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Abstract:

Purpose: This  paper  aims  to  investigate  simultaneous  problems  of  batch  scheduling  and  operator
assignment with time-changing effects caused by learning and forgetting.

Design/methodology/approach: A mathematical  model  was  developed for  the  problems,  and  the
decision variables of  the model were operator assignment, the number of  batches, batch sizes and the
schedule of  the resulting batches. A proposed algorithm worked by trying different number of  batches,
starting from one, and increasing the number of  batches one by one until the objective function value did
not improve anymore. 

Findings: We mathematically and numerically show that the closest batch to the due date always became
the largest batch in the schedule, and the faster operators learn, the larger the difference between the
closest batch to the due date and the other batches, the lower optimal number of  batches, and the lower
the total actual flow time.

Originality/value: Previous papers have considered the existence of  alternative operators but have not
considered learning and forgetting, or have considered learning and forgetting but only in a single-stage
system and without considering alternative operators.

Keywords: batch scheduling, operator assignment, time-changing effect, learning-forgetting, flow shop, actual flow time

To cite this article: 

Kurniawan, D., Raja, A.C., Suprayogi,  S., & Halim, A.H.  (2020). A flow shop batch scheduling and operator
assignment model with time-changing effects of  learning and forgetting to minimize total actual flow time.
Journal of  Industrial Engineering and Management, 13(3), 546-564. https://doi.org/10.3926/jiem.3153

-546-

http://www.jiem.org/
https://doi.org/10.3926/jiem.3153
https://doi.org/10.3926/jiem.3153
https://doi.org/10.3926/jiem.3153
mailto:yogi@mail.ti.itb.ac.id
mailto:andi@mail.ti.itb.ac.id
mailto:dwikur77@students.itb.ac.id
http://www.omniascience.com/
https://orcid.org/0000-0002-8364-579X
https://orcid.org/0000-0002-5199-1815
https://orcid.org/0000-0001-7889-8074
https://orcid.org/0000-0002-2575-5384


Journal of  Industrial Engineering and Management – https://doi.org/10.3926/jiem.3153

1. Introduction

Scheduling is an activity of  assigning a set of  resources (machines, vehicles or people) to perform a number of
tasks over time in order to achieve one or more objectives while satisfying a set of  constraints (Baker, 1974). Some
objectives frequently used in scheduling are flow time, lateness, tardiness and the number of  tardy jobs (Bedworth
& Bailey, 1987). These measures can satisfy either the need to reduce inventory level or the need to meet due date;
however, they cannot do both simultaneously. To reduce inventory level and to meet due date simultaneously, the so
called actual flow time defined in Halim and Ohta (1993) as the interval between starting time of  production and
due date was proposed. Using the actual flow time as the performance measure, parts may arrive at the shop floor
when they are needed instead of  arriving at time zero simultaneously, and parts will be delivered to the customer at
their due date (Halim & Ohta, 1993). Batch scheduling models to minimize actual flow time have been studied such
as in Halim, Miyazaki and Ohta (1994) and Yusriski, Sukoyo, Samadhi and Halim (2015). 

The  batch  scheduling  model  in  Halim  et  al.  (1994)  assumed  fixed  processing  times.  In  practical  situations,
processing times can vary, such as from the existence of  alternative operators studied in Costa, Cappadonna and
Fichera (2013) and from time-changing effects of  learning and forgetting studied in Jaber and Bonney (1996) and
Yusriski et al. (2015). Nevertheless, Costa et al. (2013) and Yusriski et al. (2015) only considered single-machine
systems, while Jaber and Bonney (1996) have not considered batch scheduling. 

This paper extends the batch scheduling model in Halim et al. (1994) by considering the existence of  alternative
operators to perform each operation proposed in Costa et al. (2013) and time-changing effects of  learning and
forgetting studied in Jaber and Bonney (1996) and Yusriski et al. (2015). The effects of  learning and forgetting to
the objective function and decision variables will also be studied.

2. Literature Review
According to Baker (1974), scheduling is the allocation of  resources to perform a set of  tasks over time. Scheduling
is performed in various activities of  manufacturing system such as production (Mattfeld, 2013), maintenance (Garg,
Rani & Sharma, 2013) and logistics (Chang, Wu, Lee & Shen, 2014). Scheduling also plays important roles in
service industries such as in health care (Aickelin  & Dowsland, 2004), transportation (Abbink, Fischetti, Kroon,
Timmer & Vromans, 2005) and energy (Patwal, Narang & Garg, 2018).

