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Abstract:  

Purpose: This paper is concerned with a reverse logistic system where returns are 

stochastically dependents on sales. The aim of the paper is to assess the influence 

on optimal production capacities when is assumed that returns are stochastically 

independent of sales. 

Design/methodology/approach: This paper presents a model of the system. An 

approximated model where is assumed that returns are stochastically independent 

of sales, is formulated to obtain the optimal capacities. The optimal costs of the 

original and the approximated models are compared in order to assess the 

influence of the assumption made on returns. 

Findings: The assumption that returns are stochastically independent of sales is 

significant in few cases.  

Research limitations/implications: The impact of the assumption on returns is 

assessed indirectly, by comparing the optimal costs of both models: the original 

and approximated.  

Practical implications: The problem of calculating the optimal capacities in the 

original model is hard to solve, however in the approximated model the problem is 
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tractable. When the impact of the assumption that returns are stochastically 

independent of sales is not significant, the approximated model can be used to 

calculate the optimal capacities of the original model. 

Originality/value: Prior to this paper, few papers have addressed with the 

problem of calculating the optimal capacities of reverse logistics systems. The 

models found in these papers assumed that returns are stochastically independent 

of sales. 

Keywords: reverse logistics, remanufacturing, stochastic demand, optimal cost 

 

1 Introduction  

Interest in reverse logistics has increased in recent years with the growing concern 

for the environment in the industrialized world. Companies have recognized that 

their customers are increasingly seeking products and services that are 

environmentally sound, so product recovery can generate not only direct benefits 

(reduction in use of raw material and waste disposal costs and recovery of value of 

end-of-life products), but also indirect benefits (demonstration of environmentally 

responsible behavior and improved customer relations). 

The management of products that have completed their useful life is now a key 

factor in business decision-making processes. The use of reverse logistics can 

provide companies the tools they need to act efficiently.  

Much of the research in the field of reverse logistics has focused on tactical and 

operational rather than strategic aspects, with the bulk of studies examining 

production planning and inventory management (Rubio, Chamorro & Miranda, 

2008). Inventory management in a reverse logistics system differs from that in a 

traditional logistics system when the recovery system interacts with the existing 

manufacturing system, i.e., in cases where the recovered and the new product are 

identical. In practically all the articles that present mathematical inventory 

management models for reverse logistics systems, it is assumed that: 

• New and recovered products are indistinguishable from each other. This 

assumption holds true for a small number of industrial cases (e.g. single-use 

cameras and toner cartridges in Atasu, Guide & Van Wassenhove, 2008) but 

it makes for analytic tractability and perhaps a reasonable first approach.  

http://dx.doi.org/10.3926/jiem.2011.v4n3.p504-522�


Journal of Industrial Engineering and Management -  http://dx.doi.org/10.3926/jiem.2011.v4n3.p504-522 
 

- 506 -  
 

 
 

• The system has unlimited resource capacities (production, recovery, and 

storage).  

• In the models that deal with stochastic demand and returns, demand and 

returns are stochastically independent (e.g. Van der Laan & Salomon, 1997, 

Fleischmann, Kuik & Dekker, 2002; van der Laan, 2003; Fleischmann & 

Kuick, 2003; Inderfurth, 2004).  

Obviously, assuming that demand and returns are independent can lead to the use 

of less-than-optimal inventory policies (Kiesmüller & van der Laan, 2001). As a 

result, one of the important issues to consider when designing a stochastic model 

with reverse logistics is whether or not assuming the independence of demand and 

returns.  

Decisions regarding manufacturing capacity are generally taken in the context of 

strategic planning, whereas production and inventory management decisions are 

considered to be of a more tactical nature, meaning that they might be less than 

optimal if not integrated into the decision-making process as a whole (Hax & 

Candea, 1984). 

Several reviews have summarized studies dealing with capacity management (Luss, 

1982; Van Mieghem, 2003; Wu, Erkoc & Karabuk, 2005). Van Mieghem (2003), for 

example, described the different types of problems related to capacities—

increases/decreases, choice of technology, acquisition, and location—and discussed 

how these problems were addressed in the literature. The problem of jointly 

managing capacities and inventory levels has been dealt with by numerous studies 

(Van Mieghem, 2003). This type of management approach consists of optimizing a 

function that contemplates manufacturing capacity acquisition and maintenance 

costs and production and inventory management costs. A key factor when 

addressing this problem is whether demand is stochastic or deterministic. 

