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Abstract:  

Purpose: A Reconfigurable Disassembly System (RDS) represents a new paradigm 

of automated disassembly system that uses reconfigurable manufacturing 

technology for fast adaptation to changes in the quantity and mix of products to 

disassemble. This paper deals with a methodology for designing and sequencing 

product families in RDS. 

Design/methodology/approach: The methodology is developed in a two-phase 

approach, where products are first grouped into families and then families are 

sequenced through the RDS, computing the required machines and modules 

configuration for each family. Products are grouped into families based on their 

common features using a Hierarchical Clustering Algorithm. The optimal sequence 

of the product families is calculated using a Mixed-Integer Linear Programming 

model minimizing reconfigurability and operational costs. 

Findings: This paper is focused to enable reconfigurable manufacturing 

technologies to attain some degree of adaptability during disassembly automation 

design using modular machine tools. 

Research limitations/implications: The MILP model proposed for the second 

phase is similar to the well-known Travelling Salesman Problem (TSP) and 

therefore its complexity grows exponentially with the number of products to 
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disassemble. In real-world problems, which a higher number of products, it may be 

advisable to solve the model approximately with heuristics. 

Practical implications: The importance of industrial recycling and 

remanufacturing is growing due to increasing environmental and economic 

pressures. Disassembly is an important part of remanufacturing systems for reuse 

and recycling purposes. Automatic disassembly techniques have a growing number 

of applications in the area of electronics, aerospace, construction and industrial 

equipment. In this paper, a design and scheduling approach is proposed to apply in 

this area. 

Originality/value: This paper presents a new concept called Reconfigurable 

Disassembly System, which represents disassembly systems with reusability, 

scalability, agility and reconfigurability features. These features and some specific 

costs are considered as part of the proposed methodology. 

Keywords: linear programming, sequencing, disassembly, reconfigurable manufacturing 

 

1 Introduction  

In the last decade, the areas of Environmentally Conscious Manufacturing and 

Product Recovery (ECMPRO) have gained increasing attention due to growing 

awareness of conserving energy, material resources and landfill capacity. In many 

countries waste dump capacity is already limited by legislation, and the estimated 

amount of obsolete products returning to the manufacturers are increasing 

exponentially. This environmental awareness and the recycling regulations have 

put pressure on many manufacturers and consumers to produce and dispose of 

products in an environmentally responsible manner. 

Environmentally Conscious Manufacturing deals with developing methods for 

manufacturing products that satisfy environmental standards and requirements. 

The End of Life (EOL) disposal plays a key role in these green principles, and 

significant among of research has focused on Product Recovery. Recent literature 

on ECMPRO is organized into four main areas (Ilgin & Gupta, 2010): 

• Environmentally conscious product design: methodologies considering 

certain environmental criteria in the design process (viz., design for 
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environment, design for disassembly, design for recycling, life cycle analysis 

and material selection) 

• Reverse and close-loop supply chains: methodologies considering all the 

activities associated with the collection and either recovery or disposal of 

used products and the simultaneous consideration of forward and reverse 

flows (viz., network design, network and product design simultaneously, 

optimization of transportation of goods, selection of used products,…) 

• Remanufacturing: methodologies involving the conversion of worn-out 

products into like-new conditions (viz., forecasting, production planning, 

production scheduling, inventory models,…) 

• Disassembly: methodologies considering the activities of separation of an 

assembly into its components, subassemblies or other groupings 

Disassembly is an important process in material and product recovery since it 

allows recovering materials with a high degree of purity, reusing components or 

removing toxic materials. Two important phases may be considered in a 

disassembly process (Güngör & Gupta, 1997): 

• Disassembly planning or sequencing: deals with the problem of determining 

the best order in which to dismount joints and remove parts 

• Disassembly scheduling:  consists in determining the time and the amounts 

of EOL products to process, to fulfil the demand for the parts or components 

over a planning horizon, minimizing costs 

Previously, another two phases must be considered (Tang, Zhou, Zussman & 

Caudill, 2002): 

