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Abstract:

Purpose: This study proposes a new two-stage clustering method to break down the symmetric multiple
traveling salesman problem (mTSP) into several  single standard traveling salesman problems,  each of
which can then be solved separately using a heuristic optimization algorithm. 

Design/methodology/approach: In the initial  stage,  a modified form of  factor analysis  is  used to
identify clusters of  cities. In the second stage, the cities are allocated to the identified clusters using an
integer-programming model. A comparison with the k-means++ clustering algorithm, one of  the most
popular clustering algorithms, was made to evaluate the performance of  the proposed method in terms of
four objective criteria.

Findings: Computational results and comparison on 63 problems revealed that the proposed method is
promising for producing quality clusters and thus for enhancing the performance of  heuristic optimization
algorithms in solving the mTSP.

Originality/value: Unlike previous studies, this study tackles the issue of  improving the performance of
clustering-based optimization approaches in solving the mTSP by proposing a new clustering method that
produces better cluster  solutions rather than by proposing a new or improved version of  a heuristic
optimization algorithm for finding optimal routes.
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1. Introduction
1.1. The Context

The traveling salesman problem (TSP) is related to the determination of  the shortest possible route connecting
multiple cities so that a salesman can visit each city on his route only once and then return to his city of  origin. A more
complex version of  the TSP is the multiple traveling salesman problem (mTSP), in which m salesmen must visit  n
cities, and each salesman must begin at and return to the same city. The mTSP problem is more challenging than the
TSP because it requires identifying which cities must be allotted to each salesman as well as the corresponding optimal
routes (Carter & Ragsdale, 2006). 
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Several variants of  the  mTSP exist, all of  which are contingent on the number of  depots involved (multiple or
single);  whether  the  paths  are  open or  closed;  whether  the  number  of  salesmen are  set  a  priori,  limited,  or
minimized; and whether additional constraints must be considered, such as a particular time frame for visiting each
city, the maximum number of  cities to be assigned to each salesman, the maximum and/or minimum allowable
distance that a salesman must travel, and other issues (Bektas, 2006). The focus of  this study is the single depot
systematic mTSP. Throughout the rest of  this paper, therefore, this variant is referred to as mTSP unless otherwise
indicated. 

The mTSP is of  practical significance because it can be used to solve many everyday problems. Examples of  the
solved problems that have been reported in the literature include the printing-press scheduling problem (Carter &
Ragsdale, 2006), the planning of  autonomous mobile robots (Elango, Nachiappan & Tiwari, 2011; Trigui & Koub,
2016; Yu, Jinhai, Guochang, Rubo & Haiyan, 2002), unmanned aerial vehicles (Ann, Kim & Ahn, 2015; Lu, Zhang,
He & Niu, 2016), production scheduling (Tang, Liu, Rong & Yang, 2000), designing networks for satellite systems
(Boone, Sathyan & Cohen,  2015; Saleh & Chelouah, 2004), optimizing energy consumption in wireless sensor
networks (Ma, Shi & Gu, 2018), routing vehicles (Expósito-izquierdo, Rossi & Sevaux, 2016) and drone deliveries
(Kitjacharoenchai, Ventresca,  Moshref-Javadi, Lee, Tanchoco & Brunese, 2019).  

In the literature, several procedures have been developed for solving the mTSP, which is recognized as an NP-hard
problem in combinatorial optimization (Bektas, 2006). One of  type of  these procedures is the utilization of  a
transformation procedure by which the mTSP is converted to a single standard TSP (Gorenstein, 1970). However,
this type of  conversion is not efficient because the resulting TSP can be highly degenerate, particularly if  it involves
a  growing  number  of  salesmen  (Bektas,  2006;  Chandran,  Narendrananesh  &  Ganesh,  2006).  A  alternative
transformation procedure that has proven to be more efficient is to break down the mTSP into several standard
TSPs equal to the number of  salesmen in the problem using a clustering algorithm; this allows each TSP to be
solved individually using any  heuristic optimization algorithm (Sofge, Schultz & De Jong, 2002). This two-stage
procedure is referred to in this paper as a clustering-based optimization approach. A review of  the studies that have
proposed using this approach to solve the mTSP is presented in the following section.

1.2. Research Gaps and Justification for the Study

The performance of  a clustering-based optimization approach to solve the mTSP depends on two components: (1)
the performance of  the clustering algorithm used to produce quality clusters;  and (2) the  performance of  the
heuristic optimization algorithm used to find the most  optimal routes in the minimum computation time. Most
researchers have paid less attention to the first component, as indicated by the fact that most  clustering-based
optimization approaches involve the use of  the k-means clustering algorithm for forming clusters with a new or
improved version of  a heuristic optimization algorithm for finding optimal routes.

This study fills this gap and contributes to the literature by proposing  a new clustering method  as a means of
improving the performance of  clustering-based  optimization approaches to solve the  mTSP,  with the following
assumptions: 

• All salesmen must begin and finish at one common single depot. 
• Each salesman is assigned to a number of  cities without considering any constraints.
• Each salesman must visit each of  the assigned cities once per tour.
• Euclidean metric is used to measure the distance measure between every pair of  cities.

The remainder of  this paper is organized as follows. Section 2 is a brief  review of  most of  the relevant literature.
Section 3 details the proposed method. Section 4 presents the numerical study used to evaluate the performance of
the proposed method. Finally, Section 5 concludes the paper and proposes opportunities for future study. 