In manufacturing systems, machine and operator are among the most considered resources, and they are often
studied separately (Pinedo, 2002). To represent real systems better, machine and operator need to be considered
simultaneously in scheduling (Van den Bergh, Beliën, De Bruecker, Demeulemeester & De Boeck, 2013), such as in
Mencía, Sierra, Mencía and Varela (2015) and Frihat, Sadfi and Hadj-Alouane (2014). Mencía et al. (2015) proposed
a simultaneous scheduling model of  machine and operator, considering operation sequence to minimize makespan
in job shop production systems, while Frihat et al. (2014) proposed scheduling model to minimize personnel cost,
considering time lag between operations and due date. In both papers, processing times were assumed to be fixed

In industry, operation’s processing time may not be fixed. Kellerer and Strusevich (2008) and Grigoriev and Uetz
(2005) proposed a process acceleration by allocating additional tools. Processes can also be accelerated by assigning
additional operator as proposed in Aftab, Umer and Ahmad (2012) to minimize makespan, in Chaudhry (2010) to
minimize flow time, and in Chaudhry and Drake (2009) to minimize total tardiness. Processing times can also vary
due to different skill  level among operators. This occurs in manufacturing systems where there are alternative
operators to perform each operation, and different operator assignments may lead to different processing times.
This situation has been investigated by Costa et al. (2013) who proposed a job scheduling model in a single-stage
system with different operator’s set up times to minimize makespan. 

Different with skill levels, processing times can change over time because of  the so-called time-changing effects
(Strusevich & Rustogi, 2017). There are two distinct forms of  time-changing effects: a deterioration effect causes
the processing time to increase over time, while a learning effect causes the processing time to decrease over time.
In industries with manual operations, understanding the learning effect is important for setting time standards,
estimating labour costs and scheduling (Nembhard & Uzumeri, 2000). The learning effect occurs when an operator
performs a particular operation repeatedly, and will be followed by a forgetting effect starting straight away when

-547-



Journal of  Industrial Engineering and Management – https://doi.org/10.3926/jiem.3153

the operation stops (Yusriski et al., 2015). The learning effect phenomenon was firstly reported by Wright (1936)
who showed that repetition in production process led to a constant decrease in processing time every time the
cumulative produced quantity doubled. Learning and forgetting effects occur differently among operators (Jaber &
Bonney, 1996). Nembhard and Uzumeri (2000) conducted an experiment in textile and automotive manufacturers
and found that operators who learned more gradually tended to reach higher productivity in long term, while those
who learned faster tended to experience more rapid forgetting during break times. This finding suggests managers
to assign fast learning operators to short batch productions and not to assign them to secondary tasks (as they will
easily forget their primary task), and to assign gradual learning operators to long batch productions and may assign
them  to  secondary  tasks.  Additionally,  through  an  experiment  in  an  automotive  manufacturer,  Sebrina  and
Cakravastia (2011) found that learning rates were influenced by product complexity and takt times, and that a faster
learning effect might lead to a higher defect rate. 

To accelerate the processing of  a job, it is common in industries to divide parts being produced into several batches
or sublots (Baker  & Jia, 1993). Through this, parts processing can overlap, thus reducing machine idle time and
allowing completion time. The benefits of  batch scheduling in flow shops include better makespan, mean flow time
and average work-in-process level (Kalir  & Sarin, 2000). The more batches made for processing parts, the more
setups will be required, but in the same time, the more overlaps are allowed for parts. Thus, the problems in batch
scheduling are to find the optimal number of  batches and batch sizes, and to determine the schedule and the
sequence of  the resulting batches (Halim et al., 1994). 

3. Model Development 
Parameters and variables used in this paper are shown as follows.

Parameters:

n  = number of  parts to be processed (units),

b  = number of  operators (people),

c  = number of  machines (units),

d = due date, calculated from t = 0,

sm,o = set up time per batch on machine m if  performed by operator o (time-unit), 

tm,o = processing time of  the first unit on machine m if  performed by operator o (time-unit),

o = learning rate of  operator o,

ℓo = learning gradient of  operator o.

Variables:

F = total actual flow time of  all parts (time-unit),

N = number of  batches,

Q[i] = batch size, number of  parts in the batch sequenced in position i from the due date (units),

Bm,[i] = process start time of  the batch sequenced in position i from the due date at machine m (time-unit),

Xm,o = binary variable that equals to 1 if  operator o is assigned to machine m, equals to 0 if  not,

fm,o,[i] = forgetting gradient of  all parts in the batch sequenced in position  i from the due date at machine  m by
operator o,

m,o,[i] = equivalent number of  part of  retained learning experience when starting the batch sequenced in position i
from the due date at machine m if  performed by operator o, 

T[p] = processing time of  the p-th part as a learning function,

= processing time of  the p-th as a forgetting function,

Tm,o,[i] = processing time of  all parts in the batch sequenced in position i from the due date at machine m by operator o,

W = set of  operators assigned to machine 1 to b.
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According to Jaber and Bonney (1996), learning effect occurs when a person performs an activity repeatedly. In
manufacturing systems, the learning effect experienced by operators results in decreasing unit processing time as the
number of  repetition increases, following a learning function (Wright, 1936):

(1)

where ℓ = -2log  (δ has a value of  0.7 to 0.9 in manufacturing system; smaller value means faster learning). 