• Modelling and representation of product disassembly sequences is an 

important decision for disassembly planning 

• Disassembly system design and line balancing: concerns with the 

determination of the number of resources (stations, machine tools, material 

handling…) needed to satisfy the disassemble constraints and the demand 

of products, and also to assign the disassembly tasks to these resources 

This paper deals with the disassembly system design and the disassembly 

scheduling of a new paradigm called Reconfigurable Disassembly System (RDS). A 

RDS can be defined as an automated disassembly system that uses reconfigurable 
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manufacturing technologies for fast adaptation to changes in the quantity and mix 

of products to disassemble. 

The majority of the existing disassembly plants are based on the manual labor. The 

number of obsolete products returning to the manufacturers increases 

exponentially. The products typically processed on disassembly systems are large 

and medium-sized electrical products such as TV sets, computers, home electronics 

or copy machines. As disassembling of electronic products is very expensive, great 

effort has been made by firms to automate their disassembly processes. To cope 

with such demand of automation, researches have studied different aspects of 

disassembly automation in recent years (Seliger, Basdere, Keil & Rebafka, 2002; 

Duta & Filip, 2008). However expectation on automated disassembly has not yet 

fulfilled owing to the severe constraints on disassembly technologies, and systems 

deals with missing product information, varying products, different product 

conditions and unpredictable product states (Wiendahl, Scholz-Reiter, Bürkner & 

Scharke, 2001). 

The focus of this work is to enable reconfigurable manufacturing technologies to 

attain some degree of adaptability during disassembly automation design using 

modular machine tools. By definition, a Reconfigurable Manufacturing System is 

designed at the outset for rapid change in hardware and software components, in 

order to quickly adjust production capacity and functionality within a part family in 

response to sudden changes in demand (Koren et al., 1999). Then reconfigurable 

manufacturing appears as a response to the need to adapt manufacturing systems 

to external variations (like product demand) as well as internal variations of the 

own manufacturing system, in a quick and cost-effective way. Among the 

technologies that have been developed to obtain a high degree of reconfigurability 

in manufacturing systems are software technologies that use open architecture 

controllers that allow the reconfiguration of the devices, and machine tools 

hardware technologies, with modular blocks that allow the adaptation in capacity 

and functionality to current needs (Xiaobo, Jiancai & Zhenbi, 2000). 

We present a new concept called Reconfigurable Disassembly System (RDS), which 

represents disassembly systems with reusability, scalability, agility and 

reconfigurability features. Similar to Reconfigurable Assembly Systems (Yu, Yin, 

Sheng & Chen, 2003), a RDS can be obtained from an automated disassembly 

system through the addition of reconfigurable software and hardware systems. The 

different subsystems that form a RDS are: a) one or more workstations with 

Reconfigurable Machine Tools (RMT) on which the disassembly tasks are actually 
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carried out, b) devices for loading the products and unloading the components, and 

c) a material handling system. RMT are machine tools with a modular structure 

(basic modules and auxiliary modules) that can be changed to obtain increased 

functionality or capacity for disassembly a family of similar products. Each RMT has 

its own basic modules so that the operating capacity is mostly provided by the 

auxiliary modules attached. That is why in the proposed approach only the 

auxiliary modules are taken into account. The physical layout of a RDS can be 

similar to that of a RAS, i.e. in series, carrousel or single station (Jain, Fukuda, 

Komma & Reddy, 2006). 

This paper deals with the design and sequencing of generic RDSs. To achieve this, 

a methodology has been developed to design the RDS (i.e. to group an amount of 

products during a time horizon into families and to configure the resources needed 

to disassembly each product family), and to find the best sequence for all product 

families (i.e. to find a sequence of the product families trying to minimize 

reconfigurability and operational costs). 

