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Abstract:

Purpose: We consider the problem of  route planning of  multiple rechargeable heterogeneous UAVs with
multiple trips under mission time and payload carrying constraints. The goal is to determine the types and
number of  UAVs to be deployed and their flying paths that minimizes the monetary cost, which is a sum
of  the recharging energy cost of  each UAV, the UAV rental cost, and the cost of  violating the mission time
deadline.

Design/methodology/approach: The problem is formulated as a mixed integer programming (MIP).
Then, the genetic algorithm (GA) is developed to solve the model and the solutions are compared to those
obtained  from the  exact  method  (Branch-and-Bound).  Novel  chromosome encoding  and  population
initializations are designed, and standard procedures for crossover and mutation are adapted to this work.
Test problems on grid networks and real terrains are used to evaluate the runtime efficiency and solution
optimality, and the sensitivity of  GA parameters is studied based on two-level factorial experiments. 

Findings: The proposed GA method can find optimal solutions for small problem sizes but with much less
computation time than the exact method. For larger problem sizes, the exact method failed to find optimal
solutions within the limits of  time and disk space constraints (24 hours and 500 GB) while the GA method
yields the solutions within a few minutes with as high as 49% better objective values. Also, the proposed GA
method is shown to well explore the solution space based on the variation of  the total costs obtained.

Originality/value: The unique aspects of  this  work are that the model optimizes the sum of  three
different costs – the electricity recharging cost, the UAV rental cost, the penalty cost for mission deadline
violation,  and  the  recharging  period  based  on  the  remaining  energy,  the  payload  capacity,  and  the
heterogeneity of  UAVs are incorporated into the model.  The model is formulated as a mixed integer
programming and the genetic algorithm is developed to solve the program. Novel chromosome encoding
and  population  initializations  are  designed,  and  standard  procedures  for  crossover  and  mutation  are
adapted to this work.

Keywords: unmanned aerial vehicle (UAV), heterogenous rechargeable unmanned aerial vehicles, route planning,
genetic algorithm (GA)

To cite this article: 

Phalapanyakoon , K., & Siripongwutikorn, P. (2023). Route planning of  heterogeneous unmanned aerial 
vehicles under recharging and mission time with carrying payload constraints. Journal of  Industrial Engineering and 
Management, 16(2), 215-235. https://doi.org/10.3926/jiem.4381

-215-

http://www.jiem.org/
https://doi.org/10.3926/jiem.4381
https://doi.org/10.3926/jiem.4381
mailto:kriangsak.phala@mail.kmutt.ac.th
http://www.omniascience.com/
https://orcid.org/0000-0001-9623-3164
https://orcid.org/0000-0002-8722-8037


Journal of  Industrial Engineering and Management – https://doi.org/10.3926/jiem.4381

1. Introduction

The  cutting-edge  unmanned  aerial  vehicle  (UAV)  technology  has  revolutionized  various  industries,  including
agriculture, construction, weather forecasting, or logistics. The UAV has been improved to be smaller, faster, able to
carry more payload weight, and fly longer. This enables the benefits of  only using UAVs in parcel delivery missions,
especially in rural areas or areas inaccessible to humans. For example, a UAV-based vaccine delivery system was
deployed  in  North-Eastern  India  (Press  Information  Bureau  of  Delhi,  2021).  UAVs  can  deliver  vaccines  to
specified drop-off  locations in the coverage area over 31 square km in less than 15 minutes, which usually takes
three to four hours by ground transportation. Such mission requires UAV route planning, where a sequence of
locations to visit and the amount payloads to deliver in each location are determined for each UAV. Depending on
the characteristics of  UAVs deployed in the mission, UAVs may be required to fly multiple trips by occasionally
returning to the base station to recharge batteries or replenish payloads, especially in a delivery mission with a large
area or with a high demand for items being delivered. Inappropriate planning of  UAV routes most likely results in
excessive electricity recharging costs and mission time. Therefore, optimal UAV route planning is essential to the
efficient deployment of  UAVs. 

Different types of  UAVs have different battery capacities, payload capacities, speeds, energy consumption, and
recharging  rates,  which  incur  different  electricity  costs  that  depend  on  the  remaining  battery  energy  before
recharging when returning to the base station. Adding more UAVs or using high-performance UAVs will shorten
the mission time but increase the UAV rental cost. The mission time, which is considered a soft constraint, will be
penalized if  it exceeds the mission deadline. Battery and payload capacities were considered hard constraints, which
can result in UAV flying multiple trips in large coverage or high-demand areas. Our objective is to determine flying
paths of  UAVs that minimize the total operational cost. This type of  problem is known to be an NP-hard problem
(Laporte, 1992). The exact solution method is inadequate because it cannot solve for optimal solutions in large
problem sizes. Thus, the metaheuristic approach, which is a genetic algorithm, is developed and implemented for
our proposed mathematical model in this research. 