2. Literature Review 
2.1. Heuristics Optimization Algorithms

Solving the mTSP is  more difficult than solving the TSP because the former necessitates identifying which cities
must be assigned to every salesman and determining the optimal route for every salesman. Because  mTSPs  are
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NP-hard problems,  heuristics optimization algorithms  are most often used to solve them due their abilities to
obtain near-optimal solutions within a reasonable CPU time (Bektas, 2006).

Russell (1977) proposed one of  the earliest heuristic optimization algorithms by modifying an algorithm to solve
the  mTSP that Lin  and Kernighan (1973) developed to solve the TSP. Since then, many heuristics optimization
algorithms have been advanced in the literature, including genetic algorithms (e.g., Carter & Ragsdale, 2006; Király
& Abonyi, 2010; Larki & Yousefikhoshbakht, 2014; Lu et al., 2016; Sedighpour, Yousefikhoshbakht & Darani,
2011; Singh & Baghel, 2009; Snyder & Daskin, 2006; Tang et al., 2000; Yuan, Skinner, Huang & Liu, 2013), neural
networks (e.g., Modares, Somhom & Enkawa, 1999; Somhom, Modares & Enkawa,, 1999),  simulated annealing
(e.g.,  Ann  et  al.,  2015;  Paydar,  Mahdavi,  Sharafuddin  & Solimanpur,  2010),  and  ant  colony  algorithms  (e.g.,
Ghafurian & Javadian, 2011; Liu, Li & Zhao, 2009). Harrath, Salman, Alqaddoumi, Hasan and Radhi (2019) recent
study combined a modified ant colony, the 2-opt, and a genetic algorithm to solve mTSPs.

2.2. Clustering-Based Optimization Approaches

Many studies have proposed a two-stage solution procedure to improve the performance of  heuristics optimization
algorithms to solve large mTSPs. The first stage uses a clustering method to group the cities into several clusters,
whereas the second stage involves finding a Hamiltonian route into each cluster using a heuristic optimization
algorithm.  One  of  the  earliest  studies  to  propose  solving  the mTSP  using  a  clustering-based  optimization
approaches was that of  Sofge et al. (2002): They used the neighborhood attractor schema combined with different
heuristic  optimization  algorithms,  including  a  shrink-wrap  algorithm  and  an  assortment  of  evolutionary
computation algorithms. The resulting combinations were tested on three different problems, and the encouraging
results opened a new avenue of  research in solving the mTSP (Sofge et al., 2002). Since then, several studies have
developed clustering-based optimization approaches that combine a clustering algorithm with one or more heuristic
optimization algorithms. These studies are summarized in Table 1.

Study

Clustering Algorithms
used to Break Down

the mTSP

Optimization Algorithms 
used to Find the Optimal

Routes

G
enetic algorithm

Standard k-m
eans

N
eighborhood 

attractor schem
a

A
nt colony

G
enetic algorithm

G
enerational M

onte 
C

arlo optim
ization

N
earest neighbor 

algorithm

P
article sw

arm
 

optim
ization

Sim
ulated annealing 

T
abu search

Sofge et al. (2002) ü ü ü ü

Sze & Tiong (2007) ü ü ü

Nallusamy, Duraiswamy, Dhanalaksmi and Parthiban (2009b) ü ü

Nallusamy, Duraiswamy, Dhanalaksmi and Parthiban (2009a) ü ü ü

Sadiq (2012) ü ü

Necula, Breaban and Raschip (2015) ü ü

Lu et al. (2016) ü ü

Mardiyati, Safitri and Jihan., (2017) ü ü

Shabanpour, Yadollahi and Hasani (2017) ü ü

Zeebaree, Haron, Abdulazeez  and Zeebaree (2017) ü ü

Kovács, Agárdi and Debreceni (2018) ü ü

Table 1. The clustering and optimization algorithms used in various studies
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Two general observations can be drawn from Table 1. First, to break down the mTSP, 91 percent (10 out of  11) of
the studies used either the classical version of  the  k-means or one of  its variants; 10 studies used the standard
version of  the k-means; and only one study (Sofge et al.,  2002) used a neighborhood attractor schema, a variant
of  the k-means. Second, the majority of  studies (72.7%) used genetic algorithms to find the optimal routes. 

In addition to the studies presented in Table 1, Chandran et al. (2006) and Ma et al. (2018) developed their own
clustering algorithms to break down the mTSP. However, the performance of  Chandran et al.’s (2006) algorithm
was not evaluated with respect to the extent to which it improves the performance of  heuristics optimization
algorithms in solving the  mTSP; it was only evaluated  with respect to  producing quality clusters using only one
measure (relative percentage deviation). Ma et al. (2018) evaluated the performance of  the developed clustering
algorithm only in terms of  total travel distance. This evaluation was achieved by combining a clustering algorithm
with integer linear programming to determine the optimal routes.

2.3. The k-Mean Algorithm

The standard version of  this algorithm, Lloyd’s algorithm, is named for Stuart Lloyd, who first proposed it in 1957
(Morissette & Chartier, 2013). Because of  its efficiency in grouping large data sets into good quality clusters, the
k-means is by far the most extensively used clustering algorithm (Kovács et al., 2018; Morissette & Chartier, 2013;
Singh, Malik & Sharma, 2012). 