This paper is structured as follows. In Section 2 the methodology for grouping 

products into families in a RDS (subsection 2.1) and for sequencing the product 

families (subsection 2.2) is presented. In Section 3 a numerical illustration is 

presented to validate the methodological approach for the design phase 

(subsection 3.1) and the sequencing phase (subsection 3.2). Also a sensitive 

analysis with respect to cost coefficients is developed (subsection 3.3). Finally, in 

Section 4 main conclusions and further research are pointed out. 

2 Methodology for designing a RDS 

Different types and quantities of products must be disassembled within a certain 

time horizon in a Reconfigurable Disassembly System, using Reconfigurable 

Machine Tools and their available Modules. A Reconfigurable System is configured 

with the necessary RMT and modules to manufacture (or disassemble in our case) 

a family of similar products at the same time. Once a family is manufactured 

(disassembled), the system is reconfigured for manufacturing (disassembling) the 

following family effectively. In each change, the system incurs in a reconfigurable 

cost, which depends on the current configuration and the destination configuration.  

These features have been considered in the two-phase methodology developed for 

designing RDSs. The first phase (Product Families Formation) in the design of an 

RDS is the grouping of products to disassemble in families with similar features so 

that each family will require a different configuration of the RDS. Disassembling 
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similar products allow a reduction of Setups, Lead-times, Work-In-Process and 

Material Handling, thus increasing productivity. Then, the most cost-effective 

sequencing of the families is computed to find the most appropriate configuration. 

For the development of an algorithm to group products into families in a RDS, the 

following data are necessary: a) types and quantities of the products to 

disassemble within a certain time horizon, b) existing RMT and available modules 

library, c) operations and processing times required to disassemble each product 

type, and d) machines and modules required for each disassembly task. 

The second phase (Product Families Selection and Scheduling) consists on the 

selection and the disassembly sequence of the product families with the minimum 

operational costs, that is, reconfiguration costs and the costs of under-utilization of 

resources. A mathematical model has been developed using information from the 

first phase plus that related to operation costs. 

Figure 1 shows a schematic representation of the proposed two-phase approach, 

with 9 types of products to disassemble within a certain time horizon (A, B,…, I). 

As result of the first phase (Product Families Formation) 4 families are formed 

({A,C,D}; {B,E}; {F,H}; {G,I}). And the minimum cost sequence of families 

obtained from the second phase (Product Families Selection and Scheduling) is 

{A,C,D}→{F,H}→{B,E}→{G,I}. For each family of products to disassemble the 

required machines (RMT) and modules configuration and the corresponding total 

costs are calculated. 

 

Figure 1. Schematic representation of the proposed approach 
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Further research will deal with the problem of sequencing the disassembly tasks for 

each product as well as scheduling the products within each family. 

2.1 Product families formation 

The proposed methodology is based on hierarchical clustering techniques, which 

have been commonly used in cellular manufacturing machine grouping and part 

family formation (Vakharia & Wemmerlov, 1995). These techniques carry out a 

progressive grouping of products using similarity coefficients that measure the 

degree of affinity of each pair of products. Two products are considered more 

similar the longer the time that they share the same system resources. 

A specific feature that will be taken into account is the limitation (for technical 

reasons) on the maximum number of auxiliary modules that a RMT can support. 

Therefore, products can be grouped within a family provided that the total number 

of required modules on the corresponding required machines does not exceed the 

maximum number of modules allowed. 

Let 

• i: Index of the N types of products to disassemble 

• j: Index of the P(i) disassembly operations/tasks for disassembling product 

type i 

• m: Index of the M available machine tools (RMT)  

• k: Index of the K available auxiliary modules 

• Um: Maximum number of auxiliary modules supportable by machine m 

• Di: Demand of product i along time horizon considered 

• o: Index of the O operation types 

• o(j,i): Operation type of disassembly task j of product i 

• tij: Duration of disassembly task j of product i 

• δomk=1, if operation type o requires module k in machine m; =0, otherwise 

We assume that each operation type can only be performed on one of the 

machines. We also assume that for each product the number of modules required 
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by all its disassembly tasks in a specific machine do not exceed the maximum 

number of modules that the machine can support.  

