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Abstract:

Purpose: Once a set of  suppliers has been determined, according to criteria of  quality, price and reliability,
among others, there remains the problem of  assigning orders to the selected suppliers, with the purpose of
covering the needs at the lowest cost. We consider the case in which the needs of  a component for a set of
plants should be covered by suppliers with linear piecewise concave cost functions, a lower bound on the
order size for the non-zero deliveries and a capacity constraint. The purpose is to design procedures for
solving this problem.

Design/methodology/approach: With the aim of  providing practical tools to solve the problem of
assigning orders to suppliers with linear piecewise concave costs, two mixed integer linear programs are
proposed.

Findings:  The two MILP models are compared through an extensive computational experiment. This
shows that both models, with a slight advantage for one of  them, can be solved within a very short time,
even when the dimensions of  the instance largely exceed those that can occur in real cases.

Originality/value: The paper proposes novel models that can be used to solve the problem to optimality
in reasonable times and with standard optimization software. 
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1. Introduction
The decisions concerning the procurement of  raw materials and components have an impact on a large proportion
of  production costs.

At  the strategic  level,  it  is  about  choosing between making or  buying and,  in  this  case,  between the various
possibilities related to the number, characteristics and type of  relationship with potential suppliers. If  buying is the
chosen option,  at  the  tactical  level  suppliers  have to be  selected according  criteria  of  quality,  price,  capacity,
reliability, logistics and assets and infrastructure (see Wetzstein, Hartmann, Benton & Hohenstein, 2016 for a review
on supplier selection).
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The problem dealt with in this paper belongs to the operative level, in which cost becomes the most relevant
criteria,  and consists in assigning orders to the previously selected suppliers in order to minimise the cost of
satisfying the needs of  a component corresponding to one or several plants belonging to a single manufacturer
when the cost of  an order is a non-decreasing linear piecewise concave function of  its size and the suppliers have
capacity constraints and lower bounds on the order size for the non-zero deliveries.

This setting is a very common one. Besides a possible fixed cost for an order, many suppliers have different
decreasing prices for a finite number of  predefined intervals of  the order size, which results in a linear piecewise
concave function for the cost of  an order. 

Although it  may seem similar  to the transportation problem, the considered problem is  NP-hard due to the
non-linearity of  the cost functions and the presence of  positive lower bounds on the size of  the non-zero deliveries
(Chauhan & Proth, 2003; Zaozerskaya, 2006; Yenipazarli, Benson & Erenguc, 2016).

The assignment of  orders to suppliers under the above specified conditions may be seen as a particular case or an
approximation of  the Concave Cost Supply Problem (CCSP), introduced by Chauhan and Proth (2003), wherein
the cost of  an order is an increasing continuously differentiable concave function of  its size. After this seminal
paper, the CCSP has been dealt with, using different algorithmic approaches, in Chauhan, Eremeev, Kolokolov and
Servakh (2005), Chauhan, Eremeev, Romanova, Servakh and Woeginger (2005), Ng, Kovalyov and Cheng (2008),
Zaozerskaya (2006), Eremeev, Romanova, Servakh and Chauhan (2007), Burke, Geunes, Romeijn and Vakharia
(2008) and Yenipazarli et al.  (2016). This last paper proposes a branch-and-bound algorithm for the single plant
case and presents a numerical experiment in which two sets of  instances with concave supplier’s costs are used
(respectively, one linear step, from 20 to 220 suppliers, and quadratic, from 20 to 134 suppliers); the experiment
shows that the proposed algorithm performs satisfactorily and compares to the use of  CPLEX for solving the
corresponding mathematical programming models.