In the  k-means algorithm, a large  number of  data points are grouped in a number of  clusters to minimize the
intra-cluster variance. The first step of  this algorithm is to randomly choose the locations of  the initial centroid for
the required number of  clusters. Each data point is then apportioned to its nearest centroid, which is subsequently
changed based on the data points that are allotted to the cluster. This process is continued until the values of
centroids become stabilized. 

Literature has highlighted several limitations of  the k-means algorithm (see Kaur & Kaur, 2013; Singh et al., 2012).
These limitations include its sensitivities to the presence of  outliers, the formation of  unbalanced or even empty
clusters, and its performance depends heavily on initialization (selection of  initial centroids), so poor initialization
can lead to poor performance (Fränti & Sieranoja, 2019). The last limitation can be surmounted by rerunning the
algorithm many times using different random locations for the starting centroids in order to identify the best
clustering solution or by using a better initialization technique. In this regard, several variants of  the standard
version  of  the  k-means  have  been  proposed  in  the  literature,  including  Forgy’s  algorithm  (Forgy,  1965),
MacQueen’s algorithm (MacQueen, 1967), the neighbourhood attractor schema (Sofge et al., 2002), k-means ++
algorithm (Arthur  & Vassilvitskii, 2007), and the seeding algorithm for  k-means problem with penalties (Li, Xu,
Yue, Zhang & Zhang, 2020; Li, Xu, Zhang & Zhou, 2020). These variants of  the k-means algorithm have proven
effective to some extent. However, there is a still a need to run the algorithm multiple times, with different initial
centroids,  and  to  average  these  results  to  obtain  a  more  stable  overall  result  (Morissette  & Chartier,  2013).
Unfortunately, there is no method to help determine the number of  runs required to guarantee the best results.
Moreover, there is no consensus on which variant works the best (Fränti & Sieranoja, 2019). 

3. The Proposed Method
As the  breaking down of  the  mTSP can be considered a problem of  dimensionality reduction in which a few
independent clusters are formed from a large number of  cities in order to minimize the total intra-cluster distance,
it is proposed to use a two-stage method. In the initial stage, clusters of  cities are identified using a modified form
of  factor analysis (FA). This stage is then followed by the use of  a simple integer-programming model to allot the
cities to the identified clusters. The selection of  this method has been inspired by the successful implementation of
similar methods in different applications (e.g., Albadawi, Bashir & Chen, 2005; Bashir & Karaa, 2008; Hamdan &
Bashir, 2015). It worth noting that in FA terminology, clusters are called factors. Therefore, these two terms will be
used interchangeability throughout the rest of the paper.

3.1. Stage 1: Identification of  Clusters 

FA is a dimensionality reduction technique developed by Spearman in 1904 to extract a few independent factors from
the correlation matrix  of  a  large  number of  interrelated variables using different  extraction methods including

-202-



Journal of  Industrial Engineering and Management – https://doi.org/10.3926/jiem.3287

canonical factor analysis, common factor analysis, image factor analysis, and principal component analysis (PCA) In
this  study,  PCA was selected as  an extraction method  because it  is  straightforward, quantitatively rigorous, and
popular (Rummel, 1988). The factors extracted using  PCA comprise uncorrelated linear groupings of  the initial
variables. The variances accounted for by the first few factors typically represent a high percentage of  the total
variance of  the original variables, which means that these variables can be assigned to a few independent factors.
However, because the factors obtained using PCA are commonly correlated with many original variables, rotation
methods are applied to ensure that each variable is related to only one factor and that each factor is highly correlated
with just a small number of  variables. A more detailed description of  FA can be found in Rummel (1988). 

The application of  the modified form of  FA to identify clusters of  cities involves the generation of  the matrix of
relative distances, the extraction of  preliminary clusters, and the obtaining of  the final clusters. In this sub-section, a
simple hypothetical example is used to explain these steps.

3.1.1. Generation of  the relative distance matrix

As mentioned above, the input for FA is a correlation matrix created from an original data set. In the proposed
method, this matrix is replaced by one referred to as the relative distance (RD) matrix, in which  the principal
diagonal elements are 1 and every off-diagonal element Rij is defined by equation (1):

(1)

Where dij is the distance between any pair of  cities i and j, and dmax  is the maximum distance among the cities. 

As a demonstration, consider the matrix presented in Table 2, which shows the distances between every pair of
cities for a simple hypothetical example of  nine cites. Table 3 provides the corresponding RD matrix, which was
obtained by applying equation (1).