In order to account for the possibility that the products to disassemble arrive in 

different conditions so that not all their disassembly tasks may need to be 

performed we consider as known the following data 

• fij: Relative frequency (i.e. probability) of disassembly task j of product i 

being required 

From the given data the processing time (PTimk) of each product i on each resource 

(i.e. on each combination of machine m and module k) can be computed as 

∑
=

⋅⋅⋅=
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1
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Equation 1. Processing time of each product on each resource  

The similarity of two products can be measured taking into account the fraction of 

their overall processing times that are common, i.e. that are performed on the 

same machine using the same modules. Thus, the proposed similarity coefficient 

Sii’ between two products i and i’ is  
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Equation 2. Similarity coefficient between two products 

Thus, the similarity between two products is zero if they have no common resource 

(i.e. same machine m and module k) and would be unity if they required exactly 

the same resources for exactly the same duration. Moreover, it can be shown that 

this similarity coefficient coincides with the Jaccard similarity coefficient commonly 

used in cell formation if all the operation processing times and product demands 

are the unity.  

In order to prevent the grouping of products requiring more modules on a machine 

that it can support, the  similarity coefficient Sii’ between two products is assigned 
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a value of -1 if for a certain machine m the number of different modules required 

by both products exceed Um. 

To form the product families a hierarchical clustering algorithm, namely ALC 

(Average Linkage Clustering), is proposed (Vakharia & Wemmerlov, 1995). The 

algorithm first groups the two products with the highest similarity coefficient. Next, 

in each step, either two non-grouped products are clustered or a non-grouped 

product is added to an existing group or two groups are merged. In the second 

case the similarity between a product and product group is computed as the 

average of the similarity coefficients between the non-grouped product and each 

product in the product group. In the third case, the similarity between two product 

groups is analogously computed as the average of the similarity coefficients 

between the products in each group, i.e. 

'

''
'

´
ss

si si
ii

ss NN

S
S

⋅
=
∑∑
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Equation 3. Similarity coefficient between two product groups 

where s, s’ are the two product groups, Sss’ the corresponding similarity coefficient, 

and Ns, Ns’ the number of products in groups s and s’ respectively. 

Every time that adding a product to a group or merging two groups the constraint 

on the maximum number of modules that each machine can support is checked so 

that in case the constraint is violated the corresponding grouping is considered 

infeasible and the its similarity coefficient assigned a value -1. 

This hierarchical agglomerative process of selecting the maximum similarity 

coefficient, carrying out the corresponding grouping step and updating the 

remaining similarity coefficients matrix is repeated until all the products are 

grouped in a single family or no additional grouping of products is feasible. The 

results is a dendogram, which is a an inverted tree that shows the successive 

grouping steps along with the similarity coefficient levels at which each grouping 

step was carried out. From this dendogram and selecting a certain level of the tree, 

the number and composition of the families can be obtained (Galan, Racero, Eguia 

& Garcia, 2007). Note, however, that in the proposed approach the number of 

families is not given; the optimal number of families is computed taking into 

account the different costs incurred. Thus, in the next section a mathematical 
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programming model is presented for the selection of the number of families and 

their sequencing that leads to minimum costs. 

2.2 Product families selection and sequencing 

To select the dendogram level and the sequencing of the corresponding families a 

minimum costs criterion is proposed. The different operating costs of disassembling 

products in a RDS can be defined as in (Galan, Racero, Eguia & Canca, 2007), i.e.: 

• Reconfiguration costs: costs due to changing the configuration of the RDS 

(machines and modules) when changing the product family to disassemble. 