With the aim of  providing companies with practical tools for assigning orders to suppliers, in this paper we propose
and  test  two  MILP  models  to  solve  the  problem  of  assigning  orders  to  suppliers  in  the  case  of  several
manufacturing plants, any finite number of  linear pieces of  the concave increasing cost function, lower bounds for
the  orders  for  each  manufacturer  and  finite  capacity  of  each  supplier.  We  include  the  possibility  that  each
manufacturing  plant  receives  a  number  of  units  greater  than  its  demand  for  the  period,  since  this  may  be
unavoidable because of  the existence of  lower bounds on the order sizes.  Compared with specific algorithms,
whether they are heuristic or exact (such as that proposed in Yenipazarli et al., 2016), the use of  a MILP model,
with a modelling language and a solver (as CPLEX), allows avoiding programming tasks, thus having a very brief
time to prepare the tool,  and provides exact optimal solutions. Moreover, if  additional constraints have to be
fulfilled, as often happens in practice, they can easily be incorporated into the models, as it is shown in Section 3.
Of  course, as the main potential disadvantage of  using mathematical programming instead of  heuristic approaches
is the possibility of  computational time be prohibitive, appropriate experiments should be performed in order to
guarantee that the time required to obtain optimal solutions in industrial settings is short enough.

The layout of  the rest of  the paper is as follows. Section 2 covers the definition of  the problem. In section 3, the
proposed mathematical programming models are formulated. The computational experiment and its results are
described in section 4. Section 5 closes the paper with the conclusions. 

2. Definition of  the Problem
A set of  suppliers must provide a component to a given set of  plants. We assume that if  the number of  plants is
greater than one all them belong to the same decision maker and that the fixed cost of  an order to a given supplier
may depend on the plant, being the price intervals, again for a given supplier, equal for all plants.

To formalize the problem, we use of  the notation given below.

Data:

m: Number of  plants to be provided by the suppliers.

n: Number of  suppliers.
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Qi: Quantity (integer) required by plant i(i = 1, …, m).

Kj : Number of  intervals for the unitary product price of  supplier j( j = 1, …, n).

qjk: Integer values (0  ≤ qj0 <  qj1 < … <  qjKj
) that define the intervals of  the unitary product price of  supplier

j( j = 1, …, n; k = 0, …, Kj). Note that qj0 > 0 means that the supplier only admits orders of  size not less than
qj0. We assume that qjKj

 coincides with the maximum amount the supplier can provide in a period.

pjk: Price of  a unit ( j = 1, …, n; k = 1, …, Kj) corresponding to interval k (i.e. for order sizes, x, such that
(qj,k–1 < x ≤ qjk, k = 1, …, Kj); the concavity of  the cost function implies that (pj1 < pj2 < … < pjKj

).

Fij: Cost of  the first qj0 units ( j = 1, …, n) provided by supplier j to plant i.

hi: Holding cost of  each unit purchased above those required and whose use is delayed until the next period
(i = 1, …, m).

Then, the cost of  an order, as a function of  the order size, has the shape that is shown in Figure 1.

Figure 1. Cost of  an order as a function of  its size

The cost of  an order, for an order size, x, belonging to interval k of  supplier j can be expressed as follows:

where    and  

The problem consists in allocating orders to the given suppliers to satisfy the requirements of  the plants at a
minimum total cost.

Besides the constraints implicit in the definition of  the problem, in practice may be side constraints specific for
every situation. As an example of  these additional constraints, a lower and an upper bound on the number of
suppliers receiving at least one order could be added (the lower bound may obey to reliability considerations; the
upper one, to avoid an excessive complexity of  the procurement management).

3. Mathematical Programming Models
To solve the problem, two Mixed Integer Linear Programming formulations (MAOS1 and MAOS2) are proposed.
Below, the notation and the equations are detailed.
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MAOS1

Variables:

xij  +: Size of  the order of  plant i to supplier j(i = 1, …, m;  j = 1, …, n).

si  +: Number of  units purchased above those required and whose use is delayed until the next period

(i = 1, …, m).