City 1 2 3 4 5 6 7 8 9

1 0 2396 2215 991 3608 1882 1366 1972 1535

2 2396 0 1571 1505 1212 588 3762 1308 3205

3 2215 1571 0 1324 2671 2159 3581 2879 3024

4 991 1505 1324 0 2717 1769 2257 2489 1700

5 3608 1212 2671 2717 0 1726 4974 1636 4417

6 1882 588 2159 1769 1726 0 3248 720 2691

7 1366 3762 3581 2257 4974 3248 0 3338 557

8 1972 1308 2879 2489 1636 720 3338 0 3033

9 1535 3205 3024 1700 4417 2691 557 3033 0

Table 2. Distance matrix for the hypothetical example

City 1 2 3 4 5 6 7 8 9

1 1.00 0.52 0.55 0.80 0.27 0.62 0.73 0.60 0.69

2 0.52 1.00 0.68 0.70 0.76 0.88 0.24 0.74 0.36

3 0.55 0.68 1.00 0.73 0.46 0.57 0.28 0.42 0.39

4 0.80 0.70 0.73 1.00 0.45 0.64 0.55 0.50 0.66

5 0.27 0.76 0.46 0.45 1.00 0.65 0.00 0.67 0.11

6 0.62 0.88 0.57 0.64 0.65 1.00 0.35 0.86 0.46

7 0.73 0.24 0.28 0.55 0.00 0.35 1.00 0.33 0.89

8 0.60 0.74 0.42 0.50 0.67 0.86 0.33 1.00 0.39

9 0.69 0.36 0.39 0.66 0.11 0.46 0.89 0.39 1.00

Table 3. RD matrix for the hypothetical example

-203-



Journal of  Industrial Engineering and Management – https://doi.org/10.3926/jiem.3287

3.1.2. Extraction of  the preliminary clusters

In this step, equation (2) is used to calculate the eigenvalues and associated eigenvectors (factor loadings) of  the RD
matrix. Per the matrix theory, because it is truly symmetric, this matrix has real eigenvalues and their corresponding
eigenvectors are independent.

(λi I – RD) Yi = 0    i = 1, …, n (2)

where  RD  is  the relative distance matrix of  size  n  ×  n,  I is  the identity  matrix,  λi is the characteristic  root
(eigenvalue), and Yi  is the corresponding eigenvector. 

The eigenvalues calculated for the  RD matrix (Table 3) are presented in descending order in Table 4. The total
variance that every cluster revealed is provided in the first column, which is labelled “eigenvalue.” The second column
presents the percentage of  the total variance attributable to each cluster. The last column, which is the cumulative
percentage, shows the percentage of  variance attributable to that cluster and those preceding it in the table.

Of  these nine clusters, only those with the highest k eigenvalues need to be selected to form preliminary clusters,
where k represents the desired number of  clusters that need to be formed. For example, if  it is decided that three
clusters have to be formed, then the clusters that correspond the highest three eigenvalues have to be chosen, and
so on.

For the hypothetical example, the formed preliminary clusters are shown in Table 5, where it was assumed that two
clusters  needed to be  formed.  These  two clusters  are  the  eigenvectors  that  corresponded to the  largest  two
eigenvalues (5.413 and 1.798) of  the RD matrix. The elements of  the eigenvectors are called loadings and the cities
were assigned to the cluster associated with highest absolute loading.

Cluster Eigenvalue % of  Total variance % Cumulative percentage (%)

1 5.413 60.15 60.15

2 1.798 19.97 80.12

3 0.734 8.16 88.28

4 0.347 3.85 92.13

5 0.274 3.04 95.17

6 0.208 2.31 97.49

7 0.117 1.30 98.79

8 0.067 0.75 99.54

9 0.042 0.46 100.00

Table 4. The computed eigenvalues

City Cluster 1 Cluster 2

1 0.358 0.270

2 0.369 -0.302

3 0.317 -0.085

4 0.375 0.115

5 0.272 -0.469

6 0.379 -0.207

7 0.262 0.540

8 0.344 -0.218

9 0.230 0.462

Table 5. Preliminary clusters of  the hypothetical example
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3.1.3. Obtaining the Final Clusters

Determining which cities should be allocated to each cluster on the basis of  the preliminary clusters is not easy in
many cases, because a city might have a similar absolute value of  loading on more than one cluster. In PCA, this
problem is commonly overcome using a rotation technique such as varimax. Kaiser (1960) provides more details
about this technique. 

Applying the varimax technique to the matrix of  preliminary clusters detailed in Table 5 produced the matrix of
final clusters presented in Table 6. As shown in Table 6, Cities 1, 4, 7, and 9 had the largest loadings in cluster 1,
while Cities 2, 3, 5, 6, and 8 had the largest loadings in cluster 2. Thus, the best grouping for the nine cities was
grouping Cities 1, 4, 7 and 9 in one cluster and Cities 2, 3, 5, 6, and 8 in another.

City Cluster 1 Cluster 2

1 0.432 0.119

2 -0.014 0.477

3 0.126 0.303

4 0.320 0.227

5 -0.206 0.502

6 0.067 0.426

7 0.588 -0.122

8 0.037 0.406

9 0.549 -0.045

Table 6. Final clusters of  the hypothetical example

3.2. Stage 2: Assigning Cities to Clusters 

If  the problem is small, then employing the preceding steps is enough to form the clusters. However, assigning the
cities to clusters manually is impractical for large problems. This task can be facilitated using a simple binary integer
programming model, such as the following:

Maximize

(3)

Subject to

(4)

Where k is the number of  clusters, n is the total number of  cities, wiu is the loading of  city i on cluster u, and xiu is 1
if  a city i is allotted to cluster u and 0 if  not. 

Realistic constraints can be easily incorporated in this model. For instance, if  the maximum number of  cities that
can be visited by a salesman in a cluster is bounded, then the following constraint can be added:

(5)

where l is the maximum number of  cities a salesman can visit in cluster u.
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4. Performance Evaluation 

This section provides a summary of  the evaluation of  the performance of  the proposed method with regard not
only to the quality  of  formed clusters,  but also to the extent that  the method  improves the performance of
heuristics optimization algorithms in solving the  mTSP. This evaluation was conducted by solving test problems
without  considering  any  constraints,  using  two  combinations:  the  method  that  we  proposed  with  a  genetic
algorithm (FA-GA) and the k-means++ with a genetic algorithm (KM-GA). 