These costs include: 

o Cost of adding or removing from the system a module k from a 

machine m (αmk) 

o Cost of removing from the system a machine m currently not 

required (βm) 

o Cost of adding a required machine m (γm) 

• Underutilization costs: costs for not using at the same level all the resources 

assigned to the system for the disassembly of all the products in a family. 

These costs include: 

o Cost per unit time of underutilization of module k in a machine m 

(εmk) 

From the above costs coefficients the reconfiguration costs (Rss’) of changing from 

disassembly the products of family s to the products of family s’, both families 

belonging to the same dendogram level can be computed as the total costs of 

adding and removing machines and modules 
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Equation 4. Reconfiguration costs 

where the indicator functions Δ and Δ’ are defined as: Δ(a,b)=1 if a>0 and b=0; 

Δ’(a,b)=1 if a=0 and b>0. 
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Also, the resource underutilization costs (Hs) associated to a family s can be 

computed as the costs of not maximally using all the resources allocated to the 

family. Thus, compared with the resource with maximum utilization, all the other 

resources incur costs proportional to the difference in utilization levels, i.e. 

)))((
1
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∑ ∑∑∑
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imk

si
kimkm

K

k
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Equation 5. Underutilization costs 

Given the reconfiguration and underutilization costs computed above the problem 

of finding the optimal dendogram families and their sequencing corresponds to 

solving a Travelling Salesman Problem (TSP) for each dendogram level and 

selecting the level with minimum cost. There exist in the literature different MILP 

formulations of TSP (Lawler, Lenstra, Kan & Shmoys, 1992). In this paper a 

network-flow MILP model is used based on the three-index VRP formulation of 

Christofides, Mingozzi and Toth (1981). 

Data 

• i, j: Indexes of the product families to disassemble 

• l: Index of the dendogram levels  

• L: Number of dendogram levels (level 1= each product forms a family; level 

L = all products belong to the same, single family) 

• Fl: Set of product families at dendogram level l, Ll ,..,1=  

• Nl: Number of product families at dendogram level l, i.e., Nl=|Fl| 

• Rijl: Reconfiguration cost of changing from family i to family j both belonging 

to dendogram level ( 1,..,1 −=≠∈∈ LlijFjFi ll
) 

• Hil: Resource underutilization cost of family i of dendogram level l (

LlFi l ,..,1=∈ ) 

Variables 

• Tijl = 1, if products of family i in dendogram level l are disassembled just 

before those of family j both belonging to dendogram level l (

LlijFjFi ll ,..,1; =≠∈∈ ) 
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• Kl = 1, if the product families of dendogram level l are selected ( Ll ,..,1= ) 

• Uil ≥0, ancillary variables used to prevent family assignment cycles in each 

dendogram level ( 3,..,1 −=∈ LlFi l
) 

Objective function 

The objective function is the minimization of the sum of reconfiguration costs 

between families plus underutilization of resources assigned to each family. 

MILP Model 
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Equation 6. MILP model 

Constraints 

0: One and only one dendogram level is to be selected 

1: The families corresponding to the selected dendogram level will be 

sequentially processed once in each processing cycle. The families 

corresponding to the other dendogram levels will not be considered 

2: For each family of the selected dendogram level there must be exactly one 

predecessor family and another successor family both of the selected level 

3: Since the different families selected are sequenced cyclically, the first one can 

be any of them 
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4: Anti-cycle constraints 

5: Integrality (variables T and K) and non-negativity (variables U) constraints 

3 Numerical illustration  

In order to validate the proposed methodology, in this section a simple example 

with five product types and four RMT is presented. Tables 1 and 2 show the weekly 

product volumes, the corresponding disassembly tasks (together with their 

duration) and the RMT plus auxiliary modules required by each operation type. 