Deterministic demand is not very realistic but may be of use for drawing 

conclusions regarding the behavior of systems, simply because it is easier to 

analyze. 

On reviewing the literature, we can conclude that few studies have analyzed the 

problem of jointly determining capacity and inventory in reverse logistics systems 

(Georgiadis, Vlachos & Tagaras, 2006; Serrato, Ryan & Gaytán, 2007; Kannan, 

Noorul Haq & Devika, 2009).  
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In this paper, we study a stochastic system such that new and recovered products 

are indistinguishable, manufacturing and storage capacities are bounded and the 

quantity of products collected in a period depends on the quantities of products sold 

in precedent periods. The last assumption leads to the dependency of returns and 

demand.  

With these assumptions, the optimal manufacturing and remanufacturing policies 

are hard to calculate, mainly because of the dependence of returns and demand. 

One way to improve the tractability of the system is doing the calculations 

assuming that demand and returns are independent, and then analyzing how this 

hypothesis is influencing the outcome. Precisely, the aim of this paper is studying 

the impact on the optimal capacities of assuming that demand and returns are 

independent. We proceed as follows: first we calculate the optimal capacities 

assuming that demand and returns are stochastically independent, and secondly 

verifying the results obtained by comparing the costs with the costs calculated by 

simulation. Clearly, in the first step, the assumption is obviously not true but, 

thanks to the simulation, we can know the impact of this assumption on the results. 

In section 2 we describe the system we are going to study and in section 3 we 

describe the method used to calculate the optimal manufacturing and 

remanufacturing policy under the assumption that manufacturing and storage 

capacities are known and the returns are independents of demand. We also explain 

how to calculate optimal capacities. In section 4 we give a numerical example to 

analyze how capacities change with variations in return probability and to study the 

influence of the assumption of independency of returns on de optimal costs. Finally, 

in section 5 we present the main conclusions of the study. 

2 Description of the system 

The system consists of a company that produces, sells, and recovers a product 

for which it has manufacturing, remanufacturing, and finished product storage 

systems. The remanufacturing system has sufficient capacity to remanufacture 

all the products returned.  

Assumptions of model: 

• Time is discrete and the time horizon is infinite. 
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• Demand is a sequence of integer-valued random variables independent and 

identically distributed with a known probability distribution; D is the 

maximum value of demand. 

• The remanufactured product is indistinguishable from the newly 

manufactured product. 

• The useful life of the product ends between periods T1 and T2 after the 

product has been sold; it is a random variable and the probability 

distribution is independent of the sales period. πτ  is the probability that the 

useful life of a product has a duration of τ periods (τ = T1,...,T2).  

• Every unit of product has the same probability of being returned to the 

manufacturer when their useful life has finished. We name ρ the probability 

of an end-of-life product being returned. Therefore, ρ·pt is the probability 

that a unit sold in period t will be returned in period t+τ. 

• Demand that cannot be satisfied with manufactured or remanufactured 

products is met through an external supply channel with capacity greater 

than (T2 – T1 + 1 )·D.  

• Products that are manufactured and remanufactured in a given period are 

available for sale in the same period. 

The costs for the company are as follows: 

• The manufacturing system has a cost per period Cp(P) (dependent on 

manufacturing capacity P) and a cost cp per unit produced.  

• The storage system has a cost per period Cs(S), which is dependent on 

storage capacity S.  

• e: unit cost of disposing of a returned product 

• f: manufacturing order cost 

• cr: remanufacturing unit cost 

• h: holding cost 

• cec: external channel unit cost 
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It is assumed that functions Cp(P) and Cs(S) are continuous non-decreasing 

functions and are unbounded when P and S go to infinity. 

The following variables are defined: 

• st: stock available at the end of period t 

• ut: units manufactured in period t 

• vt: units remanufactured in period t 

• dt: product demand in period t; this is a random integer variable with pd = 

p(dt = d), (d = 0,...,D) 

• rt: units returned in period t; this is a random integer variable with qr = p(rt 

= r), (r = 0,…,(T2-T1+1)·D. 

The chronological order of events in period t is as follows: 

• Stock levels available at the end of the preceding period (st-1) are analyzed. 

• A decision is taken on how many products to manufacture (ut), between 0 

and min(P,S-st-1). 

• Demand is satisfied with existing stock, newly manufactured products, and 

external channel supplies.  