The main reason for  comparing our  method with  the  k-means++ was because  it  outperforms the  standard
k-means (Arthur & Vassilvitskii, 2007), which was used in most studies proposing clustering-based optimization
approaches to solve the mTSP (see Table 1). The difference between these two algorithms is in their initialization
methods. The following steps summarize the k-means++ initialization method:

1. One centroid, c1, is selected randomly from the set of  data, X.
2. For each data point x ϵ X, the distance d(x) to the closest selected centroid is computed.

3. A new centroid ci is selected using a weighted probability defined by .

4. Steps 2 and 3 are repeated until the centroids for all clusters are identified.
5. The steps of  the standard k-means algorithm are then followed. 

To evaluate  to  the  extent  to which  the  proposed clustering  method improves  the  performance of  heuristics
optimization algorithms in solving the  mTSP, it was necessary to combine the proposed method with a selected
heuristics optimization algorithm and compare the performance of  this combination with that of  a combination of
the  k-means++ and the same selected heuristics optimization algorithm. Because it is beyond the scope of  this
study to propose a heuristics optimization algorithm to determine the optimal routes, a basic genetic algorithm (an
open-source MATLAB code provided by Kirk (2014) was used. The major steps of  this algorithm are as follows:

1. Create a starting population of  80 solutions.
2. Iterate the following steps: 

a. Evaluate the cost of  the current population of  solutions;
b. Identify the best solution in the population; and
c. Modify the population by randomly putting them in groups of  eight and performing mutations on

seven of  the eight, while keeping the best of  the eight to pass along to the next generation.
3. Use the best solution found.

4.1. Evaluation Criteria 

Four objective criteria that are commonly utilized in the literature were chosen for performance evaluation. These
are: 1) the sum of  the squared error; 2)  the  variability of  cluster size; 3) the total traveling distance; and 4) the
running time. The first two criteria were used to evaluate performance with respect to the obtained clustering
solutions, whereas the other two criteria were used to evaluate performance with respect to the optimal route
solutions obtained.

4.1.1. The Sum of  the Squared Error

The Sum of  the Squared Error (SSE) is commonly used to measure intra-cluster variance, which is the most
uncomplicated and commonly utilized criterion for measuring the quality of  clustering. For the purposes of  this
study, SSE is the sum of  the squared distances between the coordinates of  the points (cities) and the coordinates of
centroids of  the corresponding clusters (Cao, Liang & Jiang, 2009). It is calculated as:

(6)

Where Cur is the coordinate of  cluster u centroid along dimension r, cir  is the coordinate of  city i along dimension r,
k is the number of  clusters, and N is the number of  dimensions. According to equation (6), SSE decreases as the
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number of  clusters grows. This is because an increase in the number of  clusters will lead to a decrease in the sizes
of  the clusters, and thus a reduction in SSE value.

4.1.2. Variability of  Cluster Size 

As mentioned earlier, one common limitation of  the  k-means is the formation of  unbalanced or even empty
clusters (Kaur & Kaur, 2013; Morissette & Chartier, 2013; Singh et al., 2012). This limits its practicality for some
applications of  the mTSP, such as sales territories assignment. For instance, according to Bolaños, Echeverry and
Escobar (2015), a balanced workload between clusters is critical due to its impact on the salespeople’s morale,
satisfaction, and likelihood of  achieving their targets. One simple method to evaluate the variability of  cluster size
(V) is standard deviation, defined by equation (7):

(7)

Where k is the number of  clusters,  is the average cluster size, and Su is the size of  cluster u (i.e., the number of

cities in cluster u). 

4.1.3. Total Traveling Distance

A common objective of  any traveling salesman problem is the minimization of  the total traveling distance (Bolaños
et al., 2015), so that the total traveling cost is also minimized. Equation (8) defines the total traveling distance
(TTD):

(8)

where dij is the distance between cities i and j, n is the number of  cities, and Tij = 1 if  a salesman is traveling directly
from city i to j in the optimal route and 0 if  not.

4.1.3. Running Time 

Running time, defined as the total CPU time (in seconds) spent during the execution of  an algorithm, is one of  the
most critical performance criteria. Because it typically grows with input size and other factors, it can be considered a
measure of  the practicality of  an algorithm. In this study, comparisons were made between the two combinations
(FA-GA and KM-GA) with respect to the impacts of  both problem size and the number of  clusters according to
the running time.

4.2. Test Problems

The two combinations,  FA-GA and KM-GA, were  tested using  seven standard instances  obtained from the
TSPLIB library (https://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/tsp/). As shown in Table 7, the
sizes of  these instances ranged from 52 to 1002 cities. For every instance, an additional city representing the depot
was added to each instance. The average of  the coordinates of  the cities in each instance were considered the
coordinates of  the added depot. Each of  the seven instance was solved using nine different numbers of  salesmen,
ranging from two to 10. 