Product Volume Operation type (Time in seconds) 
P1 80 O1 (140), O2(115), O5(80) 
P2 55 O1 (70), O2 (50), O4 (55), O5 (130) 
P3 25 O3 (120), O4 (85), O5 (125) 
P4 70 O1 (110), O2 (65), O4 (100), O5 (90) 
P5 30 O2 (75), O3 (95), O4 (105) 

Table 1. Weekly product volumes and disassembly tasks 

Operation type RMT Auxiliary modules 
O1 M4 7, 8, 9, 11, 12 
O2 M3 7, 8, 12 
O3 M1 9, 11, 12 
O4 M2 7, 8, 9, 10, 11 
O5 M4 8, 10, 11 

Table 2. Resources required by each operation type 

The maximum number of auxiliary modules than any of the RMT can support (Um) 

is 6. We assume that all units of each product require all the disassembly tasks, 

i.e. the relative of all disassembly tasks (fij) is unity. Finally, to simplify the 

computations let us assume that the cost coefficients are αmk=1, βm=10, γm=10 y 

εmk=0.001 for all machines m and modules k. 

3.1 Phase 1: Hierarchical clustering algorithm 

Table 3 shows the similarity coefficients Sii’ computed for each pair of products 

using the Equation 2. 

 Product 
Product P2 P3 P4 P5 

P1 0,406 0,077 0,516 0,053 
P2  0,274 0,591 0,299 
P3   0,174 0,469 
P4    0,196 

Table 3. Similarity coefficients for each pair of products 

According to the ALC algorithm, initially each product is assigned to its own family. 

The first grouping step would involve the two products with highest similarities, 
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which in this case are P2 and P4 (shown in bold in the table). Updating the 

similarity coefficient matrix after that grouping, using the average similarity 

criterion (Equation 3), leads to the leftmost matrix of table 4. The highest similarity 

coefficient in that table corresponds to grouping P3 and P5 into a new family, 

{P3,P5}. The next grouping step corresponds to the matrix in the center of table 4 

and would result in adding P1 to family {P2,P4}. The next and last step is merging 

both families. Figure 2 shows the corresponding dendogram. Note that in this 

example no grouping is infeasible in terms of requiring more module on a machine 

than this can support. 

 Family   Family   Family 
Family P1 P3 P5  Family P3,P5 P1  Family P3,P5 
P2,P4 0,461 0,224 0,247  P2,P4 0,236 0,461  P2,P4,P1 0,179 

P1  0,077 0,053  P3,P5  0,065    
P3   0,469        

Table 4. Similarity coefficients for successive grouping steps 

 

Figure 2. Dendogram representing successive grouping steps 

3.2 Phase 2: Family sequencing model 

The application of model (Equation 6) to this instance involves 45 binary variables, 

9 continuous variables and 53 constraints. The model has been solved using 

optimization software CPLEX giving an optimal solution of 319,33. The binary 

variables selected are K3=1, T{P1},{P3P5},3=1, T{P3P5},{P2P4},3=1 and T{P2P4},{P1},3=1. 

This means that the optimal solution corresponds to dendogram level 3 which, 

looking at Figure 2, corresponds to three families, namely {P1}, {P2,P4} and 

{P3,P5}. The variables Tijl indicate the minimum cost order in which the three 

families must be sequenced. In this case, there are two possible sequences: 

{P1}→{P2,P4}→{P3,P5}→{P1} and {P1}→{P3,P5}→{P2,P4}→{P1} 
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The sequence obtained by CPLEX is the second one. The minimum cost solution of 

model found by CPLEX has been validated computing, using Equations 4 and 5, the 

costs of all possible family sequences for all levels of the dendogram of Figure 2. 