The fluctuation of  part processing time caused by learning and forgetting effects in a batch production are shown
in Fig. 1. Suppose that a learning effect occurs for Tm,o,[i+1] during the processing of  batch i+1 and followed by a
forgetting effect occurs for  TR. Suppose also that during Tm,o,[i+1],  Q[i+1] parts are processed and that during TR,  R
parts can be processed if  there is no interruption. ACD curve in Fig. 1 represents the learning function in Equation
(1), while BCE curve shows a forgetting function shown in Equation (2).

Figure 1. Learning and forgetting effects during two consecutive batches

(2)

At C, the value of   will be equal to T[p], or , which can be used to find , that is:

(3)

Substituting Equation (3) to Equation (2) we obtain:

(4)

To find  TR, i.e. the time required to produce  R parts (if  interruption does not occur), the learning function in
Equation (1) is integrated along this interval:
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(5)

After some algebraic operations on Equation (5) to find (Q[i+1] + R) we obtain:

(6)

After experiencing a forgetting effect  during CE,  Q[i+1] units  of  operator’s  learning experience obtained when
processing batch i+1 will be reduced to α units, where α is the equivalent retained number of  parts of  the learning
experience after forgetting (0<α<Q[i+1]). The value of  α can be found by equating  at E (i.e. ) to T[p] at G
(because TG = TE), i.e.:

,  

which results:

(7)

Substituting Equation (6) to Equation (7) and after some algebraic operations we obtain:

(8)

According to Figure 1, the TR value is given by Bm,[i] –Bm,[i+1] –Tm,o,[i+1], while the value of  T[1] is tm,o. Thus, Equation (8)
can be rewritten as follows:

(9)

We should remember that the Equation (9) occurs when the operator experiences partial forgetting after batch i+1,
or when TE < T1. If  the operator experiences a total forgetting after batch i+1, then TE = T1 and α = 0. Therefore,
Equation (9) needs to be rewritten as follows:

(10)

Furthermore, the value of  the forgetting gradient f  is determined at the beginning of  the total forgetting, i.e. when

the value of  
 
becomes equal to T[1]. This situation is given by  , which can be used to

find f:

 

Using Equation (6) to substitute (Q[i+1] + R) and substituting TR and T1 with their values in Equation (9) we obtain:
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Since this study considers multiple operator, machine and batch, ℓ  will be different for each operator, while f  and α
will be different for each machine, operator and batch. Therefore, notations of  ℓ, f  and α are replaced by ℓo, αm,o,[i]

and fm,o,[i], which is formulated as:
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For batch production, the batch processing time is determined by integrating part processing time, T[x], from 0 to
Q[N] for batch N, and from αm,o,[i] to αm,o,[i]+Q[i] for batch i = 1, ..., N-1. The calculation of  batch processing time is
given in Equation (15) and (16).
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4. Model and Algorithm
This research extends the flow shop batch scheduling model in Halim and Ohta (1993) by introducing the existence
of  alternative operators to perform each operation studied in Costa et al. (2013), and by considering time-changing
effects of  learning and forgetting studied in Jaber and Bonney (1996). We will look at the effects of  learning and
forgetting effects to number of  batches, batch sizes and the schedule of  the resulting batches.

The problem studied in this research is described as follows. There are n parts will be processed in N batches, and
each batch i will be processed through b operations with uniform routing. Each operation can be performed by one
of  c alternative operators with different set up times sm,o and initial processing times tm,o. Each operator o experiences
a learning effect at a rate of  o . All operations must be finished no later than a due date d. The decision variables in
the model are assignment of  operator o to machine m (Xm,o), the number of  batches N, batch sizes Q[i], and the
schedule of  operation  m in batch  i (Bm,[i]). This study develops a model of  simultaneous batch scheduling and
operator assignment to minimize actual flow time in flow shops.

Assumptions used in this study are:

1. All parts, machines and operators are ready (can be scheduled) at t = 0.
2. Interruption of  an operation are not allowed.
3. Each machine and operator cannot perform more than one operation at a time.
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4. Machines are always available during the scheduling time horizon.
5. Set up and process of  a particular operation are performed by the same operator.
6. An operator can be assigned to at most one machine.

Based on the analysis explained in Section 3, the flow shop batch scheduling and operator assignment problem to
minimize actual flow time was formulated in Model 1 as follows.

Model 1.

