per cycle,
the expected inventory holding costs in a cycle can be expressed as follows:

(11)

Where m(S/ω, T ) = E[N (T ) – N(S/ω)] = λ0(t )dt is the expected number of  failures in the interval (S/ω, T )

(Ebeling, 2010).

2) Shortage Costs

Shortage costs are possibly incurred if  the time required to perform a PM action, Z, exceeds the time to use up the
remaining buffer stock R. In this work, we assume that shortage costs are charged on a per unit basis. If  the time
spent on a PM action is Z, the number of  shortages per cycle η(z, R)  will be:

(12)

Thus, the expected number of  shortages per cycle is given by:

(13)

where h(z ) is the probability density function associated with PM duration.

Letting π be the shortage cost per unit short and SC denote the shortage cost in a cycle, the expected shortage cost
in a cycle is given by:

(14)

Combining all these costs, we obtain the expected cycle cost to the lessee as:

(15)

3.3. Total Expected Costs per Cycle

The total expected costs incurred in a cycle is the sum of  the expected cycle cost to the lessor E[CCL(T )] and the
expected cycle cost to the lessee E[CCl (T, S)]. Combining these two costs yields the total expected cost per cycle
given by:
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(16)

3.4. Expected Cycle Length

As can be seen in Figure 2, the expected cycle length is equal to T plus the expected duration to carry out a PM
action. Letting CL denote length of  the cycle, the expected cycle length is given by:

(17)

3.5. Expected Number of  Cycles Over the Lease Period

The expected number of  cycles over the lease period can be obtained by dividing the length of  the lease period, L,
by the expected cycle length  E[CL]. Letting  NC(L) denote the number of  cycles over the lease period,  L, the
expected number of  cycles over the lease period is given by:

(18)

3.6. Total Expected Cost Over the Lease Period

The objective  function  of  our  model  is  the  total  expected  costs  over  the  lease  period.  This  is  obtained by
multiplying E[TCC(T, S)] by E[NC(L)] and is given as follows:

(19)

substituting  for E[NC(L)], we can rewrite E[TC(T, S)] as the following:

(20)

Note that in case that we consider the lessor and the lessee separately, the total expected costs for the lessor,
E[TCL(T )], and the total expected costs for the lessee, E[TCl (T, S)], over the lease period are given as:

(21)

and,

(22)
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Summing these yields:

(23)

3.7. The Constraints on S and T

From Chelbi and Ait-Kadi (2004), it is assumed that the time required to produce a buffer stock of  size S is very
short compared to the PM period, T, i.e., S/ω << T. Furthermore, a buffer stock of  size S must be large enough to
cover  at  least  the  average  demands  during  the  CM  periods  within  the  time  interval  of  length,  T,  i.e.,
S ≥ E[N(T )]MTTRα. Thus, the constraint on the size of  the buffer stock S is given by:

(24)

where the constraint on the PM period, T, is simply 0 < T < L.

3.8. Mathematical Model

Finally, we attain the mathematical model for the proposed problem as follows:

Minimize (25)

Subject to:  and (26)

4. Numerical Procedure
In this section, a simple iterative numerical procedure for finding the optimal solutions T * and S* of  the proposed
model is provided. The details are given as follows:

Step 1. Select an initial value of  T, denoted by Ti, in the interval (0, L). This value should be close to zero.

Step 2. Find  = Minimize E[TC(Ti, S )], subject to: E[N(Ti)]MTTRα ≤ S < ωTi. This is a nonlinear optimization

problem of  one variable, which can easily be solved using any of  several available software packages. 

Step 3. Store E[TC(Ti, )].

Step 4. Let Ti = Ti + ΔT, where ΔT is the step size.

Step  5. If  Ti <  L,  go  to  Step  2.  Otherwise,  stop,  since  the  optimal  solution  has  been  attained.

E[TC *(T *, S* )] = min {E[TC(Ti, )]}, for i = 0 to L – T0/ΔT where T0 is the initial value of  T.

