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Abstract:

Purpose: Demand-Driven Distribution Resource Planning (DDDRP) has recently been proposed in the
literature to deal with higher supply networks complexity, shorter customer tolerance times, and inaccurate
forecasts.  The  DDDRP requires  to  position  inventory  buffers  in  critical  network  nodes,  where  the
inventory level in each buffer is replenished based on actual demands rather than on demand forecasts.
This paper aims to identify optimal buffer positions in a distribution network driven by the DDDRP
approach  and  to  assess  the  performance  of  the  DDDRP  approach  compared  to  the  conventional
Distribution Resource Planning (DRP) approach.

Design/methodology/approach: First, a mixed-integer non-linear model is proposed to optimize buffer
positioning under supply network constraints and with the objective of  minimizing supply chain holding
costs. Then, a case study is investigated to validate the optimization model and to evaluate the performance
of  the optimized distribution network driven by the DDDRP approach, compared to the DRP approach. 

Findings: Results of  the considered case study demonstrate that the distribution network optimized and
driven by the DDDRP approach achieves savings of  75% in terms of  total holding costs and 67% in
terms of  inventory amounts, compared to a distribution network driven by the DRP approach. 

Research  limitations/implications: Results  of  this  paper  cannot  be  generalized  since  several
assumptions have been considered. Thus, addressing real case studies in different industrial contexts may
be of  theoretical and practical interest. 

Originality/value: This paper is the first to propose a mathematical model to optimize buffer positioning
in a distribution network driven by the DDDRP approach.
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1. Introduction

Numerous  methods  and  approaches  have  been  developed  to  enhance  supply  network  performance  against
fluctuations and to maintain customer service levels. Among these approaches, Distribution Resource Planning
(DRP) is a systematic approach that effectively drives a distribution process by specifying which product, in what
quantity, and in which place should be delivered to meet the demand (Rizkya, Syahputri, Sari, Siregar, Tambunan &
Anizar, 2018). DRP performs well when the supply network is highly integrated (Suwanruji & Enns, 2000) since it
identifies  the  optimal  amount  of  lot  sizes,  the  ordering  frequency,  and  the  amount  of  safety  stock  in  each
distribution node in the network  (Rizkya et al.,  2018). Consequently,  it  reduces the total cost  over the supply
network  and  upgrades  customer  satisfaction.  However,  the  DRP  system  is  a  proactive  approach,  since  the
inventories  are  driven  based  on forecasting  which  can  generate  different  issues,  such  as  the  bullwhip  effect
(Suwanruji & Enns, 2000). 

Recently, a new approach, named Demand-Driven Distribution Resource Planning (DDDRP), has been proposed
by  Erraoui,  Charkaoui  and  Echchatbi  (2019).  This  approach  is  inspired  by  the  Demand-Driven  Material
Requirement Planning (DDMRP) concepts proposed by  Ptak and Smith (2019) to deal with shorter customer
tolerance  times,  higher  supply  networks  complexity,  and  inaccurate  forecasts.  The  DDDRP  improves  the
information flow from customers to suppliers, thanks to DDMRP buffers that should be placed in critical network
nodes. As proposed by Ptak and Smith (2019), the inventory level in each DDMRP buffer is replenished based on
actual demands rather than on demand forecasts. This paper is the first to propose a mathematical model to
optimize DDMRP buffer positions in a demand-driven distribution network. 

Next, Section 2 presents briefly the DRP and explains the concepts of  the DDMRP and the DDDRP. In Section 3,
a mixed-integer non-linear model is proposed to optimize buffer positioning under supply network constraints and
with the objective of  minimizing supply chain holding costs. Then, a case study is investigated, and results are
discussed in Section 4. Section 5 concludes and provides some research perspectives.

2. Literature Review 
2.1. DRP Approach 

The DRP approach is a technique for replenishing inventories in distribution centers, which integrates planning and
control  from interconnected resources to ameliorate system implementation  (Wahyuningsih & Pradana,  2018).
According to the literature, many companies have taken advantage of  implementing DRP since it was developed
(Martin, 1992). During the 1980s-1990s, DRP along with Material Requirement Planning (MRP) and Just In Time
(JIT) were taken into account as advanced management strategies for obtaining competitive advantage in the
physical distribution sector in the United States (Hou, Chaudhry, Chen & Hu, 2015). The DRP has the advantage
to consider a global perspective to the distribution network, in contrast to the order-point replenishment approach
which focuses on minimizing the costs for each node of  the network. A comparative study conducted by Suwanruji
and Enns (2000) demonstrates by simulation that DRP outperforms the order-point replenishment approach when
demand and replenishment times are uncertain. 