Minimize

(17)

subject to

(18)

(19)

(20)

(21)

(22)

(23)

(24)

(25)

(26)

(27)
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(28)

(29)

(30)

(31)

(32)

Objective function (17) is minimization of  total actual flow time, i.e. the sum of  batch actual flow time multiplied
by its size. Batch actual flow time is the time spent by the batch on the shop floor, i.e. the time length from the
batch arrival at machine 1 to the due date. The starting time calculation of  each batch at each machine is expressed
in Constraint (18) to (21). Since this study performs a backward scheduling, the batch starting time is calculated
from the last machine. Constraint (18) states that the starting time of  batch i at machine m is the due date less by
the sum of  set up and processing time of  batch 1 to batch i. Constraint (19) states that the starting time of  batch 1
at machine m is calculated backward from machine c to machine m. Constraint (20) and (21) state that the starting
time of  other than batch 1 at other than machine c is the earliest between the starting time of  the previous batch at
the same machine and the starting time of  the batch on the next machine, less by its set up and processing time. Set
up and processing times in Constraint (18) to (21) are multiplied by operator assignment variable, because each
operator has different set up and processing times at each machine. Constraint (22) states that the starting time of
batch N at machine 1 must be non-negative.

Since parts in a batch have different processing times, we use batch processing times instead of  part processing
times in Constraint (18) to (21). The batch processing times are defined in Constraint (23) and (24), which are taken
from Equation (15) and (16) in Section 2. The  αm,o,[i] variables are the equivalent retained number of  parts of
learning experience from batch i+1 after forgetting effect, which is influenced by the previous batch learning result,
interruption duration, initial processing time, learning gradient and forgetting gradient. The value of  αm,o,[i] will be
zero if  the operator experiences a total forgetting, i.e. loses all learning experience in the previous batch. Constraint
(26) shows that the learning gradient is influenced by the learning rate, while Constraint (27) indicates that the
forgetting gradient is influenced by learning experience in the previous batch, the interruption duration and the
learning gradient.

Constraint (28) states that the number of  parts in all batches must be equal to the total number of  parts. Constraint
(29) states that exactly one operator must be assigned to each machine, while Constraint (30) states that an operator
can be assigned to maximum one machine. Constraint (31) states that operator assignment variables are binary
numbers, and Constraint (32) states that batch sizes must be positive, and the batch number must be at least one
and at most equal to the total number of  parts.

The existence of  learning and forgetting effects experienced by operators is important to consider in the model
since learning and forgetting affect the objective function and batch sizes. The effects of  learning and forgetting to
batch scheduling are explained in the following propositions. 

Proposition 1. The size of  the closest batch to the due date is larger than any other batches in the schedule.

Proposition 2. The faster operators learn, the larger the difference between the closest batch to the due date and the any other batches
in the schedule.

Proposition 3. The faster operators learn, the lower number of  batches in the optimal solution.

Proposition 4. The faster operators learn, the lower the value of  the objective function F and Q[1] will be larger than Q[i] not more by
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Proofs. See Appendix.

The problem formulated in Model 1 cannot be solved when  N  is unknown. It is necessary to relax  N  from a
decision variable to a parameter, so that Model 1 becomes solvable in O(bc2[n/ε]-1) time (where ε  {1, 0.1, 0.01, …}
is the desired accuracy of  Q[i]  value). The problem formulated in Model 1 is NP-hard since it can be reduced to a
flow shop batch scheduling problem without operator assignment and without learning and forgetting effects
which is classified as NP-hard in Mortezaei and Zulkifli (2013). 

To find the optimal solution for the problem, we need to try all possible N values (1 < N < n) and find the best
objective value. However, this is time inefficient as the computation time will  increase rapidly as  N  increases.
Therefore, using the convexity of  F as conjectured in Bukchin, Tzur and Jaffe (2002), a solution method for the
problem will try several  N  values, starting from one, and increase it one-by-one until the value of  F  does not
improve anymore. If  the objective function F does not improve at an N value, we stop the computation and set the
last improving F as our solution. The solution method for Model 1 is described in Algorithm 1. 

Algorithm 1. 

Step 1. Set parameters n, d, b, c, sm,o, tm,o, o, ℓo and d. Go to Step 2.

Step 2. Set N = 1. Go to Step 3. 

Step 3. Solve Model 1, determine F, the best solution for the current N. Go to Step 4.

Step 4. If  F < F* or F* has not been set, set F as F*, go to Step 5. If  not, go to Step 6.

Step 5. If  N = n, go to Step 6. If  not, set N = N + 1, and return to Step 3.

Step 6. Stop. The current F* is the optimal solution.

Note that in Step 1, parameters b and c are given by the system, while n and d are obtained from customer order
data. Additionally,  sm,o  and  tm,o  are the standard setup and processing times, and  o is obtained by measuring the
change of  processing time over the time for each operator.