3.3 Sensitiviy analysis with respect to cost coefficients 

The reconfiguration cost coefficiencts (αmk, βm, γm) and the underutilization cost 

coefficients (εmk) to be used in Equations 4 and 5 respectively must be estimated 

based on previous experience (i.e. historic data). The former take into account 

whether a machine or an auxiliary module is or not required by one family but not 

by the one that follows it. The latter corresponds to the cost per unit time of not 

using an auxiliary module that has been included in the configuration for 

disassembling a given family. In the first dendrogram level families are formed by 

a single product and therefore, for each family, the RDS will be configured 

specifically for one product which means that there will not be underutilization 

costs although there will be frequent reconfigurations. In other words, for low 

values of the dendrogram level reconfigurations costs are higher and 

underutlization cost lower. An the contrary occurs for larger values of the 

dendrogram level. Hence, the lower the values of αmk, βm, γm and the higher the 

values of εmk the smaller the families and the higher the number of 

reconfigurations. Note that the underutilization cost εmk is different to the other 

cost coefficients since it is measured per unit of time. 

Table 5 shows the results of solving model from Equation 6 (and checking the 

results by manual computation of the best family sequence for each dendrogram 

level) for different values of the cost coefficients. 

Cost coefficients Minimum cost solution Best solution costs 

αmk βm γm εmk Sequence RC UC TC Level 1 Level 2 Level 3 Level 4 Level 5 

1 10 10 0.001 P1→{P3,P5}→{P2,P4} 62 257.33 319.33 358.45 358.45 319.33 377.33 444.35 

0.1 1 1 0.001 P1→{P2,P4}→P3→P5 
P1→P2→P4→P3→P5 11.4 244.45 255.85 255.85 255.85 263.53 348.53 444.35 

1 10 10 0.0001 {P1,P2,P3,P4,P5} 0 44.44 44.44 138.45 138.45 87.73 66.53 44.44 

1 10 10 0.01 P1→{P2,P4}→P3→P5 
P1→P2→P4→P3→P5 114 2444.5 2558.5 2558.5 2558.5 2635.25 3485.25 4443.5 

10 100 100 0.001 {P1,P2,P3,P4,P5} 0 444.35 444.35 1384.45 1384.45 877.33 665.33 444.35 

Table 5. Results for different cost coefficients (RC=Reconfigurations cost, 

UC=Underutilization cost, TC=Total cost) 
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4 Conclusions and further research 

The actual disassembly plants are mainly based on the manual labor and great 

effort has been made by firms to automate their disassembly processes. Recent 

researches have studied different aspects of disassembly automation but 

expectation on automated disassembly has not yet fulfilled owing to the severe 

constraints on disassembly technologies. Reconfigurable manufacturing 

technologies can attain some degree of adaptability during disassembly automation 

design using modular machine tools. In this paper an innovative methodology for 

the design of a new automated disassembly system that uses reconfigurable 

technologies have been presented. The new automated disassembly system has 

been called Reconfigurable Disassembly System (RDS) and its particular modular 

structure has been included into the two phase methodological approach.  

In the first phase products are grouped into families taking into account the 

similarities among the products to disassemble. Appropriate similarity coefficients 

have been proposed using the resources, the processing times required for 

disassembling each product and the number of units of each product. A hierarchical 

clustering approach (namely Average Linkage Clustering Algorithm, ALC) has been 

used, representing in a dendogram the successive possible groupings (i.e. families) 

that may be formed. The second phase consists in a Mixed Integer Linear 

Programming (MILP) model that selects the families to consider and their 

processing sequence. This is done using a minimum cost criterion that considers 

both the costs of reconfiguring the RDS between two consecutive families (thus 

adding/removing needed/unneeded machines and modules) and the cost due to 

the underutilization of the assigned resources. 

In order to illustrate and validate the methodology a small-size instance has been 

solved numerically and with the proposed model using the CPLEX software. The 

MILP model proposed for the second phase for family sequencing is of Travelling 

Salesman Problem (TSP) and therefore its complexity grows exponentially with the 

number of products to disassemble. That is why in real-world problems in which 

the number of products is usually high it may be advisable to solve the model 

approximately with a metaheuristic. Further research is required also to complete 

the methodology with two additional phases: one for determining, for each 

product, the optimal sequence of its disassembly tasks and another for computing 

the optimal (i.e. with minimum makespan) intra-family product sequence. 
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