No. Instance No. of  Cities

1 Berlin52 52

2 Eil76 76

3 KorA100 100

4 KorA200 200

5 Lin318 318

6 Pr439 439

7 Pr1002 1002

Table 7. Test problems
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4.3. Number of  Runs 

One advantage of  the method proposed in this study is that it does not require multiple runs. In contrast, the k-
mean++ algorithm begins by randomly selecting the location of  the initial centroid, so selecting different starting
centroids can result in different clusters being formed. The k-means++ algorithm must therefore be run several
times (Morissette & Chartier, 2013). In the current study, the  k-means++ algorithm was run independently 20
times to solve each test problem. Accordingly, the performance evaluation of  the  k-means++ in terms of  each
criterion was based on the average values of  the results of  20 runs. Therefore, a total of  1,323 runs were performed
in this study (1,260 runs of  KM-GA and 63 of  FA-GA). 

5. Performance Evaluation Results 

Table A-1 in the appendix presents a summary of  the performance evaluation results using MATLAB 2018 on a
system with a CPU Intel core i7. 

5.1. Quality of  Clusters 

As a sample of  the solutions, the obtained optimal route for each salesman —for instance, KorA100 (k = 6)— is
presented in Table 8. A general observation can be made about the formed clusters for all the test problems,
including KorA100, whose formed clusters  are displayed in  Figures 1 and 2:  FA-GA generates  clusters with
non-crossed paths,  whereas  KM-GA generates  clusters with crossed paths.  This feature  makes FA-GA more
practical  in  applications  that  require  avoiding  the  crossing  of  paths,  such  as  multi-robot  task  allocation  and
unmanned aerial vehicles. The reason that FA-GA generates exclusive, distinctive clusters is due to its mathematical
basis, i.e., the orthogonality of  the eigenvectors of  the matrix of  relative distances.

Figures A-1 and A-2 in the appendix are the plots of  k values versus the SSE values of  the solutions that the two
combinations, FA-GA and KM-GA, produced for KorA200 and P439. A visual assessment of  these plots as well
as  those  obtained  for  the  other  test  problems  shows  that  regardless  of  the  k  values,  FA-GA significantly
outperformed KM-GA with regard to minimizing the SSE. It is also clear that the SSE of  FA-GA generally
decreased quickly until a particular value of  k was reached; after this point the values continued to decrease, but at a
reduced rate. Conversely, the relationship between SSE of  KM-GA and k did not follow a particular pattern. One
conceivable interpretation for this  behavior is  that  each plotted value of  SSE was an average value of  SSEs
obtained over 20 runs. It is worth noting that, as shown in Table A-1 in the appendix, these findings are applicable
to the solutions obtained not only for KorA200 and P439 but also those obtained for all the other instances.

Cluster
(salesman)

FA-GA KM-GA 

Number
of  cities Route

Number
of  cities Route

1 18 0 60 62 35 86 27 20 12 55 83 34 7 9
57 87 51 61 58 0 13 0 25 81 85 68 73 50 44 2 54 40 64 69 0

2 16 0 4 65 26 18 66 70 22 16 88 94 24 38
79 53 90 0

22 0 91 32 11 17 15 45 23 77 60 62 35 86 27
12 20 57 7 9 87 51 58 0

3 17 0 64 40 54 2 44 73 50 82 95 76 33 13
85 68 81 25 0 11 0 96 78 52 5 37 33 76 13 95 82 0

4 16 0 39 37 5 96 78 52 48 100 41 71 14 3
43 46 29 0

13 0 48 100 41 71 14 3 43 46 29 34 83 55 0

5 17 0 72 10 84 36 99 59 74 21 17 15 11 32
45 91 98 23 0 24 0 79 53 19 4 65 26 18 66 70 22 16 88 94

24 38 99 36 84 10 72 21 74 59 0

6 17 0 28 1 63 6 49 75 97 56 80 31 89 42 8
92 67 101 0

17 0 8 42 89 31 80 56 97 75 92 49 6 63 1 47
93 28 0

City 0 represents the depot.

Table 8. Optimal routes for instance KorA100
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Figure 1. Clusters formed for the instance KorA100 by FA-GA (MATLAB output)

With regard to the variability of  cluster size, the results presented in Table A-1 indicate that,  compared to those
produced by KM-GA, the clusters produced by FA-GA had a lower cluster size variability in 65 percent of  the 63
solved problems. Thus, FA-GA offers the advantage of  achieving a good workload balance among the salesmen.

Figure 2. Clusters formed for instance KorA100 by KM-GA (MATLAB output)

5.2. Impact on Finding Optimal Routes

Figures  A-3  and A-4 in the appendix illustrate the plots  of  k values versus the total traveling distance of  the
solutions produced by FA-GA and KM-GA for  KorA100 and Pr1002. A visual observation of  these plots and
those obtained for the other instances indicates that when the number of  clusters grows, so too does the total
traveling distance. This observation is applicable to both combinations. Furthermore, as shown in Table A-1 in the
appendix, FA-GA plainly outperformed KM-GA with respect to minimizing the total traveling distance for all
instances, regardless of  the number of  clusters.
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Figures A-5 and A-6 in the appendix show plots of  instance size versus the total CPU running time in seconds for
the solutions produced using the two combinations for the seven instances of  the nine different values of  k. A
visual assessment of  these plots indicates that FA-GA obviously performed better than KM-GA with regard to the
insensitivity of  the total CPU running time to the problem size. Moreover, as shown in Table A-1 in the appendix,
compared to FA-GA,  KM-GA used less  CPU running time in  22  percent  of  the  solutions.  However,  these
solutions required longer traveling distances than those produced using FA-GA. 