5. Numerical Results and Sensitivity Analysis

In this section, the numerical results and the sensitivity analysis of  the proposed model are provided. The details are
given as follows:

5.1. The Input Data

Failure distribution: Weibull distribution with the corresponding intensity function is given by:

(27)
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Where  θ is the scale parameter and β is the shape parameter. For simplicity, we assume that  β = 2, indicating a
linearly  increasing failure rate  (Ebeling,  2010).  Note that  for a  Weibull  distribution,  the  mean time to failure

(MTTF ) is found from MTTF = θΓ  (Ebeling, 2010). Therefore, in our work we assume that θ = 0.5642 so

that the mean time to failure (MTTF) is approximately 0.5 months.

• Repair-time distribution:  An exponential  distribution with the  cumulative  distribution function (CDF)
given by:

(28)

Where μ is the constant repair rate, and the corresponding probability density function (PDF) is given by:

(29)

Note that in this case, the MTTR in Equation (9) is simply equal to . Therefore, in our work we assume

that μ = 200 so that MTTR = 0.005 months.

• Preventive maintenance duration distribution: This is an exponential distribution with the corresponding
PDF given by:

(30)

where γ is the constant rate of  performing PM actions.

Note that in this case E[Z] in Equation (17) is simply equal to . Therefore, in our work we assume that

γ = 25 so that E[Z] = 0.04 months.

• L = 5 years, Cf  = 2,500$, a = 100$, b = 50$, Ct = 300$, Cn = 200$, τ = 0.005 month.

• h = 1$/unit/month, ω = 7,200 units/month, α = 28,800 units/month, π = 2$/unit.

5.2. The Numerical Results

Table 1 shows optimal solutions of  the proposed model and of  the two separated models. Each separated model
considers either the lessor or the lessee, but not both.

According to the results shown in Table 1, an optimal policy that minimizes the total expected costs, considering
both the lessor and the lessee, over the lease period consists of  carrying out periodic PM actions with T * = 0.3
months and building a buffer stock of  S* = 2,160 units. In doing so, the total expected costs over the lease period
will be $304,552. Note that this policy is neither an optimal strategy for the lessor nor the lessee. It is actually a
strategy in which the two parties compromise, so that the total expected costs, considering both the lessor and
the lessee, over the lease period are minimized. In the cases where the lessor and the lessee are considered
separately, the optimal solutions for the lessor and for the lessee are T * = 0.1 month, S* = 720 units and T * = 1.4
months, S* = 1,398.69 units respectively. In both cases, the total expected costs over the lease period are higher
than that of  the proposed model, $642,529 and $834,846 respectively. Hence, we can conclude that the proposed
model gives a better solution than the separated models. It can be observed from the numerical data that for
given values of  T,  the optimal size of  buffer stock,  S*,  of  the proposed model and of  the separated model
considering  only  the  lessee  are  always  equal.  This  is because  E[TC(T, S )]  =  E[TCL(T )]  +  E[TCl (T, S )].
Therefore, when T is given, E[TC(T, S )] is merely E[TCl (T, S )]  plus a constant, i.e., E[TCL(T )]. This constant
does not affect the choice of  S*.
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Optimal solutions 
of  the proposed model considering 

both the lessor and the lessee

Optimal solutions 
of  the separated model

considering only the lessor

Optimal solutions 
of  the separated model 

considering only the lessee

T(months) S* E[TC(T, S* )] T(months) E[TCL(T )] T(months) S* E[TCl (T, S* )]