This work considers UAV route planning in the context of  heterogenous UAVs with the impacts of  UAV payload
capacity and recharging time being accounted for. The major contributions of  this research are two-fold:

• The mathematical programming model for UAV route planning with heterogenous UAVs is formulated,
wherein different rental costs, flying speeds, battery consumption rates, battery capacities, recharging rates
and payload capacities of  the UAVs are incorporated to minimize the total operating cost. The proposed
model determines the types and number of  UAVs to be deployed and their flying paths that minimize the
sum of  electricity recharging cost, UAV rental cost, and cost of  excess mission time. 

• We develop the Genetic Algorithm (GA) to solve the model. Extensive experimentation on several
test problem scenarios with a wide variety of  problem sizes and model parameters as well as real-
terrain scenarios is conducted to assess the effectiveness and computational efficiency of  the solution
approach. Effects of  GA parameters are also investigated for sensitivity and robustness of  the proposed
algorithm.

The remainder of  this paper is organized as follows. Section 2 reviews related works on the Genetic Algorithm and
their  modifications.  In  Section  3,  the  problem description,  assumptions,  notations,  mathematical  models,  and
proposed genetic algorithm are presented. Section 4 discusses the computational results from our model, and the
sensitivity of  GA parameters also studied by using designed experiments. In Section 5, we conclude the work and
provide directions for future research.

2. Related Works

The problem of  item or parcel delivery by using UAVs closely resembles the well-known vehicle routing problem
(VRP), which is known to be NP-hard. In VRP, a fleet of  vehicles must visit the predefined locations with the cost
of  visiting locations being minimized under the vehicle capability and other constraints (Dantzig & Ramser, 1959).
Essentially, the UAV routing planning problem is an extension of  VRP with more complicated constraints, decision
variables, and objective functions. Due to the NP-hard characteristics of  the problems, exact solution methods
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based on mathematical models are inadequate, and meta-heuristics are commonly adopted as an alternative solution
approach. Because of  the discrete combinatorial problem structure of  VRP, genetic algorithm (GA) is deemed as a
suitable solution approach and a great deal of  works has successfully applied (GA) to VRP and UAV routing
planning with different objectives and how the mutation and crossover operations are designed. For the objective
of  minimizing the total traveling distance, Kurnia, Wahyuni, Pembrani, Gardini and Aditya (2018) used the rank
selection method to select parent chromosomes for position-based crossover and mutation to handle multi-depot
and multi-compartment problems. Sbai, Krichen and Limam (2020) proposed embedded variable neighborhood
search (VNS) in the mutation operator with tournament selection and partially mapped crossover (PMX). May,
Jariyavajee and Polvichai (2021) compared several mutation techniques and assessed performance by well-known
Solomon benchmarks.  Anggodo,  Ariyani,  Ardi  and Mahmudy (2017)  handled  multi-trip  by  injecting  the  stop
location  into  the  randomly  generated  chromosomes  and  using  well-known  elitism  selection,  one-cut  point
crossover, and reciprocal exchange mutation. The crossover and mutation rates were also varied to investigate their
influence on the fitness score. Yuan, Zhu, Li, Huang and Wu (2021) considered heterogeneous UAV logistics with
the objective of  minimizing the maximum completion time in a multi-trip manner under the restriction of  the
maximum flight time of  each UAV. With a similar crossover procedure to Yuan et al.’s work, Zhen, Ma, Wang, Xiao
and Zhang (2020) proposed a modified fitness evaluation function that includes both costs and the diversity of  the
population to improve the quality of  the solution to the last-mile distribution. The proposed hybrid algorithm can
handle both multi-depot  and multi-trip  situations.  Local  search-variable neighborhood descent (LS-VND) was
embedded in the mutation operators to improve the quality of  solutions that lead to near-optimal results. In 2021,
Euchi  and  Sadok  (2021)  developed  a  hybrid  genetic-sweep  algorithm that  collaborates  in  both  sidekick  and
independent flying modes.