λijk  +: Variables used for modelling the cost function as a piecewise linear concave increasing cost function

defined by the pairs (qj0, Fij), (qjk, cijk) k = 1, …, Kj (see Figure 1), where cijk = fijk + pjk · qjk k = 1, …, Kj

(i = 1, …, m; j = 1, …, n; k = 1, …, Kj. λijk ≤ 1.

rijk  {0,1}: = 1 iff  the quantity that the plant i purchases to supplier j falls into the price interval k(i = 1, …, m;
j = 1, …, n; k = 1, …, Kj).

yij  {0,1}: = 1 iff  supplier j receives an order from plant i(i = 1, …, m;  j = 1, …, n).

l
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The objective Function (1) expresses the cost, including purchasing cost and holding cost. Equations (2) to (7)
correspond to the linearization of  the purchasing cost as a piecewise function. Note that if  supplier j receives an
order from the plant i, Equation (3) makes the sum of  λijk equal to 0 and Equation (4) forces xij to fall into one and
only one price interval. Equations (5), (6) and (7) prevent more than two consecutives λijk  from being greater than 0
(the two ones allowed to be positive correspond to the price interval into which the order quantity falls). Equation
(8) imposes the balance of  the required, purchased and inventoried units. Equation (9) limits the maximum amount
to be purchased from a supplier and, finally, Equation (10) includes the relation between the purchasing variables
and the binary variables that indicate whether a supplier receives or not an order from a plant, and that are needed
in the Equations (3) and (4) for the linearization of  the cost function. 

The model could be expanded by adding other constraints. For example, imposing lower and upper bounds (Ln and
Un, respectively) on the number of  suppliers receiving one or more orders, as it is pointed out above. In this case,
the following variables and constraints should be added to the model:

aj  {0,1}: = 1 iff  supplier j receives at least one order from the set of  plants ( j = 1, …, n).

=

£ £ =å
1

· 1,...,
m

j ij j
i

a y m a j n (11)

=

£ £å
1

n

n j n
j

L a U (12)

This  is  just  an  illustrative  example,  since  for  each  situation  different  kinds  of  specific  conditions  may  arise.
However, in most cases it will be possible to incorporate them as linear constraints into the MILP models.

MAOS2

This second model uses, for each pair plant-supplier, a variable for each price interval:

ijk  +:  Size of  the order of  plant  i to supplier  j(i  = 1, …, m;   j = 1, …, n) falling into the price interval

k(k = 1, …, Kj).

( )
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- £ £ = = =, 1 ˆ· · 1,..., ; 1,..., ; 1,...,j k ijk ijk jk ijk jq r x q r i m j n k K (16)

Equation (13) expresses the total cost (purchasing plus holding cost). Equation (14) impose the balance of  the
required, purchased and inventory units.  Equation (15) limit  the total  quantity  that  can be purchased to each
supplier. Finally, Equation (16) enforce the relation between the variables  ijk and  rijk.  Note that, thanks to the
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concavity of  the cost functions, it is not necessary to impose that   (i = 1, …, m;  j = 1, …, n), because

having more than one rijk equal to 1 would imply a higher cost than having just one of  them equal to 1.

As in the case of  the model MAOS1, other constraints could be considered. In particular, if  Equations (14) and
(15) are to be included (and, hence, variables yij), then Equation (17) should be also added to the model.

=

= = =å
1

1,..., ; 1,...,
jK

ijk ij
k

r y i m j n (17)

The size of  the models is included in Table 1. The number of  variables is higher for the MAOS1 model and, up to
6 price intervals, the number of  constraints of  the MAOS1 model is also higher than that for the MAOS2 model.

MAOS1

Real variables m · n · (K + 1) + m

Binary variables m · n · (K + 1)

Constraints m · n · (K + 6) + m + n

MAOS2

Real variables m · n · K + m

Binary variables m · n · K

Constraints 2 · m · n · K + m + n

Table 1. Size of  the models

4. Computational Experiment

To test and compare the MAOS1 and MAOS2 formulations a wide computational experiment has been performed.
The models were solved using IBM ILOG CPLEX Optimization Studio (version 12.6) in an Intel Xeon E5-2630, 4
CPUs 2.2GHz, 64 GB RAM, allowing 1000 seconds for each instance.