In Algorithm 1, we solved Model 1 after setting a value for N. We used Lingo to solve Model 1 in Step 3, as Lingo
is the most comprehensive optimization tool, capable to solve small or large models efficiently, and capable to solve
linear or non-linear models (Goodarzi, Ziaei & Hosseinipour, 2014). 

5. Results and Discussion

The proposed model and algorithm were implemented to 18 data sets,  consisting of  2 x 3 (2 machines and 3
operators), 2 x 4, 3 x 4, 3 x 6, 4 x 8, 4 x 4, 6 x 6 and 8 x 8 data sets. Data Set 1 to 8 examined a situation where more
operators were available than machines, thus one or more operators were unassigned, while Data Set 9 to 16 examined
a situation where the number of  operators was equal to the number of  machines. Additionally, Data Set 17 and 18
were specially developed to perform a sensitivity analysis. Parameters of  the data sets are shown in Table 1.  

Implementing Algorithm 1 to the data sets, the results are shown in Table 2. For example, the optimal solution for
Data Set 1 was obtained when parts were split into 3 batches, the batch sizes were 97.6, 1.1 and 1.3 respectively
(remember that batch 1 is the closest batch to the due date), operator 1 and 3 were assigned to machine 1 and 2
respectively and the objective function value was 21678.6. If  the optimal solution for a data set is achieved at an N*
value, then the algorithm must try N values from 1 to N*+1. Set of  operator W* shows the operator assignment in
the optimal solution, e.g.  W* = 13 for Data Set 1 means that operator 1 and 3 are assigned to machine 1 and 2
respectively. 

A calculation example using the algorithm is given for Data Set 12 in Table 3. We tried some N values, started from
N = 1. By increasing N value one-by-one, the objective function value improved until N = 6, and then it stopped
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improving at N = 7. The calculation was then stopped and the objective function value at N = 6 was set as the
optimal solution. The resulting Gantt-charts for Data Set 1, 5 and 14 are shown in Figure 2.  

Data
Set n c b d sm,o tm,o o (x 100)

1 100 2 3 3000

o=1 o=2 o=3 o=1 o=2 o=3

70  80  75m=1
m=2

32  30  34
48  50  45

m=1
m=2

4  6  5
6  5  3

2 100 2 3 3000 49  78  82
75  89  72

13  9  14
13  10  11

73  79  87

3 100 2 4 3000 41  55  47  67
99  80  98  48

15  10  5  14
7  8  7  5 85  88  78  88

4 100 2 4 3000 49  74  92  80
78  55  53  47

7  11  12  11
14  12  14  6

83  72  84  88

5 100 3 4 3000
41  55  47  67
99  80  98  48
79  58  74  82

15  10  5  14
7  8  7  5
14  7  6  9

85  88  78  88

6 100 3 4 3000
49  74  92  80
78  55  53  47
89  80  51  57

7  11  12  11
14  12  14  6
15  8  12  6

83  72  84  88

7 100 3 6 3000
47  83  73  50  53  54
83  72  63  86  60  98
63  66  71  77  81  71

12  11  9  6  9  8
11  12  7  12  13  7
11  7  14  9  7  13

77  73  71  73  79  70

8 100 4 8 3000

84  48  88  83  55  71  51  82
93  60  57  88  68  86  92  71
74  66  96  73  66  68  81  46
76  67  78  91  96  48  62  68

9 6 13 14 14 8 8 12
7 10 13 13 8 13 13 7
9 6 10 12 10 10 15 14
10 11 9 12 13 7 13 6

77 82 71 87 74 85 77 87

9 100 4 4 3000

84  48  88  83
93  60  57  88
74  66  96  73
76  67  78  91

5  8  13  10
5  6  10  14
7  15  5  11
7  14  10  7

77  82  71  87

10 100 4 4 3000

55  71  51  82
68  86  92  71
66  68  81  46
96  48   62  68

11  8  14  15
15  8  8  10
7  12  14  10
5  13  9  14

74  85 77  87

11 100 4 4 3000

47  83  73  50
83  72  63  86
63  66  71  77
73  53  59  78

9  6  13  14
7  10  13  13
9  6  10  12
10  11  9  12

78  81 80  73

12 100 4 4 3000

53  54  44  89
60  98  78  61
81  71  69  86
55  68  80  51

14  8  8  12
8  13  13  7

10  10  15  14
13  7  13  6

86  76 81  75

13 100 4 4 3000

41  93  49  68
93  63  87  90
46  43  61  65
46  43  44  63

12  11  9  6
11  12  7  12
11  7  14  9
6  8  8  10

77  73 71  73
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Data
Set

n c b d sm,o tm,o o (x 100)