Many researchers considered multiple cost metrics in the fitness functions such as the total traveling distance and
the cost of  vehicles. Mutingi and Mbohwa (2013) developed a group genetic algorithm (GGA) to handle the
complexity of  multi-trip and heterogeneous UAVs. Similar to Mutingi and Mbohwa’s work, Liu, Huang and Ma
(2009) developed GA with revised local search to enhance the exploitation rate of  solutions. In Setiawan, Masruroh
and  Pramuditha  (2019),  the  two-level  factorial  design  was  implemented  for  parameter  tuning  that  includes
population size, maximum generation, crossover, and mutation probability. Khoukhi, Yaakoubi, Bojji and Bensouda
(2019) implemented GA to solve pick-up and delivery in a hospital, where two-cut points crossover and two-opts
mutation are integrated to ensure the exploration and diversity of  the population. The stopping cost or the cost of
overtime of  the mission time is considered in Ayadi and Benadada (2013) and Eroglu, Gencosman, Cavdur and
Ozmutlu (2014). Ayadi and Benadada (2013) used a local search algorithm after each newborn child generated by
the crossover and mutation process to minimize the maximum overtime of  vehicles and routing costs, while Eroglu
et al. (2014) proposed a hybrid genetic-local search algorithm applied to the fitness function calculation process to
eliminate infeasible solutions.

The fuel or battery capacity constraints result in refueling or recharging time that must be added to the total
traveling time.  Nevertheless,  most existing works only  obtained solutions  for small  problem sizes  based on
mathematical models. Dorling, Heinrichs, Messier and Magierowski (2017) proposed a multi-trip VRP for UAV
delivery  that  accounted  for  the  impact  of  payload  weight  on  energy  consumption  with  the  objectives  of
minimizing the total cost under the time limit and minimizing the total time under budget constraints. Battery
swapping was used in their work instead of  recharging batteries based on the remaining energy but the cost of
using UAVs was wnot considered. Both exact solution method and simulated annealing were implemented to
obtain the solutions. However, it was found that simulated annealing does not well capture the characteristics of
VRP. Coelho, Coelho, Coelho, Ochi, Haghnazar, Zuidema et al. (2017), UAVs are allowed to visit the charging
station  to  refuel  or  recharge  based  on  their  remaining  energy  in  each  trip.  Only  the  exact  method  was
implemented in their work, while they also suggested that implementing a metaheuristic algorithm would be a
reasonable approach to achieving good solutions for larger problem sizes. In Troudi, Addouche, Dellagi and
Mhamedi (2018), a fleet of  homogeneous UAVs was deployed to visit a set of  customers and fly back to the
depot for instant battery swapping, reload packages, or continue to visit customers if  it’s not running out of
battery. The objective is to minimize the total distance, total used UAVs, and the total number of  batteries used
in swapping. Even though the mathematical models mentioned above were inspiring and interesting, they all
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suggested that only exact or heuristic  methods are insufficient for obtaining the optimal solution for larger
problem sizes and complex problems.

3. Proposed Work
The  problem  of  heterogeneous  UAVs  route  planning  under  recharging,  carrying  payload,  and  mission  time
constraints is formally defined in this section. Then, the mixed-integer programming (MIP) model, along with the
Genetic Algorithm (GA), was developed for the problem. The MIP model presented here is extended from the
previous work (Phalapanyakoon & Siripongwutikorn, 2021) to handle the heterogeneity of  UAVs and the payload
constraints.

3.1. Problem Description and Assumptions

Given a base station and a set of  locations with known coordinates and required amount of  demands, the
mission is to deliver items to fulfill all the location demands by using UAVs that are launched from the base
station and return to the base station after completing the mission. The mission has the deadline to complete,
which may incur some penalty if  being violated.  A set  of  UAVs with different battery capacities,  speeds,
energy consumption and recharging rates, maximum carrying capacities, and rental prices are available to be
chosen for deployment. Due to limited UAV battery and carrying-payload capacities, each UAV may have to
return to the base station for recharging and/or replenishing its payload, which is referred to as a  trip. To
complete the mission, individual UAVs may take multiple trips, and the sequence of  visited locations taken by
each UAV on all its trips is referred to as a  route. Note that the route taken by a UAV can have different
sequences  of  locations  from one  trip  to  another.  Examples  of  trips  and  routes  are  depicted  via  timing
diagrams in Figure 1. In the figure, UAV 1 and 2 take two trips, where only UAV 1 recharges its battery when
returning to the base station (Location 1). The routes of  UAV 1 and UAV 2 are respectively 1-2-11-1-12-3-1
and 1-6-7-1-5-4-1. UAV 3 only takes one trip. The mission time constraint is violated as UAV 1 returns to the
base station after the deadline. 