The DRP is based on dependent demand logic (Watson & Polito, 2010) which, according to (Ptak & Smith, 2019),
is responsible for the nervousness over the supply network. In other words, since DRP is driven by sales forecasts,
small changes in downstream levels can cause significant changes for upstream levels. Dependency between the
network nodes makes also delays too long to respond to the actual demand and leads to signal distortion and more
bullwhip effect (small fluctuations in demands in downstream levels will  increase dramatically when we move
toward upstream levels). 

2.2. DDMRP and DDDRP Concepts 

The DDMRP approach aims to protect the inventory flow of  goods or materials from oscillations by positioning
inventory buffers (usually called DDMRP buffers) in network critical points (called decoupling points) in order to
create  independence  between  supply  and  use  of  material.  According  to  Ptak  and  Smith  (2019),  the  buffer
positioning is a crucial step that depends on the following factors: i) the customer tolerance time, which is defined
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as the time the customer would wait for being served or receiving products before referring to an alternative, ii) the
sales order visibility horizon, which is the time in which the awareness of  sales orders or actual relevant demand
occur, iii) the external variability related to demand and supply, and iv) the complexity of  the distribution network
structure. 

As illustrated by Figure 1, DDMRP buffers contain three zones: red, yellow, and green.  Ptak and Smith (2019)
provide details of  how to adjust the size of  each zone, based on actual demand information. One way to calculate
the Top Of  Green (TOG) zone is based on Equation (1). 

(1)

where:

• ADU is the average daily usage, that corresponds to the average daily demand over a time frame (e.g.,
14-day time frame);

• DLT is the decoupled lead time, which is a form of  cumulative lead time required to deliver a product,
depending on the product structure and decoupling point positions;

• LTF is the lead time factor, that takes different values depending on whether a product has high, medium,
or low lead time; and

• VF is the variability factor, that takes different values depending on whether a product experiences high,
medium, or low variability.

Figure 1. Buffer zones (Ptak & Smith, 2019)

Inspired by the DDMRP approach, the DDDRP takes advantage of  buffer positioning based on a dynamic point
of  view (Erraoui et al., 2019). Calculating buffer levels brings up to date in accordance with the average daily usage
of  the products consumed by customers, in contrast to DRP where the programming horizon is static, and safety
stocks based on demand forecasts are used to protect  against  stock-outs in the supply network nodes. Thus,
DDDRP can better respond to demand changes (Erraoui et al., 2019).

Demand variability is known as a principal form of  variability related to distribution networks  (Ptak  & Smith,
2019). For example, regional warehouses have more demand variability compared to the source unit for an assumed
period.  However,  regional  warehouses  can  be  inefficient  if  the  inventory  is  higher  than  local  demand,  and
consequently  generate  additional  costs  related  to  cross-shipping.  Ptak  and  Smith  (2019) propose  three
configurations to address the problems of  typical distribution networks, based on decoupling points. The first
configuration considers a decoupling hub located near the sourcing unit. The second configuration is a multi-hub
configuration where every warehouse can be a hub (serves the customers from the same region) and a spoke
(serves other regional warehouses) at the same time. The third configuration is a hybrid configuration that considers
a partial hub and a spoke. Slow-moving items can be kept in the decoupling hub and fast-moving items are sent to
regional centers directly from spoke (sourcing unit). Both Erraoui et al. (2019) and Ptak and Smith (2019) underline
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the importance of  the inventory positioning step in a demand-driven distribution network. However, they didn’t
propose a tool to make positioning decisions (Azzamouri, Baptiste, Dessevre & Pellerin, 2021), in contrast to this
paper.  The principal  contributions of  this  paper  are  i)  to  propose  a  mathematical  model  to  optimize  buffer
positioning in a demand-driven distribution network, and ii) to evaluate the performance of  the DDDRP approach
compared to the conventional DRP approach. 