• Returned products are remanufactured in this period as follows. If there are 

sufficient returns, these products are remanufactured until the warehouse is 

full and all other returns are disposed of. Otherwise, all returned products 

are remanufactured. 

The quantity of products purchased from the external channel is max (0, dt - st-

1 - ut). 

The quantity of products to remanufacture is vt = min (S – s’t, rt) where s’t = 

max (0, st-1 + ut - dt) is the stock level after demand has been met. 

The stock at the end of the period will be st = s’t + vt. Therefore, st is a random 

variable that depends on previous stock levels st-1, random variables dt and rt, 

and the decision ut. Note that the st variables have values between 0 and S. 

The cost incurred in period t is: 
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ct = Cp(P) + Cs(S) + cp·ut + cr·vt + e·max(0, rt - vt,) + h·st + 

+ cec·max(0, dt - st-1 - ut) + f·max(0, min(1, ut))   (1) 

Therefore, ct is a random variable that depends on random variables st-1, st, dt 

and rt , on decision ut, and on remanufacturing capacity P and storage capacity 

S. 

2.1 Problem definition 

We want to calculate manufacturing capacities P and storage capacities S that 

minimize the expected cost in a period: 

{ }− ≤
,

, 1,
minmin ( ) ( )   

P S
t P S tP S u

E c u s P  

The problem is resolved by calculating the P and S values that minimize the 

expected cost E(ct) when the optimal policy uP,S is used. To calculate the 

optimal manufacturing policy for fixed P and S values, the following problem 

must be resolved:  

{ }− ≤
,

, 1min ( ) ( )   
P S

t P S tu
E c u s P  

Calculating the expected cost will be more or less complicated depending on 

the behavior of returns. If returns form a succession of independent random 

variables that are also independent of demand, the problem becomes 

considerably simpler. As we have mentioned in the introduction, it is not 

surprising thus that the assumption that returns are independent of demand is 

common in literature.  

In order to make the problem computationally tractable, we proceed as 

follows:  

• We calculate the optimal capacities and the optimal cost assuming that: a) 

returns form a succession of independent random variables with a known 

probability distribution, and b) the probability distribution of returns is 

calculated according to the useful life of the products. A system that 

satisfies these assumptions is an approximation of the system described in 

section 2. In section 3 we describe how the optimal capacities are 

calculated.  
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• We calculate the expected cost of the system described below using the 

capacities and the manufacturing policy obtained in the first step. The 

expected cost is calculated by simulation.  

• We compare the costs obtained in the steps 1 and 2. With this comparison 

we assess the influence of the succession independence assumption (rt) on 

the result. 

3 Calculating optimal manufacturing and storage capacities 

Let us assume that returns (rt) form a sequence of integer-valued random 

variables independent and identically distributed with probability distribution qr 

= p(rt = r), r = 0,…,(T2 –T1 + 1)·D. By fixing P and S, we can see that the 

problem of calculating the optimal policy is a Markov decision problem with an 

infinite horizon and average reward criterion, and an optimization criterion 

consisting of minimizing the expected remuneration value.  

The state in period t is determined by st-1, the state space is {0,1,…,S}, the 

actions in each period are defined by the manufacturing quantity ut, the set of 

actions is {0,1,…,min(P,S)}, and the remuneration is related to the cost 

incurred in a given period, and is equal to – (ct - Cp(P) - Cs(S)). The negative 

sign converts the cost function into a remuneration function; we subtract 

capacity costs from the cost per period to obtain a simpler expression of the 

remuneration function. 

To define the Markov decision problem, we need to determine pij(u), the 

probability of transition between states i and j when decision u is taken. In 

other words pij(u) = p(st = j | st-1 = i, ut = u) with ≤ ≤0 min( , - )u P S i . This is 

done in the next subsection. 