Figure 1. An example of  routes and timing diagrams of  heterogeneous UAVs

From the problem description,  the  total  cost  of  the mission is  a  weighted sum of  the  electricity  cost  from
recharging, the cost of  UAV rentals, and the penalty cost of  exceeding the mission time deadline. Our goal is to
determine a number of  required UAVs of  each type to be used together with their route and the recharging and
payload replenishing schedules so that the total cost is minimized. Note that the optimization metrics such as flying
distance and time are respectively handled by the recharging cost and the deadline penalty cost. The following
assumptions are made in formulating the model to solve the problem:

 UAVs have the full battery level at the beginning of  the mission.
 UAVs start and end their routes at the base station.
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 UAVs are heterogeneous, so they can have different energy consumption rates, recharging rates, flying
speeds, battery capacities, and payload carrying capacities.

 The energy consumption of  UAVs linearly increases with flying distance.
 Times taken by UAVs to replenish payloads are very small compared to the recharging time and flying

time, and are not taken into account.
 Each of  the UAV’s capacities must be at least the maximum of  the location demands.
 No recharging is performed on the last trip of  each UAV.

3.1. Model Formulation
3.1.1. Notations

The proposed heterogeneous UAV route planning is formulated as the MIP model. All the parameters and variables
used in the formulation are shown in Tables 1 to 3, most of  which has already been explained in Phalapanyakoon
and Siripongwutikorn (2021). The model presented here is extended from Phalapanyakoon and Siripongwutikorn
(2021) to handle the heterogeneity of  UAVs and the payload constraints.  V is a set of  locations {0, 1, 2, …, N}
with known coordinates with location 0 being the base location. dij denoted the distance between locations i and j
which was calculated from the Euclidean distance. Each location  i has payload demand of  Di  . The number of
UAVs is represented by NU = |U|. Each UAV u has a battery capacity of  Qu and a payload carrying capacity of  Pu.
T denotes a set of  trip indices, with the maximum allowed trips of  Tmax. Different UAVs have different velocities
Vu, and the flying time between location  i and  j is  tij

u
 = dij/Vu. Based on the area size and mission purpose, the

mission time deadline T is given. Each UAV has the overtime of  zero if  it finishes the last trip by the deadline, or
the amount of  time exceeded the mission deadline otherwise. The mission overtime is the maximum of  UAV
overtimes. 

Sets/Parameters Description

V Set of  locations {0, 1, 2, …, N}

U Set of  UAVs {1, 2, …, NU}

T Set of  trips {1, 2, …, Tmax}

Tmax Number of  maximum allowed trips for each UAV

T Mission time constraint

M Sufficiently large enough number

θ The limit percentage of  battery capacity of  each UAV in each trip

α Fixed cost of  time penalty based on application when exceeding time constraint per second

βu The usage cost of  UAV u per mission

γ Fixed cost of  energy consumed in mWh

dij Distance between location i and j

Eij
u Energy consumed between location i and j of  UAV u

Qu The battery capacity of  UAV u

Vu Velocity of  UAV u

CRu The energy consumption rate of  UAV u per metre

RRu Recharging rate of  UAV u per second

Pu The payload capacity of  UAV u

Di The payload demand of  location i

Table 1. Sets and parameters
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Computation Variables Description

RemainEnergytu The remaining energy of  UAV u at the base location in trip t

TotalTimetu The time consumption of  UAV u in trip t including recharging time

RemainofUAVu The remaining battery capacity at last trip of  UAV u

LateTimeu The penalty of  overtime of  UAV u

RemainStocktu The remaining payload of  UAV u at the base location in trip t

RemainStockofUAVu The remaining payload capacity at last trip in each round of  UAV u

timeofeachUAVu The total time of  each UAV u

Overtime The overtime of  the mission

Table 2. Computation variables

Decision Variables Description

xij
tu Binary equals one if  UAV u travels from i to  in trip t

Rechargetu Binary equals one if  UAV u consumes energy more than (Q · θ) in trip t

UAVUsedu Binary equals one if  UAV u is deployed in the mission

μi
tu The order of  location already visited by UAV u before entering i in trip t

Restocktu Binary equals one if  UAV u consumes payload more than zero in trip t

Table 3. Decision variables

3.1.2. Mathematical Model

The proposed problem is a minimization problem with the objective function (1) consisting of  three monetary cost
components. The first component is the electricity charging cost of  each UAV, which corresponds to the sum of  all
travel distances. The coefficient γ is the unit monetary cost of  electricity usage. The second component is the cost
of  using UAVs, where  βu is the cost of  using UAV type u. The last component is the penalty of  time, which is
proportional to the mission overtime. The coefficient α is set based on the importance of  the mission deadline. For
example, the one used in the mission of  distributing fertilizer on a farm should be lower than the one used to
deliver vaccines or food in a flood area.