14 100 4 4 3000

52  85  60  70
90  81  42  69
58  56  64  55
41  81  74  42

9  8  5  12
13  7  10  10
7  13  14  13

9  9  7  8

79  70  80  90

15 100 6 6 3000

47  83  73  50  53  54
83  72  63  86  60  98
63  66  71  77  81  71
73  53  59  78  55  68
41  93  49  68  52  85
93  63  87  90  90  81

12  11  9  6  9  8
11  12  7  12  13  7
11  7  14  9  7  13  

6  8  8  10  9  9
9  6  13  14  14  8
7  10  13  13  8  13

77  73  71  73  79  70

16 100 8 8 3000

84  48  88  83  55  71  51  82
93  60  57  88  68  86  92  71
74  66  96  73  66  68  81  46
76  67  78  91  96  48  62  68
47  83  73  50  53  54  44  89
83  72  63  86  60  98  78  61
63  66  71  77  81  71  69  86
73  53  59  78  55  68  80  51

9  6  13  14  14  8  8  12  
7  10  13  13  8  13  13  7  
9  6  10  12  10  10  15  14
10  11  9  12  13  7  13  6
5  8  13  10  11  8  14  15
5  6  10  14  15  8  8  10
7  15  5  11  7  12  14  10
7  14  10  7  5  13  9  14

77  82  71  87  74  85  77
87

17 100 4 4 3000

53  54  44  89
60  98  78  61
81  71  69  86
55  68  80  51

14  8  8  12
8  13  13  7

10  10  15  14
13  7  13  6

76  66  71  65

18 100 4 4 3000

53  54  44  89
60  98  78  61
81  71  69  86
55  68  80  51

14  8  8  12
8  13  13  7

10  10  15  14
13  7  13  6

96  86  91  85

Table 1. Parameter of  data sets

After implementing the model and algorithm to the data sets, we can see that the model worked properly for 2 to
8-machine flow shops (see Table 2). Batch 1 (the closest batch to the due date) was always larger than any other
batches  in  the  schedule.  This  confirms  the  relationships  stated  in  Proposition  1,  and  is  consistent  with  the
single-machine model proposed in Yusriski et al. (2015). 

To investigate this behaviour further, Data Set 1 and 12 were modified to a minimum learning by setting δo = 1 for
all  o (the modified data sets were named as Data Set 1a and 12a). The results, as seen in Table 4, showed that a
minimum learning has made batch 1 not anymore larger than the other batches in the modified data sets. This
confirms that the behaviour (batch 1 is larger than the other batches) is caused by the existence of  learning and
forgetting effects, and that the faster operators learn, the larger the difference between batch 1 and the other
batches, as stated in Proposition 2.

The behaviour that batch 1 is much larger than the other batches can be explained as follows. Please remember that
batch 1 is the last batch processed in the schedule. The operator who processes a large batch will experience a long
learning effect, which will be followed by a rapid forgetting effect. By scheduling the largest batch to be processed
last in the schedule (as batch 1), this rapid forgetting effect will not affect any other batches in the schedule. This is
why the model schedules the largest batch as batch 1.
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Data Set N* Q[i] W* F*

1 3 97.6; 1.1; 1.3 13 21678.6

2 4 89.4; 1.2; 4.6; 4.8 21 68622.8

3 4  88.4; 3; 4.4; 4.2 34 47950.5

4 6 86.5; 1.3; 3.2; 3.3; 4; 1.7 12 59083.9

5 6 79.9; 2.9; 4.4; 4.3; 4.4; 4.1 342 84192.4

6 4 85.9; 2.7; 5.7; 5.7 142 86858.8

7 4 92.7; 1.2; 2.9; 3.2 432 57344.9

8 2 98.4; 1.6 7523 103462.3

9 5 81.9; 3.7; 5.7; 5; 3.7 1234 106954.0

10 3 86.6; 6.5; 6.9 2341 39443.1

11 4 90.3; 1.4; 4; 4.3 4123 120404.1

12 6 82.5; 2.7; 3.6; 3.6; 3.7; 3.9 3124 117576.6

13 5 89.5; 1.3; 3.5; 4; 1.7 4321 79231.2

14 8 75.3; 3.5; 3.6; 3.6; 3.6; 3.7; 4.3; 2.4 3214 110016.3

15 3 91.3; 4.1; 4.6 432165 135391.8

16 10 54.6; 2.9; 5.3; 5.3; 5.3; 5.3; 5.3; 5.4; 5.2; 5.4 75286134 202723.3

17 2 98.8; 1.2 3124 78139.8

18 14 35.6; 4.9; 4.9; 5; 4.9; 4.9; 4.9; 5; 5; 4.9; 4.9; 4.9; 5; 5.2 3124 135923.6