3.1 The transition probability 

In the section 2, we saw that the variable state st was dependent on st-1 and 

the random variables dt and rt. This dependence can be expressed as: 

st = max(0, st-1 + ut - dt) + min(S – max(0, st-1 + ut - dt), rt) 

Therefore, the probability of transition between states is expressed by: 

( ) ( )
( )

( )
,, i u j

ij t t
d r

p u p d d p r r
+∈Ω

= = ⋅ =∑  
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Where the domains Ωi+u,j contain the values (d,r) such that starting from state i 

and taking decision u, we progress to state j. In other words, if we make k = 

i+u, we define the domains as follows: 

( ) ( ) ( )( ){ }0 0 0 0Ω = ∈ × = +      , , , , | max , - min - max , - ,k j d r D R j k d S k d r  

For ≤ ≤ +0 k P S  and ≤ ≤j S0 . To calculate the domains Ωi+u,j , we distinguish 

between 3 cases: 

Case 1: j < S and ≤ +j i u  

( ){ } ( ) ( ){ }+Ω = + ≤ ≤ ∪ + + ≤ ≤ + +, , | - , | 0 min -1, - ( )i u j d j i u d D r j i u r r j D j i u  

Case 2: j < S and > +j i u  

( ){ } ( ) ( ){ }+Ω = + ≤ ≤ ∪ + + ≤ ≤ + +, , | - , | - - min - 1, - ( )i u j d j i u d D r j i u r j i u r j D j i u  

Case 3: j = S 

( ){ }+Ω = + ≤ ≤ ≤ ≤ ∪, , | ,i u j d r i u d D S r M ( ) ( ){ }≤ ≤ + + ≤ ≤, | 0 min , - 1 , - -d r d D i u S d i u r M  

Where M = (T2-T1+1)·D. Hence 

( )
( )

( )
( )

( )

+ +

= + =

+ +

= + = +

= + =

= = + = + + = < ≤ + ≤

= = = + = + + = < > +

= = + = + + ≥

∑ ∑

∑ ∑

∑ ∑

min -1, -( )

0

min -1, -( )

-( )

· ( ) ( - )· ( )

( ) · ( ) ( - )· ( )

· ( ) ( - )· (

j D j i uD

t t t t
d i u r

j D j i uD

ij t t t t
d i u r j i u

D M

t t t t
d i u r S

p d d p r j p d i u j r p r r j S j i u S

p u p d d p r j p d i u j r p r r j S j i u

p d d p r r p d i u S k p r
( )+ +

= +

= + ≤











∑
min -1, -( )

-( )

)
S D S i u

k S i u

k j S i u S

 

Note that pij(u) is equal to ( )( )+∈ Ω ,, i u jp d r , the probability that ( ) +∈ Ω ,, i u jd r . 

3.2 State transition cost 

State transition costs will be the expected value of the costs of each of the 

possible paths towards the transitions. Given manufacturing capacities P and 

storage capacities S, we want to calculate cij(u): the expected cost of the 

transition from state i to j when decision u is taken, i.e. cij(u) = E(c | i,j,u) 

where c = ct - Cp(P) - Cs(S).  

Defining 
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c(i,j,u,d,r) = cp·u + cr·min(S – max(0, i + u - d), r) + e·max(0, r - vt,) + h·j + 

  + cec·max(0, d - i - u) + f·max(0, min(1, u)) 

( )
( )

( )
( )( ), ,

,
, , ,

( )
( ) ( , , , , ) , | ( , ) ( , , , , )

( , )i u j i u j

t t
ij i u j

d r d r i u j

p d d p r r
c u c i j u d r p d r d r c i j u d r

p d r+ +

+
∈Ω ∈Ω +

= ⋅ =
= ⋅ ∈ Ω = ⋅

∈ Ω
∑ ∑

 

Hence, 

( )
( ) ,,

( )· ( ) ( , , , , ) ( )
i u j

ij ij t t
d r

c u p u c i j u d r p d d p r r
+∈Ω

= ⋅ = ⋅ =∑  

Let us distinguish between 3 cases: 

Case 1a: j < S and ≤ +j i u : 

( ) ( ) ( )( )
( )+ +

+ +
=

 = + + + ∑
min -1, -( )

-
0

· · · · ·max 0,min 1, · ·
j D j i u

ij ij p r i u j r r
r

c u p u c u c r h j f u p q +

 ( ) ( )( )
= +

 + + + + + ∑ · · · · - - ·max 0,min 1, · ·
D

p r ec d j
d i u

c u c j h j c d i u f u p q  

Case 1b: j < S and j > i + u: 

( ) ( ) ( )( )
( )

( )+ +

+ +
= +

 = + + + ∑
min -1, -( )

-
-

· · · · ·max 0,min 1, · ·
j D j i u

ij ij p r i u j r r
r j i u

c u p u c u c r h j f u p q +

 ( ) ( )( )
= +

 + + + + − − + ∑ · · · · ·max 0,min 1, · ·
D

p r ec d j
d i u

c u c j h j c d i u f u p q  

Case 2: j = S 

( ) ( ) ( ) ( ) ( )( )
( )