Since there are not benchmark instances for the modelled problem, a 720 instances set has been generated. Table 2
includes either the values of  the different parameters or the way they were generated. For each combination of  the
number of  plants (m), number of  suppliers (n) and number of  price intervals (K, which is considered to be the
same for all suppliers), 20 instances were generated at random, using, for the other parameters, the distributions
shown in the Table 2, thus getting a total  of  720 instances. The instances are available under request  to the
corresponding author.

Note  that  our  data  set,  unlike  those  used in  other  previously  published  computational  experiments,  includes
multi-plant instances with up to five linear pieces of  the concave increasing cost function. The sizes of  the bigger
instances of  the data set, with 5 plants, 200 suppliers and 5 price intervals, exceeds largely those of  the instances
one can find in usual industrial settings.

The rest of  the parameters have been generated trying to get realistic and feasible instances, following the concave
increasing cost function, ensuring capacity feasibility and, since random distributions are used, ensuring that many
different situations arise. 
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Data Values

m 1; 5

n 5; 10; 20; 50; 100; 200

K 1; 3; 5

qjk qjK ~ DU[500, 5000] (discrete uniform distribution)
qj0 ~ DU [0.10· qjK, 0.15 · qjK]
qjk = integer (qj,k-1 + (qjK - qj0)/K)

Qi Random distribution between the m plants of  C ~ DU[0.8 · , 0.95 · ] (this 
ensures total capacity be greater than total demand). Qi = ai · C/∑i ai, with ai ~ U(0, 1]

pjk pj1 ~ DU[20, 30]
pjk = integer(αj ·pj,k-1) (k = 2,...,K), with αj ~ U[0.8, 0.99]

Fij Fij = aij + pj1 · qj0, with aij ~ DU[250, 500]

hi hi ~ DU[1, 3]

Table 2. Data set generation

The results  of  the  computational  experiment  are  summarized  in  Table  3,  where  the  minimum,  average  and
maximum gap and solving times, for each model and number of  plants (m), suppliers (n) and price intervals (K) are
included. The results are also displayed in the Box-and-Whisker plots depicted in Figures 2 to 5 (the line in the box
represents the median; the interquartile range box represents the middle 50% of  the data and it shows the distance
between the first and third quartiles (Q3-Q1); the whiskers extend from either side of  the box, and represent the
ranges for the bottom 25% and the top 25% of  the data values, excluding outliers, which are data values that are far
away from other data values and are identified by asterisks). Those allow us to conclude the following:

• Both MILP models are very efficient tools for solving this kind of  problem since optimal or near-optimal
solutions are obtained even for instances that are bigger than most of  the real situations: for the MAOS1
model the average gap is 0.0024% and the maximum reaches just 0.279%; in the case of  the MAOS2
model, the average and maximum gaps are, respectively, 0.0014% and 0.098%.

• The number of  plants, m, is the parameter that most affects the performance of  the models, since both
solving time and gaps increase when m = 5. The second parameter that most affects the resolution is the
number of  price intervals, K. Instead, the number of  suppliers, n, does not influence the performance so
much.

• It seems that MAOS2 performs better than MAOS1, since its gap is smaller for most instances. However,
analysing the results, it can be seen that even if  MAOS2 outperforms MAOS1 more times than the other
way around (11.94% of  times vs. 2.36%), the differences in the values of  the objective functions (in %) are
insignificant (the maximum improvement of  MAOS2 is just 0.019%).

m n K GAP-CCSP-1 (%)
[min] – [avg] – [max]

GAP-CCSP-2 (%)
[min] – [avg] – [max]

TIME CCSP-1 (sec)
[min] – [avg] – [max]

TIME CCSP-2 (sec)
[min] – [avg] – [max]

1 5 1 [0] - [0] - [0] [0] - [0] - [0] [0.01] - [0.16] - [0.38] [0.01] - [0.01] - [0.03]