3. Methods
3.1. Problem Definition and Assumptions

In this paper, we consider a multi-echelon distribution network with I stages and J nodes including a manufacturing
plant, and (J-1) distribution nodes. Figure 2 illustrates an example with 4 stages and 22 nodes. We aim to optimize
the buffer positioning in the network driven by the DDDRP approach. 

We assume that each distribution node, which refers to a warehouse or a depot, is served by a single supplier.
Nevertheless, each distribution node can have more than one child. The manufacturing plant is considered as an
infinite  capacity  supply  source.  Products  are  then  sent  either  to  warehouses  to  be  stored  and  maintained
temporarily, or to depots to be inspected, segregated, and dispatched after orders are received from customers. We
assume that  the  holding  cost  depends  on  the  location  of  the  distribution  node  in  the  network  and that  a
distribution node has infinite capacity. 

We assume that each customer has a normally distributed daily demand with a mean Average Daily Usage (ADU),
and a standard deviation (σ). ADUs of  different customers are considered to be independent, while ADUs for the
distribution nodes are calculated based on customers’ ADU. 

We set a customer tolerance time for each customer, which refers to the time by which the customer expects to
receive his demand. According to APICS, customer tolerance time is “the amount of  time potential customers are
willing to wait for the delivery of  a good or a service” (Ptak & Smith, 2019). The lead-time between the nodes is
supposed to be known and includes transportation delays. Next, we propose a model that determines the optimal
positions  of  buffers  and identifies  buffer  levels  in  each  distribution  node based on its  ADU and decoupled
lead-time.

Figure 2. A 22-node distribution network and buffer positioning 
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3.2. Notation and Preliminary Concepts

In the mathematical model, we use the indices/sets, parameters, and decision variables presented respectively by
Tables 1, 2, and 3.

i Index of  the distribution network stages. i = 1, 2, ... I

j Index of  nodes including manufacturing plant, warehouses, and depots. j = 1, 2, ... J

ni Number of  nodes before stage i.

Table 1. Indices and Sets

ajj' = 1 if  j' is a child of  node j, 0 otherwise.

LTj Lead-time between node j and its parent including launch and preparation time of  the orders, the loading, 
transiting, unloading, and stocking.

hj Holding cost at node j per day.

CTTj Customer tolerance time for customer node j.

ADUj Demand at node j.

vj Variability factor for node j.

M Big number.

Table 2. Parameters

The first node is the supply source. Thus, it does not have any predecessor, which means that:

(2)

In general, we can say that:

(3)

Each node (other than node 1) has a unique parent (one predecessor), which means that:

(4)

We assume that the actual demand of  final customers is known. For each node other than final customers, we
propose to calculate the ADU as the summation of  all ADUs of  the child nodes as presented by Equation (5).

(5)

The variability factor vj reflects the demand variability. For final customers, vj are supposed to be known, depending
on whether a product experiences high, medium, or low variability. For each node other than final customers, we
propose to calculate the vj by Equation (6). Thus, for each parent node, we propose to calculate the variability factor
as the summation of  multiplication of  ADU and variability factors overall related child nodes divided by ADU of
the parent node. 

(6)
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δj A binary variable that takes 1 if  a buffer is in node j, otherwise 0.

DLTj Decoupled lead-time for node j.

Bj Mean inventory level at node j.

k Equal to the minimum of  DLTj.

αj Lead-time factor for node j.

λj A binary variable that guarantees that k will take the minimum of  DLTj. 

Table 3. Decision variables

The binary variable δj enables to specify the nodes to which the buffers are to be assigned, and to calculate more
the buffer level in these nodes. It takes 1 if  the buffer is assigned to a node, otherwise, it takes 0.

DLTj is a positive variable defined as the decoupled lead-time, which can be defined as the longest cumulative
coupled lead-time chain in a manufactured time’s product structure  (Ptak  & Smith, 2019).  DLT is calculated by
summing all the manufacturing and purchasing lead times in that chain. The decoupled lead-time always includes
the manufacturing lead-time of  the parent. A decoupled lead-time in a distribution network configuration is the
cumulative lead-time that depends on the position of  buffers in the distribution network. For the first node, we
consider DLT1 =0. The variable k is set as the minimum of  DLTj.