0.1 720 642,529 0.1 92,679.4 0.1 720 549,849.6

0.2 1,440 337,959 0.2 125,545 0.2 1,440 212,414.0

0.3 2,160 304,552 0.3 169,020 0.3 2,160 135,532.0

0.4 2,880 340,540 0.4 215,871 0.4 2,880 124,669.0

0.5 2,758.36 398,935 0.5 264,223 0.5 2,758.36 134,712.0

0.6 2,076.96 449,821 0.6 313,371 0.6 2,076.96 136,450.0

0.7 1,758.46 497,404 0.7 362,994 0.7 1,758.46 134,410.0

0.8 1,607.52 544,364 0.8 412,921 0.8 1,607.52 131,443.0

0.9 1,492.23 591,476 0.9 463,056 0.9 1,492.23 128,420.0

1.0 1,419.4 639,024 1.0 513,339 1.0 1,419.4 125,685.0

1.1 1,378.7 687,117 1.1 563,730 1.1 1,378.7 123,387.0

1.2 1,364.07 735,787 1.2 614,203 1.2 1,364.07 121,584.0

1.3 1,371.62 785,034 1.3 664,741 1.3 1,371.62 120,293.0

1.4 1,398.69 834,846 1.4 715,923 1.4 1,398.69 118,923.0

1.5 1,443.37 885,205 1.5 765,958 1.5 1,443.37 119,247.0

1.6 1,504.24 936,090 1.6 816,621 1.6 1,504.24 119,469.0

1.7 1,580.22 987,480 1.7 867,310 1.7 1,580.22 120,170.0

1.8 1,670.45 1,039,360 1.8 918,023 1.8 1,670.45 121,337.0

1.9 1,774.26 1,091,710 1.9 968,756 1.9 1,774.26 122,954.0

2.0 1,891.1 1,144,510 2.0 1,019,510 2.0 1,891.1 125,000.0

Table 1. Optimal solutions of  the proposed model

5.3. Sensitivity Analysis

One can perform sensitivity analyses on various model parameters to see their impact on the optimal solutions.
Two critical parameters are the average CM cost per failure, Cf  , and the shortage cost per unit short, π. We expect
that as Cf  increases, T * should decrease. This is because the lessor tends to perform PM actions more often when
CM cost is expensive. We also expect that as  π increases,  T * should increase. This is because, when  π is high,
performing PM actions too often can result in excessive shortage costs to the lessee. The results are given in Tables
2 and 3 respectively.

According to the results shown in Table 2, we can see that as Cf  increases, T * decreases as to be expected. This
means that the lessor tends to carry out PM actions more often when the average CM cost per failure is high. The
results shown in Table 3 also confirms our expectation. We can see that as  π increases,  T * increases as to be
expected. This means that when the shortage cost per unit short is high, it is inappropriate to perform PM actions
too often. Doing so can lead to excessive shortage costs to the lessee. Another observation we obtain from Table 3
is the effect of  π on  S*.  We can see that as  π increases,  S* also increases. This observation is not beyond our
expectation. Pragmatically, when the shortage cost per unit short is high, the lessee should carry large amount of
buffer stocks to guard against possible shortages during PM periods. The effects of  Cf  and  π on the optimal
solutions can be shown in Figures 3, 4, and 5 respectively.
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Cf T * S* E[TC(T *, S* )]

100 0.4 2,880 176,041

500 0.4 2,880 203,456

1000 0.3 2,160 229,711

2,500 0.3 2,160 304,552

5,000 0.2 1,440 416,496

Table 2. The effect of  Cf  on the optimal solutions

π T * S* E[TC(T *, S* )]

1 0.2 1,440 254,140

2 0.3 2,160 304,552

5 0.4 2,880 381,733

10 0.5 3,600 449,717

15 0.5 3,600 480,737

Table 3. The effect of  π on the optimal solutions

Figure 3. The effect of  Cf  on T *

Figure 4. The effect of  π on T *
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Figure 5. The effect of  π on S*

6. Conclusions
This paper proposes a periodic preventive maintenance policy and safety stock strategy for an unreliable production
unit being leased. Under a lease contract, both corrective maintenance and preventive maintenance are done by the
lessor. The lessee needs to build a buffer stock of  size S at the beginning of  each PM cycle to ensure the continuity
of  supply to a subsequent assembly line during CM and PM periods. The purpose of  the proposed model is to
simultaneously determine the optimal PM period,  T, and the size of  a buffer stock,  S, that minimize the total
combined expected costs of  the lessor and the lessee over a lease period. The numerical results show that the
proposed model gives a better solution than the separated models considering either the lessor or the lessee. Hence,
we can conclude that when determining the optimal policy for a PM period, T, and the size of  a buffer stock, S, for
a production unit under lease, both costs related to the lessor and costs related to the lessee should be taken into
account. This may help the two parties solve conflicts which possibly occur when the optimal strategy of  each party
is separately determined.

Finally, the problem presented in this paper can be extended in several ways. These include the cases where PM
actions are imperfect and where the leased production unit is previously used rather than a new unit. These two
extensions are both considerations in our ongoing research. Furthermore, as each the lessor and the lessee will seek
minimizing its own costs, not the overall costs, the problem proposed in this paper is possibly considered as an
example of  Game theory problems. The investigation for this extension is opened for future research.
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