Table 2. Computation results

N Q[i] F W

1 100 130385.0 3124

2 96.2; 3.8 124913.5 3124

3 92.7; 3.5; 3.8 122667.3 3124

4 89.2; 3.2; 3.7; 3.9 120614.3 3124

5 86.8; 3.1; 4.1; 2; 3.9 119470.4 3124

6 82.5; 2.7; 3.6; 3.6; 3.7; 3.9 117576.6* 3124

7 80.5; 3.6; 3.6; 3.6; 3.7; 4; 1 118743.0 3124

* Optimal

Table 3. Calculation example for Data Set 12
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Figure 2. Gantt-charts for Data Sets 1, 5 and 14

Data Set
Parameter 

N* Q[i] W* F*
n m o

1 100 2 3 3 97.6; 1.1; 1.3 13 21678.6

1a# 100 2 3 6 17.1; 18.5; 20.3; 22.7; 14.7; 6.7 13 43503.2

12 100 4 4 6 82.5; 2.7; 3.6; 3.6; 3.7; 3.9 3124 117576.6

12a# 100 4 4 9 8.3; 10.3; 12.2; 14; 15.7; 17; 12.3; 7.5; 2.7 3214 112462.7
#Data Set 1a and 12a are Data Set 1 and 12 without learning and forgetting

Table 4. Impact of  learning and forgetting elimination to Data Set 1 and 12 

A  sensitivity  analysis  was  performed to  identify  the  effect  of  changing  the  parameters  to  the  solution.  The
sensitivity  analysis  was  performed by changing  the  learning rate,  while  the  other  parameter  values  were  kept
constant. Data Set 12 was taken as a reference. The learning effect in Data Set 12 was accelerated by decreasing the
learning rate (o) by 0.1 (became Data Set 17), and was decelerated by increasing the learning rate (o) by 0.1
(became Data Set 18). The result showed that the faster operators learn, the lower the number of  batches in the
optimal solution, as stated in Proposition 3. This occurred because operators with faster learning experienced a
faster forgetting, so the model reduced the number of  batches to reduce the forgetting effects between batches.
This finding is consistent with the finding in Nembhard and Uzumeri (2000) through an empirical experiment
which suggests that faster learning operators will also experience faster forgetting effect. Another finding of  the
sensitivity analysis was that the faster operators learn, the lower total actual flow time in the optimal solution as
stated in Proposition 4. This occurred because the faster operators learned, the shorter time they needed to process
batches. The effects of  the learning rate changes are shown in Figure 3.

Since the objective function F is a unimodal function (i.e. to have exactly one extreme point) of  N according to
Bukchin et al. (2002), we can stop computation when F stops improving. Based on Bukchin et al. (2002), if  the
value of  F* does not increase at an N value, then it will never improve again when N is increased. Thus, the last
lowest F* value before it increases is the optimal solution for the problem.
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Figure 3. The result of  sensitivity analysis on learning rate

The advantage of  considering learning and forgetting in batch scheduling can be explained as follows. As we can
see in Table 4, ignoring the effects of  learning and forgetting results more batches in the schedule and a higher
objective function value. More batches means more setup costs spent by the system than required, while a higher
actual flow time brings a higher inventory cost. Both brings out inefficiency due to poor scheduling. As stated in
Nembhard  and  Uzumeri  (2000),  understanding  the  learning  effect  is  important  for  setting  time  standards,
estimating labour costs and scheduling.

In addition to Algorithm 1, future studies can use evolutionary algorithm heuristics to find the solution for Model
1, such as those presented in Garg (2016) and Garg (2019). The last two mentioned papers provided a beneficial
approach  for  solving  constrained  nonlinear  optimization  problems.  The  solution  and  the  computation  time
obtained from these heuristics can be compared to those obtained from Algorithm 1.

6. Concluding Remarks

This research developed a flow shop batch scheduling and operator assignment model with learning and forgetting
effects to minimize total actual flow time. To solve the model, an algorithm was developed, and the algorithm
worked  by  trying  different  number  of  batches,  starting  from  one,  then  increasing  the  number  of  batches
one-by-one  until  the  objective  function  value  did not  improve anymore.  We mathematically  and  numerically
showed that the model scheduled the largest batch to be processed last in the schedule, and the faster operators
learn, the larger the difference between the closest batch to the due date and the other batches, the lower number of
batches in the optimal solution, and the lower the objective function. Considering the effects of learning and
forgetting in a batch scheduling brings a better decision on batch sizes and a better calculation on the objective
function value. Future works need to utilize evolutionary algorithm heuristics as an effort to improve the solution
as well as the computation time.  
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Appendix
A.1. Proof  of  Proposition 1: The size of  the closest batch to the due date is larger than any other batches in the
schedule

Let there be a flow shop batch schedule as shown in Fig. A.1, showing batch 1, which is scheduled to be completed
at the due date, and batch i, which is scheduled before batch 1. Each batch will be processed in machine 1 and
machine c. Assume that one operator is assigned for each machine. The value of  objective function F in Equation
(17) can be rewritten as in Equation (A.1).
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Fig. A.1. A flow shop batch schedule 

(A.1)

Using Equation (23) and Equation (24) to determine Tm,[j] (m  {1, c}, j  {1, i}), we obtain Equation (A.2):

(A.2)

where ℓm  is the learning rate of  operator assigned to machine m (m  {1, c}).