The lead-time factor αj is a variable that should depend on DLTj and should take a number between 0 and 1 (Ptak
& Smith, 2019) depending on whether the node has high, medium, or low lead times.  Ptak and Smith (2019)
recommend a low lead-time factor for items with long lead-times and a lead-time factor close to 1 for items with
short lead-time. 

Equation (7) guarantees that lead-time factors αj vary between 0 and 1, that a low αj is set for a node with a long
DLT and that a high αj is set for a node with a short DLT. The variable k is forced to take the minimum of  DLTj

by equations (8)-(10). Only a j will take 1 (which corresponds to the lowest DLTj) and guarantee that the variable k
will take the minimum of  DLTj.

(7)

(8)

(9)

(10)

Bj is the mean inventory level at node j and can be expressed by Equation (11). If  a buffer is positioned in node j, Bj

can be expressed as half  of  the Top of  Green (TOGj) of  the inventory buffer, otherwise, it takes 0. TOGj can be
calculated by Equation (12), equivalent to Equation (1) proposed by Ptak and Smith (2019).

(11)

(12)

As suggested by  Equation (7),  αj can be substituted by   in  Equation (12). Thus,  TOGj can be expressed by

Equation (13), and consequently, Bj can be obtained by Equation (14). 
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(13)

(14)

3.3. Mathematical Model 

The mathematical model is formulated as a mixed-integer non-linear problem. The objective of  the model is to
optimize the buffer positions in the network driven by the DDDRP approach and to minimize the daily holding
cost of  the distribution network (which corresponds to the holding cost of  the buffers in the distribution nodes).

The objective function presented by Equation (15) is subject to the constraints (8), (9), (10), (14), (16), and (17).

(15)

subject to:

(8)

(9)

(10)

(14)

(16)

(17)

As  explained  in  the  previous  subsection,  Equations  (8)-(10)  guarantees  that  k takes  the  minimum of  DLTj.
Equation (14) enables us to compute the buffer levels Bj.

Constraints (16) enable us to compute the DLT of  node j, dependently whether there is a buffer or not. When a
buffer is positioned in a node (δj = 1),  DLTj is simply equal to the lead-time for node  j.  When no buffer is
positioned in a node (δj = 0), DLTj  is the summation of  DLT for its parent nodes plus the lead-time of  node j. For
the  first  node,  we consider  DLT1 = 0 since  DLTj is  less  than the  customer  tolerance  time.  Constraints  (17)
guarantee to respect for the customer tolerance times.

3.4. Resolution Method 

The structure of  the objective function in this model is  convex. In order to solve this convex  mixed-integer
non-linear problem (MINLP), we used the software GAMS (General Algebraic Modeling System designed for
modeling  and  solving  linear,  non-linear,  and  mixed-integer  optimization  problems)  with  the  solver  BARON
(Branch-And-Reduce  Optimization  Navigator  designed  to  solve  MINLPs).  BARON implements  deterministic
global optimization algorithms of  the branch-and-bound type that are guaranteed to provide global optima under
fairly general assumptions. For details, see GAMS-Documentation (2020). Larger networks can be considered since
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the free licence of  GAMS enables us to generate and solve MINLP models that do not exceed 2500 variables and
2500 constraints.

4. Results and Discussion
Considering  a  22-node  distribution  network  (see  Figure  2)  driven  by  the  DDDRP  approach, we  solve  the
optimization model with GAMS. Then, we evaluate the performance of  the DDDRP approach compared to the
performance of  the DRP approach.

Table 4 presents the results of  solving the model with GAMS. We obtain δj = 1 only for the nodes 2, 3, 4, 5, 6, 7, 8
and 9, which means that buffers are positioned only in those nodes. With this solution, the value of  the objective
function which corresponds to the total daily holding cost is 333 $. The execution time for solving the problem
with GAMS is acceptable (1.310 seconds). 