1 5 3 [0] - [0] - [0] [0] - [0] - [0] [0.02] - [0.32] - [2.53] [0.02] - [0.03] - [0.09]

1 5 5 [0] - [0] - [0] [0] - [0] - [0] [0.02] - [1.13] - [4.63] [0.02] - [0.04] - [0.09]

1 10 1 [0] - [0] - [0] [0] - [0] - [0] [0.01] - [0.19] - [0.75] [0.01] - [0.02] - [0.23]

1 10 3 [0] - [0] - [0] [0] - [0] - [0] [0.02] - [0.99] - [4.26] [0.02] - [0.04] - [0.1]

1 10 5 [0] - [0] - [0] [0] - [0] - [0] [0.08] - [1.57] - [5.67] [0.02] - [0.05] - [0.18]

1 20 1 [0] - [0] - [0] [0] - [0] - [0] [0.01] - [0.31] - [0.98] [0.01] - [0.02] - [0.06]

1 20 3 [0] - [0] - [0] [0] - [0] - [0] [0.04] - [1.37] - [4.54] [0.03] - [0.06] - [0.29]

1 20 5 [0] - [0] - [0] [0] - [0] - [0] [0.02] - [1.74] - [6.23] [0.02] - [0.09] - [0.35]
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m n K GAP-CCSP-1 (%)
[min] – [avg] – [max]

GAP-CCSP-2 (%)
[min] – [avg] – [max]

TIME CCSP-1 (sec)
[min] – [avg] – [max]

TIME CCSP-2 (sec)
[min] – [avg] – [max]

1 50 1 [0] - [0] - [0] [0] - [0] - [0] [0.03] - [0.48] - [2.24] [0.02] - [0.03] - [0.08]

1 50 3 [0] - [0] - [0] [0] - [0] - [0] [0.09] - [1.92] - [6.14] [0.04] - [0.14] - [0.47]

1 50 5 [0] - [0] - [0] [0] - [0] - [0] [0.2] - [2.34] - [8.33] [0.07] - [0.21] - [0.62]

1 100 1 [0] - [0] - [0] [0] - [0] - [0] [0.02] - [0.62] - [2.59] [0.02] - [0.04] - [0.1]

1 100 3 [0] - [0] - [0] [0] - [0] - [0] [0.16] - [2.67] - [6.5] [0.13] - [0.29] - [0.55]

1 100 5 [0] - [0] - [0] [0] - [0] - [0] [0.23] - [2.74] - [6.41] [0.1] - [0.47] - [1.29]

1 200 1 [0] - [0] - [0] [0] - [0] - [0] [0.07] - [0.73] - [2.76] [0.04] - [0.08] - [0.18]

1 200 3 [0] - [0] - [0] [0] - [0] - [0] [0.29] - [2.87] - [6.21] [0.12] - [0.57] - [1.13]

1 200 5 [0] - [0] - [0] [0] - [0] - [0] [0.79] - [3.61] - [10.16] [0.28] - [1.03] - [2.14]

5 5 1 [0] - [0] - [0] [0] - [0] - [0] [0.5] - [2.45] - [4.88] [0.2] - [0.45] - [1.2]

5 5 3 [0] - [0] - [0] [0] - [0] - [0] [1.04] - [5.46] - [11.83] [0.27] - [0.64] - [1.04]

5 5 5 [0] - [0] - [0] [0] - [0] - [0] [1.42] - [7.2] - [21.07] [0.19] - [0.9] - [1.78]

5 10 1 [0] - [0] - [0] [0] - [0] - [0] [0.76] - [2.49] - [4.6] [0.34] - [0.47] - [0.84]

5 10 3 [0] - [0] - [0] [0] - [0] - [0] [3.64] - [10.81] - [21.53] [0.75] - [1.8] - [5.35]

5 10 5 [0] - [0] - [0] [0] - [0] - [0] [4.97] - [14.11] - [32.15] [1.44] - [3.03] - [11.09]