( )+ +

+ +
== +

 = + + + + ∑ ∑
min -1, -( )

-
-

· · · · - · ·max 0,min 1, · ·
S D S i u M

ij ij p r i u S k r
r kk S i u

c u p u c u c k e r k h S f u p q

+ ( ) ( ) ( )( )
= + =

 + + + + + ∑ ∑ · · · - · · - - ·max 0,min 1, · ·
D M

p r ec d r
d i u r S

c u c S e r S h S c d i u f u p q  

3.3 Calculating the optimal manufacturing policy 

For each manufacturing capacity P and storage capacity S, the optimal policy is 

calculated by resolving the following linear program (Puterman, 1994, p. 391 

ss.): 

[MIN] 
= =
∑ ∑ ,

0 0
( )·

iPS

i i u
i u

c u y   s.t.: 
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= = =

=∑ ∑ ∑, ,
0 0 0

- ( )· 0
ji PP S

i u ji j u
u j u

y p u y   i = 0,…,S 

= =

=∑ ∑ ,
0 0

1
iPS

i u
i u

y  ≥, 0i uy  i = 0,…,S, u=0,…,Pi 

where Pi = min(P,S-i), yi,u are the variables, and ci(u) is: 

=
= ∑

0
( ) ( )· ( )

S

i ij ij
j

c u p u c u  

If y*
i,u is a basic optimal solution for the previous linear program, the optimal 

policy in state i will be to produce u if y*
i,u > 0 and  

= =
∑ ∑ *

,
0 0

( )·
iPS

i i u
i u

c u y  

is the expected cost of applying the above optimal policy. Therefore, the 

expected cost incurred in a period when the optimal policy is applied is 

CO(P,S) = Cp(P) + Cs(S) + 
= =
∑ ∑ *

,
0 0

( )·
iUS

i i u
i u

c u y  

3.4 Calculating optimal capacities 

In the previous section, we described how to calculate the optimal policy and 

obtain the expected cost when this policy is applied with fixed manufacturing 

and storage capacities P and S. We also defined the function CO(P,S) which at 

each (P,S) point takes the expected cost value on applying the optimal policy 

when manufacturing capacity is P and storage capacity is S. The optimal 

capacities in this case will be those that minimize the function CO(P,S). 

Given that ≤tu S  and that Cp(P) is an increasing function, the optimal value is 

achieved for a value of ≤P S . Let S* be the optimal storage capacity, then S* 

is bounded. Indeed, we know from (1), that 

( ) ( )≤ ∀, ,s oC S C P S P S  

In particular, for optimal manufacturing and storage capacities (P* and S*, 

respectively),  

( ) ( )≤* * *,s oC S C P S  
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We calculate CO(P0,S0) for some (P0,S0) and calculate SMAX such that Cs(SMAX) = 

CO(P0,S0). SMAX exists as Cs(S) will reach the value of CO(P0,S0). If not, Cs(S) 

would be a bounded function. This gives 

( ) ( ) ( ) ( )≤ ≤ =* * *
0 0, ,s o o s MAXC S C P S C P S C S  

And therefore ≤*
MAXS S  as Cs(S) is a non-decreasing function. 

4 Numerical example 

In the following example, we study the optimal storage and manufacturing 

capacities and the optimal cost when there are variations in cp (cost per unit 

produced) and h (holding cost). The following parameters are used: 

D = 8; p = (0, 0, 0.05, 0.1, 0.2, 0.3, 0.35) 

T1 = 1, T2 = 3;  π  = (0.15, 0.25, 0.60), ρ = 0.7 

cr = 5, e = 10, f = 25 , cr = 5, cec = 30 

=( )pC P P ,  =( ) 3·sC S S  

We took 10 values for cp (5, 6, …, 15) and 10 values for h (0, 1, …, 10). For each 

pair (cp,h), we follow the procedure described in section 2.1: we calculate the 

optimal cost and the optimal capacities in the approximated system, we calculate 

the expected cost of the system described in section 2, and we compare the costs 

obtained in the previous steps. 

4.1 Calculating the optimal cost in the approximated system 

Table 1 shows the optimal capacities and the optimal cost calculated for each pair 

(cp,h) in the approximated system. 

In the system described in section 2, the random variables rt (t = 1,2,…) form a 

succession of random variables that are dependent on demand and on each other. 