Indices Parameters Decision variables Total holding cost

i j
CTTj ADUj 

σj vj 
hj LTj δj DLTj Bj Bj *hj 

(days) (units) ($/unit/day) (days) (0/1) (days) (units/day) ($/day)

1 1 - 9045 - 0.5 0.0019 2 0 0 0 0

2 2 - 4028 - 0.5 0.003 3 1 3 17,370 52.11

2 3 - 2608 - 0.5 0.0049 3 1 3 11,247 55.11

2 4 - 2409 - 0.5 0.0045 3 1 3 10,388 46.74

3 5 - 2359 - 0.5 0.0057 3 1 3 10,173 57.98

3 6 - 1669 - 0.8 0.0079 2 1 2 4,005 31.63

3 7 - 1271 - 0.3 0.008 2 1 2 2,732 21.85

3 8 - 1337 - 0.5 0.0072 2 1 2 3,008 21.65

3 9 - 765 - 0.5 0.014 3 1 3 3,299 46.18

3 10 - 1644 - 0.5 0.0065 2 0 2 0 0

4 11 3 829 80 0.3 0.01 3 0 3 0 0

4 12 4 642 230 0.8 0.015 3 0 3 0 0

4 13 3 888 210 0.5 0.0099 2 0 2 0 0

4 14 4 712 150 0.5 0.015 3 0 3 0 0

4 15 4 957 270 0.8 0.012 3 0 3 0 0

4 16 4 652 180 0.5 0.016 3 0 3 0 0

4 17 4 619 110 0.3 0.017 2 0 2 0 0

4 18 3 820 140 0.3 0.012 3 0 3 0 0

4 19 4 517 280 0.8 0.019 2 0 2 0 0

4 20 3 765 150 0.5 0.013 2 0 2 0 0

4 21 4 863 150 0.5 0.013 2 0 4 0 0

4 22 4 781 270 0.8 0.014 2 0 4 0 0

Z* = 333.29 $

Table 4. Results of  the model applied to a 22-node distribution network and solved by GAMS 
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For comparison purposes, we need to evaluate the performance of  the supply network if  the DRP approach is
used.  Appendix A explains in detail how to compute inventory levels with the DRP approach. The inventory level
Ij of  a  node  j is  computed  using  equation  (A.7),  considering  an  average  order  cost  of  500$  by  order  and
replenishment lead times of  2 or 3 days. 

In Table 5, we present the total daily holding cost generated with the DDDRP approach, which depends on the
buffer levels Bj identified by the optimization model proposed in this paper. It corresponds to the total daily
holding cost of  the optimized network. Table 5 presents also the total daily holding cost generated with the DRP
approach, which depends on the inventory levels Ij. 

Indices Parameters DDDRP DRP

i j
hj Bj Bj*hj Ij Ij*hj

($/unit/day) (units/day) ($/day) (units/day) ($/day)

1 1 0.0019 0 0 39,808 75.63

2 2 0.003 17,370 52.11 20,993 62.97

2 3 0.0049 11,247 55.11 13,194 64.65

2 4 0.0045 10,388 46.74 13,454 60.54

3 5 0.0057 10,173 57.98 13,070 74.49

3 6 0.0079 4,005 31.63 9,407 74.31

3 7 0.008 2,732 21.85 6,869 54.95

3 8 0.0072 3,008 21.65 7,242 52.14

3 9 0.014 3,299 46.18 4,373 61.22

3 10 0.0065 0 0 9,068 58.94

4 11 0.01 0 0 4,394 43.94

4 12 0.015 0 0 3,852 57.78

4 13 0.0099 0 0 4,926 48.76

4 14 0.015 0 0 4,265 63.97

4 15 0.012 0 0 5,647 67.76

4 16 0.016 0 0 3,852 61.63

4 17 0.017 0 0 3,318 56.40

4 18 0.012 0 0 4,613 55.35

4 19 0.019 0 0 2,884 54.79

4 20 0.013 0 0 4,329 56.27

4 21 0.013 0 0 4,648 60.42

4 22 0.014 0 0 4,630 64.82

Total 62,222 333.29 188,835 1331.81

Table 5. Comparison of  the total daily holding cost generated with the DDDRP and the DRP approaches 