6. Summary and Conclusion
The mTSP, an NP-hard problem, is among the most widely discussed problems in combinatorial optimization and
several  procedures to solve it  have been proposed in the literature. Among these procedures is  the use of  a
clustering-based optimization approach in which a clustering algorithm is used to break the problem down into a
number of  TSPs equal to the number of  salesmen, and then the tour for each TSP is  determined using an
optimization algorithm. To break down the mTSP, this study proposed a new method comprising two stages. First,
the clusters are identified via a modified form of  FA, and then a simple integer programming model is used for the
assignment of  cities to the identified clusters,  considering realistic constraints such as the maximum number of
cities to be assigned to each salesman.

To evaluate the performance of  the proposed method, it was combined with Kirk’s (2014) genetic algorithm to
solve a total of  63 test problems (seven standard instances, each solved nine times by varying  the number of
clusters from two to 10). These solutions were then compared to those produced by combining the k-means++
and Kirk’s genetic algorithm. The comparison of  the results demonstrated that the combination that included the
proposed method compared favorably to the other based on four evaluation criteria: 1) the sum of  the squared
error; 2) the variability of  cluster size; 3) total traveling distance; and 4) running time. 

This study makes a  twofold contribution to the literature. First, unlike previous studies, it tackles the issue of
improving the performance of  clustering-based optimization approaches in solving the  mTSP by proposing a
method  that  produces  better  cluster  solutions  rather  than  by  proposing  a  new or  improved  version  of  an
optimization algorithm for finding optimal routes. Second, this first study to use a FA-based method to break down
the mTSP. In addition to its superior performance compared to the k-mean++ and in producing distinct clusters,
this method does not require random selection of  the initial centroids of  clusters. Thus, an important advantage of
the proposed method is its stability compared to the  k-mean++ and other variants of  the  k-means that may
provide different clusters for each run.

Although this study represents useful progress, much remains to be done. For instance, the performance of  the
proposed method was evaluated using 63 problems (seven instances, each of  which was solved with nine different
numbers of  salesmen). However, there is a need to provide more evidence of  the robustness of  the proposed
method by conducting an extensive computational study using instances of  larger sizes. Moreover, combining the
proposed  method  with  Kirk’s  (2014)  genetic  algorithm to  find  the  optimal  routes  was  only  for  comparison
purposes. To find optimal routes, future studies could explore combining the proposed method with new, current,
or improved versions of  heuristics optimization algorithms (such as those presented in Table 1).
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Appendix

Figure A-1. Sum of  the squared error vs. k values for instance KorA200

Figure A-2. Sum of  the squared error vs. k values for instance P439

Figure A-3. Total traveling distance vs. k for instance KorA100
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Figure A-4. Total traveling distance vs. k for instance Pr1002

Figure A-5. Total CPU running time vs. instance size for FA-GA

Figure A-6. Total CPU running time vs. instance size for KM-GA
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Instance k