We obtain the approximated model by a) relaxing this fact and assuming that 

returns form a succession of independent random variables, and b) calculating the 

probability distribution of rt following the appendix. Figure 1 shows the probability 

distribution of returns, qr, for the example.  
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h 

cp = 5    cp = 6   cp = 7   cp = 8   cp = 9 
    S* P* Cost   S* P* Cost   S* P* Cost   S* P* Cost   S* P* Cost 
    0 16 10 49,1   16 10 50,9   16 10 52,7   16 10 54,5   16 10 56,3 
    1 12 7 57,6   12 7 59,4   12 7 61,1   12 7 62,9   12 7 64,6 
    2 11 6 64,7   11 6 66,5   11 6 68,2   11 6 70,0   11 6 71,7 
    3 10 6 71,3   10 6 73,1   10 5 74,8   10 5 76,6   10 6 78,2 
    4 8 6 77,3   8 6 78,9   8 6 80,5   8 6 82,1   9 6 83,7 
    5 7 6 82,2   7 6 83,9   8 6 85,5   8 6 87,1   8 6 88,7 
    6 7 6 87,0   7 6 88,7   7 6 90,4   7 6 92,0   8 5 93,7 
    7 7 6 91,7   7 6 93,4   7 6 95,1   7 5 96,8   7 5 98,5 
    8 7 6 96,5   7 6 98,2   7 6 99,9   7 5 101,6   7 5 103,3 
    9 7 6 101,3   7 6 103,0   7 5 104,6   7 5 106,3   7 5 108,0 
    10 7 6 106,0   7 5 107,7   7 5 109,4   7 5 111,1   7 5 112,8 
                            

h cp = 10   cp = 11   cp = 12 
 
cp = 13   cp = 14   cp = 15 

S* P* Cost   S* P* Cost   S* P* Cost 
 
S* P* Cost   S* P* Cost   S* P* Cost 

0 16 10 58,0   17 10 59,8   17 10 61,6 
 

17 10 63,3   17 10 65,1   16 10 66,9 
1 13 7 66,4   13 7 68,1   13 7 69,8 

 
13 7 71,5   13 7 73,3   13 7 75,0 

2 11 6 73,5   11 6 75,2   11 6 76,9 
 

11 6 78,5   11 6 80,1   11 6 81,7 
3 10 6 79,8   10 6 81,4   10 6 83,0 

 
10 6 84,5   10 5 86,1   10 5 87,6 

4 9 6 85,3   9 6 86,8   9 5 88,4 
 

9 5 89,9   9 5 91,4   9 5 93,0 
5 8 5 90,3   8 5 91,9   9 5 93,5 

 
9 5 95,0   9 5 96,6   9 5 98,1 

6 8 5 95,3   8 5 96,9   8 5 98,5 
 

8 5 100,1   8 5 101,7   8 5 103,2 
7 7 5 100,2   7 5 101,9   8 5 103,5 

 
8 5 105,1   8 5 106,6   8 5 107,9 

8 7 5 104,9   7 5 106,6   7 5 108,3 
 

7 5 110,0   7 5 111,4   7 5 112,7 
9 7 5 109,7   7 5 111,4   7 5 113,1 

 
7 5 114,7   7 5 116,0   7 5 117,3 

10 7 5 114,4   7 5 116,1   7 5 117,8 
 

7 5 119,3   7 5 120,6   7 5 121,8 

Table 1. Optimal storage and manufacturing capacities, and optimal cost for each pair (cp, h) 

calculated following section 3, using the parameters of the example 

 

Figure 1. Probability distribution for returned quantity in the example 
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4.2 Calculating the expected cost by simulation 

For each pair (cp, h), we have simulated 100 times the expected cost of the system 

described in section 2. We have used the parameters of the example and the 

optimal capacities and the optimal policy calculated in section 4.1. Each expected 

cost were obtained by simulating the functioning of the system for 30 periods and 

calculating the average cost for the following 3,000 periods. In all of the cases, T1 = 

1. We have performed a Lilliefors test with level of significance of 5% to test the 

null hypothesis that the samples comes from a distribution in the normal family’. 

We concluded that the hypothesis of normality is rejected in the following cases (cp, 

h) = {(8,0), (8,3), (10,0), (10,3), (11,3), (11,4), (13,0), (13,9), (14,8)}.  