The total daily holding cost is 333 $ with the optimized network driven by the DDDRP approach, compared to
1,331 $ with the DRP approach (i.e., a reduction of  75%). For the total daily inventory, we obtain 62,222 units with
the DDDRP approach, compared to 188,835 units with the DRP approach (i.e., a reduction of  67%). We can
conclude  that  the  distribution  network  optimized  and  driven  by  the  DDDRP  approach  achieves  a  better
performance than the distribution network driven by the DRP approach, in terms of  daily inventory amounts and
holding costs.
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Figure 3 presents a visual comparison, for each node, between the inventory levels  Ij obtained with the DRP
approach, and the optimal buffer levels Bj generated with the DDDRP approach. As is shown in the figure, keeping
inventories is not required in all nodes with the DDDRP approach (buffers are required only in nodes 2, 3, 4, 5, 6,
7, 8, and 9), while with the DRP approach, inventories are held in all nodes of  the network. Besides, even if  we
consider node by node (in particular for nodes 2, 3, 4, 5, 6, 7, 8, and 9), the inventory level Ij is always higher than
the optimized buffer level Bj.

It is important to underline that for both approaches the levels of  inventory/buffer are higher in upstream nodes
than those in downstream nodes of  the supply chain. But even for upstream nodes, the inventory levels with the
DRP approach are still higher than the buffer levels with the DDDRP approach (we can see that from node 10, the
Bj are equal to zero, in contrast to the Ij).

Figure 3. Daily buffer levels through the optimized network driven by the DDDRP approach compared 
to daily inventory levels through the distribution network driven by the DRP approach

5. Conclusion and Perspectives

This paper extends the literature about demand-driven distribution systems. Erraoui et al. (2019) and  Ptak and
Smith (2019) are the only authors who invoked the demand-driven distribution planning (DDDRP) approach.
However,  they  don’t  propose  tools  for  the  inventory  positioning  step.  This  paper  proposes  a  mixed-integer
non-linear  model  to  optimize  buffer  positioning  in  a  demand-driven  distribution  network  and  evaluates  the
performance of  the DDDRP approach, compared to the conventional DRP approach.  

Results clearly demonstrate that the distribution network optimized and driven by the DDDRP approach achieves a
better performance than a distribution network driven by the DRP approach, in terms of  daily inventory levels and
holding costs.

In this study, only holding costs through the distribution network are considered. Taking transportation costs into
account increases the complexity of  the problem and can be an interesting future research direction. The results of
this paper cannot be generalized since several assumptions have been considered. Thus, addressing real case studies
in different industrial contexts may be of  theoretical and practical interest.
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Appendix A: Computing inventory levels with the DRP approach

To compare the performance of  the DDDRP approach to the DRP approach, we need to compute inventory
levels with the DRP approach. The inventory level I of  a specific node depends on the safety stock level SS
(Courtois, Martin-Bonnefous & Pillet, 2003).

First, the demand D during a replenishment lead-time L with the DRP approach is assumed to follow a normal
distribution(Brander & Forsberg, 2006; Silver, Pyke & Peterson, 1998). Thus, SS for a specific product is calculated
via Equation (A.1). 
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(A.1)

where σ is the standard deviation of  the total demand during the replenishment lead-time for the specific product,
and Φ-1(π) is the standard normal inverse cumulative distribution function at a π service level. According to Lee and
Rim (2019), if  the replenishment lead-time L and the demand D are considered independent random variables, σ
can be calculated via Equation (A.2). Thus, Equation (A.1) can be replaced by Equation (A.3), where σD is defined
as the standard deviation of  daily demand, μD is the average daily demand, and σL is the standard deviation of  the
replenishment lead-time L.

(A.2)

(A.3)

The safety stock level (SS), previously expressed by Equation (A.3), can be calculated using Equation (A.4) if  we
assume that:

• the service level is π = 0.99 and the demand is following a normal distribution (Φ-1(π) = 2.325); 

• the lead-time is deterministic (σL can be considered as 0);

• μD is the average daily demand (ADU);

• σD can be expressed as the standard deviation of  the daily demand (σADU) according to Mirzaee (2017).

(A.4)

The inventory level I of  a specific node can be computed by Equation (A.6) as half  of  the economic order quantity
(EOQ) plus the safety stock level (SS). According to Courtois et al. (2003), the EOQ is calculated by  Equation
(A.5), where E is the order cost and h is the holding cost per unit per day. Finally, by inserting Equation (A.4) in
Equation (A.6), the inventory level I can be obtained by Equation (A.7).

(A.5)

(A.6)

(A.7)
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