Sum of  the Squared Error
Variability of
Cluster Size 

Total Traveling
Distance Running Time

FA-GA KM-GA FA-GA KM-GA FA-GA KM-GA FA-GA KM-GA

Berlin52

2 6,623,069.89 13,267,848.08 7.78 23.33 8,134.60 12,489.55 94.61 94.06

3 4,070,234.33 10,904,308.67 7.64 10.02 8,709.76 12,485.62 125.85 179.32

4 2,817,398.84 9,831,700.49 4.99 7.89 9,576.01 13,281.60 132.39 54.96

5 2,993,893.40 9,528,033.95 4.39 5.94 10,998.83 14,071.93 219.52 210.70

6 1,918,932.68 9,163,874.30 5.12 4.96 11,397.21 15,736.77 260.90 229.53

7 1,504,664.68 9,484,157.99 4.04 4.86 11,704.04 16,825.25 334.87 338.89

8 1,330,291.88 9,360,040.27 4.07 3.02 13,064.18 18,143.91 376.73 373.02

9 1,087,172.16 8,678,571.04 2.80 3.06 13,622.35 17,576.62 353.00 428.09

10 794,579.54 8,271,247.22 2.91 3.13 14,271.90 18,815.96 409.53 477.83

Eil76

2 31,517.10 35,012.61 3.54 3.54 594.95 638.40 109.72 93.82

3 23,269.24 28,650.10 2.08 0.58 669.84 687.90 155.50 145.68

4 14,148.92 21,558.98 3.86 2.65 629.05 714.53 187.57 170.17

5 10,867.48 24,640.62 2.88 3.58 700.56 822.35 179.81 312.49

6 9,297.12 27,489.92 1.72 2.79 726.91 911.25 158.31 339.39

7 8,099.82 29,417.47 2.00 1.91 760.44 1,007.78 299.82 275.81

8 7,324.63 28,723.92 2.62 2.20 829.71 1,087.69 357.41 325.51

9 6,209.04 29,742.23 1.59 1.51 13,622.23 17,576.26 427.38 393.26

10 5,539.12 28,278.91 1.64 2.67 889.01 1,207.64 467.54 488.44

KorA100

2 67,364,536.07 84,648,635.23 2.12 1.41 22,435.01 26,857.16 106.58 113.97

3 63,085,343.39 138,648,191.61 6.81 13.05 24,458.27 37,532.20 154.60 167.55

4 47,492,101.08 166,694,288.28 2.87 5.29 28,384.52 45,056.44 172.21 220.34

5 31,985,965.83 117,690,996.24 2.17 4.36 30,199.53 45,975.59 168.72 157.96

6 23,360,049.09 119,324,875.23 0.75 5.32 31,186.81 48,321.49 217.81 254.16

7 18,754,586.29 118,602,555.36 2.51 2.75 33,521.43 52,618.13 343.29 303.73

8 15,440,702.78 91,268,325.49 3.02 2.07 35,255.04 50,253.96 196.76 347.35

9 13,308,332.30 100,381,335.88 1.20 3.92 38,590.13 55,203.61 436.83 443.87

10 13,284,269.33 113,705,162.35 2.73 2.40 41,020.95 63,443.10 474.43 446.44

KorA200

2 131,378,301.88 140,955,782.76 0.71 2.12 31,899.78 35,361.22 112.07 131.97

3 133,452,353.75 239,131,218.71 7.81 11.14 33,979.67 47,411.05 136.47 210.06

4 87,552,817.97 276,052,069.27 5.32 3.59 36,184.64 56,009.86 231.46 296.72

5 59,991,608.48 266,008,910.90 5.07 4.32 38,421.78 60,509.30 266.67 345.91

6 48,841,367.08 207,087,089.51 1.05 5.96 40,606.38 60,165.38 314.86 559.63

7 40,218,581.16 141,188,975.93 5.22 4.64 42,492.98 55,356.63 243.61 368.84

8 32,400,991.15 174,282,604.40 5.51 4.85 43,473.00 68,163.17 315.85 329.35

9 33,475,293.33 186,037,182.34 3.61 4.42 46,771.67 67,529.92 398.46 465.01

10 25,361,126.70 224,313,951.00 3.14 4.38 48,596.59 77,932.70 459.82 511.82
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Instance k

Sum of  the Squared Error
Variability of
Cluster Size 

Total Traveling
Distance Running Time

FA-GA KM-GA FA-GA KM-GA FA-GA KM-GA FA-GA KM-GA

Lin318

2 352,586,832.98 436,048,027.80 13.44 13.44 47,391.01 54,775.51 137.83 161.82

3 274,655,225.26 424,094,353.00 15.31 25.11 47,890.01 60,597.78 183.86 54.26

4 171,129,994.59 395,439,561.84 6.24 13.60 47,875.83 65,493.68 220.87 252.27

5 137,341,184.05 3,514,00,559.14 14.58 9.36 53,391.30 71,482.88 242.30 363.74

6 105,449,069.30 290,431,838.10 5.85 10.61 56,358.74 74,190.92 285.02 383.96

7 87,770,046.06 349,375,921.00 7.66 8.96 55,728.46 79,173.04 348.76 489.08

8 76,517,133.43 488,339,750.44 6.06 11.24 56,051.38 95,741.75 420.20 621.76

9 70,186,785.23 463,695,884.20 4.56 10.14 58,725.45 92,253.00 458.75 672.34

10 54,493,581.90 436,035,518.09 6.10 13.33 62,559.04 92,557.06 496.19 597.95

Pr439

2 2,777,264,165.25 6,033,848,491.14 80.61 166.17 127,318.18 178,433.77 120.30 158.40

3 1,651,920,267.48 6,503,335,649.66 70.55 105.19 125,107.92 215,592.56 133.51 209.18

4 1,185,072,944.58 5,127,375,754.15 31.86 31.21 130,867.32 195,348.94 189.04 288.19

5 1,034,224,066.81 5,021,211,011.23 18.01 25.55 138,537.67 208,645.95 260.69 339.59

6 1,239,728,327.44 5,203,918,594.73 25.36 30.22 153,724.58 213,950.60 296.39 431.25

7 1,080,832,676.31 5,145,426,302.97 24.51 29.76 154,914.76 225,741.99 318.60 509.13

8 559,253,421.11 4,523,882,220.53 27.08 21.32 155,403.23 222,249.78 388.94 553.40

9 477,574,200.07 4,475,817,547.97 20.52 14.52 162,949.16 234,863.90 449.84 632.71

10 453,275,708.29 5,006,511,747.65 14.18 16.31 168,079.73 260,435.77 455.41 736.25

Pr1002

2 13,197,140,379.29 13,363,646,950.99 0.71 1.41 315,511.95 326,981.21 105.90 109.42

3 10,548,533,829.38 15,029,639,532.45 31.90 52.60 311,687.93 381,549.91 101.75 230.82

4 6,515,194,464.68 12,660,835,480.27 55.07 49.54 306,613.98 384,091.64 169.03 315.34

5 4,533,183,261.54 11,563,025,270.34 23.37 13.03 316,234.34 394,060.44 160.73 398.73

6 3,455,665,662.18 11,629,345,061.77 29.96 29.10 315,869.25 399,895.76 192.93 433.53

7 3,130,636,186.51 13,495,565,905.21 24.68 37.04 332,828.43 447,142.04 321.79 283.73

8 2,900,682,782.35 15,636,334,982.12 16.30 28.96 334,429.44 481,279.29 320.17 654.06

9 2,490,198,787.51 14,951,536,387.86 12.40 6.65 339,741.17 508,850.61 392.52 739.29

10 2,317,942,833.19 11,863,806,927.16 20.65 36.62 349,174.72 511,895.16 457.86 839.99

Best values marked in bold.

Table A-1. Performance evaluation results
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