Let us denote FA as the objective function value when Q[1] is much bigger than Q[i], i.e. Q[1] = v and Q[i] = 0 (v is the
number of  parts in batch 1 and batch i). Please remind that if  Q[i] = 0 (no learning during batch i), then no learning
experience will be retained (αm = 0, m  {1, c}). Based on Equation (A.2), FA can be determined in Equation (A.3).

(A.3)

Let us also denote FB as the objective function value when Q[1] is much smaller than Q[i], i.e. Q[1] = 0 and Q[i] = v.
The value of  FB is given in Equation (A.4).

(A.4)

The difference between FA and FB is given in Equation (A.5).

(A.5)

Since sc and v are positive, then FA – FB is negative, or FA < FB. This proves that the objective function F is lower
when batch 1 is larger than any other batches in the schedule. 

A.2. Proof  of  Proposition 2: The faster operators learn, the larger the difference between the closest batch to the
due date and any other batches in the schedule

Consider again Equation (A.3), where FA is the objective function value when Q[1] is bigger than Q[i] by v. The value
of  FA/v is given in Equation (A.6).

(A.6)
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The optimal value of  v occurs when FA/v = 0. We need to find v at minimum and maximum learning rates, i.e. 0
and 0.5 respectively (the maximum observable learning rate is 0.514, rounded to 0.5 to simplify the computation).
Setting FA/v = 0 and the learning rates to 0.5, we can rewrite Equation (A.6) as shown in Equation (A.7):

(A.7)

which after some algebraic operations can be used to find v as shown in Equation (A.8).

(A.8)

When the learning rates are zero, we substitute the learning rates in Equation (A.6) with zero and set FA/v = 0 to
obtain Equation (A.9) which can be used to find v’ (i.e. v at zero learning rates) as shown in Equation (A.10).

(A.9)

(A.10)

The difference between v and v’ is given in Equation (A.11):

(A.11)

which is always positive, meaning that the difference between Q[1] and Q[i] is larger when operators learn faster. 

A.3. Proof  of  Proposition 3: The faster operators learn, the lower number of  batches in the optimal solution

Consider a schedule of  batch i (i = 1, …, N). Batch 1, the closest batch to the due date, is larger than any other
batches in the schedule (Proposition 1), and the difference v between Q[1] and Q[i] (i > 1) is larger when operators
learn faster (Proposition 2). This means that the faster operators learn, the more parts will be processed in batch 1,
and in turn, this will cause one or more batches (other than batch 1) to have zero size, bringing a lower number of
batches in the optimal solution. 

A.4. Proof  of  Proposition 4: The faster operators learn, the lower the value of  the objective function F and Q[1]

will be larger than Q[i] not more by [(1 - ℓc)(1 - ℓ1)(tc + t1)]ℓc / [tc(1 – ℓc) + t1(1 – ℓc)]ℓc

Consider again Equation (A.2) showing the objective function F for the flow shop batch schedule shown in Fig.
A.1. Decreasing the learning rates ℓm (m  {1,  c}) to zero will change F to F’, i.e. the objective function at zero
learning rates, as given in Equation (A.12).

(A.12)

The difference between F and F’ is given in Equation (A.13):

(A.13)

which can be rewritten in Equation (A.14):
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(A.14)

Proposition 4 is proven if  F' > F, or if  F'–F is positive. Since denominators in Equation (A.14) are positive, the
proof  requires numerators in Equation (A.14) to be also positive, or:

(A.15)

Proposition 2 states that the faster operators learn, the larger the difference between the closest batch to the due 
date and any other batches in the schedule. The situation in Proposition 2 also applies in Proposition 4, meaning 
that faster learning rates increase the difference between the closest batch to the due date and any other batches, 
and decrease the objective function simultaneously. Let Q[1] be bigger than Q[i] by v, so we replace Q[1] and 
Q[i] in Expression (A.15) with v and 0 respectively to obtain Expression (A.16).  

(A.16)

which can be used to find v in Expression (A.17):

(A.17)

Now it is proven that the faster operators learn, the lower the value of  the objective function F, and Q[1] will be
bigger than Q[i] by not more than v as given in Expression (A.17). 
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