5 20 1 [0] - [0] - [0] [0] - [0] - [0] [1.07] - [6.83] - [24.42] [0.7] - [2.45] - [8.52]

5 20 3 [0] - [0] - [0.01] [0] - [0] - [0.01] [17.87] - [362.38] - [1000] [6.58] - [227.67] - [1000]

5 20 5 [0] - [0] - [0.03] [0] - [0] - [0.05] [27.78] - [517.72] - [1000] [12.17] - [308.43] - [1000]

5 50 1 [0] - [0] - [0] [0] - [0] - [0] [7.68] - [50.02] - [273.09] [2.24] - [33.57] - [263.07]

5 50 3 [0] - [0] - [0.03] [0] - [0] - [0] [51.37] - [833.19] - [1000] [54.42] - [579.58] - [1000]

5 50 5 [0] - [0.02] - [0.28] [0] - [0.01] - [0.12] [395.68] - [956.56] - [1000] [97.66] - [789.45] - [1000]

5 100 1 [0] - [0] - [0] [0] - [0] - [0] [4.98] - [124.57] - [873.72] [4.45] - [107.41] - [874.71]

5 100 3 [0] - [0.01] - [0.05] [0] - [0] - [0.02] [476.67] - [982.28] - [1000] [123.16] - [777.35] - [1000]

5 100 5 [0] - [0.02] - [0.13] [0] - [0.02] - [0.1] [852.58] - [995.72] - [1000] [343.75] - [967.25] - [1000]

5 200 1 [0] - [0] - [0] [0] - [0] - [0] [21.79] - [437.45] - [1000] [5.12] - [218.02] - [1000]

5 200 3 [0] - [0] - [0.02] [0] - [0] - [0.02] [1000] - [1000] - [1000] [389.25] - [949.96] - [1000]

5 200 5 [0] - [0.02] - [0.08] [0] - [0.01] - [0.07] [962.45] - [1000] - [1000] [827.1] - [996.15] - [1000]

Table 3. Results of  the computational experiment

Figure 2. Solving time of  MAOS1
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Figure 3. Solving time of  MAOS2

Figure 4. Gaps for MAOS1

Figure 5. Gaps for MAOS2
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5. Conclusions

In this paper, we propose two MILP models for minimising the cost of  assigning orders to suppliers with linear
piecewise concave cost functions, a lower bound on the order size for the non-zero deliveries and a capacity
constraint.  A computational  experiment  shows  that  both are  very  efficient  for  all  realistically  sized instances.
Although MAOS2 turns to be slightly better than MAOS1, the difference is practically irrelevant.

These  models  are  easy  to  implement  and  are  flexible,  in  the  sense  that  they  allow incorporating  additional
conditions that may be company specific. Therefore, mathematical programming reveals itself  as an adequate tool
to deal with the problem of  assigning orders to suppliers in the frame of  a manufacturing firm.

Therefore, anyone of  the two proposed models constitute a practical tool to deal with the assigning of  orders to a
set  of  suppliers under the very general  assumptions specified in  the statement of  the  problem in Section 2.
Provided that a modelling language and a commercial state-of-the-art solver are available, it is easy and fast to
implement the model and the computing time is very short for any realistic instance.

The main limitation of  the proposed models is that they cannot tackle in an exact way concave smooth cost
functions, as the quadratic one proposed in Yenipazarli et al.  (2016). However, on the one hand, this kind of
functions are unlikely in a real industrial scenario and, on another hand, if  this were necessary they could be
approximated using a linear piecewise concave function with a convenient number of  steps.

Another limitation, which is more relevant, is the consideration of  a planning horizon consisting in a single period,
what suggests as a future line of  research the extension of  the models to the multi-period case. This would allow
considering the seasonality of  the demand, the time variations in the capacity of  the suppliers and in the costs of
the orders, the use of  inventories and the consideration of  criteria concerning the distribution of  the orders among
the suppliers within the planning horizon.
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