4.3 Comparison between dependent and independent returns 

For each (cp, h) with normally distributed samples, we have performed a hypothesis 

test where the null hypothesis is “optimal cost calculated in section 4.1 is equal to 

mean value of the samples obtained in section 4.2” and the level of significance is 

5%.  

 

Figure 2. Calculated cost showed in Table 1. The dots correspond to (cp, h) pairs where the 

difference between calculated and expected costs is not statistically significant 

Figure 2 shows the optimal cost in the approximated system and the (cp, h) pairs 

where the difference between calculated and expected costs (obtained by 

simulation) is not statistically significant. Figure 2 also shows the values (cp, h) 

where the difference between both costs is statistically significant.  
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We can view in Figure 3 the differences between calculated cost (based on the 

return independence assumption and showed in Table 1) and estimated cost by 

simulation (mean value of the 100 samples). 

 

Figure 3. Differences between costs, calculated as explained in section 3 for the 

approximated system and the simulated cost calculated in the system described in section 2 

5 Conclusions 

In this paper we have developed a model of a system with reverse logistics, 

stochastic demand and returns, and limited manufacturing and storage capacities. 

Using a linear program we have calculated the optimal manufacturing policy when 

capacities are fixed and we have described the way to obtain the optimal capacities. 

We have described the following procedure to assess the influence of the 

hypothesis that returns are stochastically independent on the optimal production 

capacities: 

• Calculate the probability distribution of returns using the appendix. 

• Calculate the optimal policy, the optimal capacities, and the optimal cost for 

an approximated model following section 3.  

• Obtain samples of the expected cost of the system by simulation. 

• Perform a hypothesis test for the claim ‘the cost obtained in step 2 is equal 

to the cost obtained in step 3’.  
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• When the claim of step 4 is rejected, conclude that the hypothesis that 

returns are stochastically independent is influencing on the optimal 

production capacities.  

We have illustrated how to use this procedure with a numerical example. We 

concluded that the influence of the assumption that returns are stochastically 

independent is not significant in some cases. Indeed, the calculations are simplified 

considerably.  

We have studied when the independence assumption is affecting the optimal 

capacities depending on the manufacturing and holding costs.  

The findings of this study could be used as a starting point for future works. We can 

use the procedure described above for studying production systems, such as: 

• Study in detail the influence of the independence assumption depending on 

the value of remanufacturing cost and the return rate ρ. 

• Analyze the influence of the hypothesis that the demand and the returns are 

stochastically independent in models with bounded remanufacturing 

capacity, backorders and manufacturing and remanufacturing lead times. 

Appendix: Probability distribution of returns 

We compute the probability distribution of returns in the period t, based on the 

probability distribution of the useful life of the product and the return rate ρ. To do 

this, we define the random variables Zt,τ : units returned in period t sold in period t-

τ (τ = T1,...T2) and define the following probability distributions related to these 

random variables: 

Distribution of probability of Zt,τ: ητk = p(Zt,τ = k) k = 0,…,D.  

Distributions of probability of Zt,τ  conditioned by dt = i (i = 0,...,D): given i we 

define υτik = p(Zt,τ = k | dt = i) (τ = T1,...T2, k = 0,…,D). 

We first calculated υτik, the conditioned probability distributions. We know that a 

product’s useful life has a random duration of between T1 and T2 and once this has 

come to an end, the product has a probability ρ of being returned. Therefore, if the 

sales in a period are i, the probability distribution of returns they generate is:  
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For i = 0,...,D and τ = T1,...T2. We have the values: 

τ τ τη υ
=

= = = ∑,( ) ·
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i k

p Z k p  for k = 0,…,D y τ = T1,...T2. 

We are now able to calculate the probability distribution of returns as τ
τ =

= ∑
2

1

,

T

t t
T

r Z , 

where the distribution is obtained from the probabilities of Zt,τ, as 
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r t T k

k r

q p r r  for r = 0,…,(T2-T1+1)·D 

This expression can be calculated through the convolution of the Zτ probability 

distributions, with the following recurrence relationship:  

( ) ( )
( )( )

( )
η +

=

= ∑ 1

min ,

-1,
max 0, - -1 ·

, · - , -1
r D

T T k
k r T D

f r T f r k T   for T >1 and r = 0,…,T·D: 

This allows us to calculate qr = f(r, T2-T1+1) from ( ) η=
1,,1 T kf k  k = 0,…,D. 
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