(1)

The constraints are divided into four groups to handle different aspects of  the problem, including constraints from
standard VRP (2-8), constraints to keep track of  UAVs energy and battery recharging (9-17), constraints to handle
the UAVs maximum carrying capacity and restocking (18-26), and constraints to deal with time spent by each UAV
and time penalty calculation (27-32). 

(2)

(3)

(4)
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(5)

(6)

(7)

(8)

 Constraint (2) prohibits the UAVs from looping back to the same location.
 Constraints (3) and (4) ensure that each UAV visits each location exactly once.
 Constraint (5) requires the UAVs to fly at least one trip and ensure that each UAV begins and returns at the

base.
 Constraint (6) assures that each UAV arrives and departs the location i when it visits.
 The subtour elimination constraints are formulated on constraints (7) and (8), which are used to arrange all

visited locations without the base station (Miller, Tucker & Tucker, 1960). 

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)
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 Constraint (9) ensures that the energy consumed in each trip by the UAV u does not exceed the UAV’s
battery capacity.

 Constraint (10) states that if  the UAV u is deployed on the first trip, the amount of  current energy capacity
is equal to full capacity minus the energy consumption to the next location.

 For the remaining trips, constraint (11) calculates the remaining energy of  each UAV.
 If  there is a battery recharging process, the charging amount is equal to the battery capacity minus the

remaining energy stated in constraints (12) and (13).
 Constraint (14) ensures that the sum of  the remaining energy and the charging amount must not exceed

the battery capacity of  each UAV.
 Constraints (15) and (16) ensure that there will be no recharging process if  the remaining energy is more

than the limit capacity of  each UAV.
 On the last trip, the remaining energy of  each UAV will be calculated by constraint (17).

(18)

(19)

(20)

(21)

(22)

(23)

(24)

(25)

(26)

 Constraint (18) ensures that each UAV’s cumulative demands from visiting locations do not exceed its
payload carrying capacity on each trip.

 On the first trip, constraint (19) ensures that the current remaining stocks equal the total payload carrying
capacity minus the demand of  the next location.

 Except the first trip, constraint (20) calculates the remaining stocks of  each UAV.
 If  there is a restock process, constraints (21) and (22) ensure that the restocking amount equals the payload

carrying capacity of  the UAV u  minus the remaining stock.
 Constraint (23) states that the sum of  remaining stock and restocking must not exceed each UAV’s payload

carrying capacity.
 Constraints (24) and (25) ensure that if  the remaining stock is depleted, the restocking process will begin.
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 Constraint (26) calculates the remaining stock of  the UAV for the last trip of  the mission.

(27)

(28)

(29)

(30)

(31)

(32)

 Constraint (27) calculates the total time of  each UAV as equal to the time consumed plus the recharging
time if  there is a recharging process.

 Constraint (28) accounts for the case of  no recharging on each trip, where total time equals time spent
visiting locations.

 The total time of  each UAV was tracked and recorded by constraint (29).
 Constraint (30) calculates the time penalty of  each UAV, and since we do not consider the recharging time

of  the last trip, the recharging time will be subtracted from the total time.
 Constraints  (31)  and  (32)  minimize  the  overtime  of  each  UAV and  ensure  that  the  time  penalty  is

non-negative, respectively.

3.3. Proposed Genetic Algorithm

This section presents the GA procedure to solve the model formulated in Section 3.2, which is based on standard
GA procedure originally proposed by Holland (1975). First, the population of  feasible solutions is generated, and
individual solutions in the population are repaired, evaluated for their fitness, and sorted by their fitness score.
Then, the genetic operators, including selection, crossover, and mutation, are iteratively applied to the population
for  a  predefined  number  of  generations  to  find  the  fittest  solution.  The  following  subsections  describe  the
chromosome encoding and the details of  each genetic operator.

3.3.1. Chromosome Encoding

The chromosome is an integer string with two parts – UAV part and Route part. The UAV part contains types of
UAVs used while the route part contains the routes of  UAVs. Because we assume that every UAV has the payload
capacity at least the maximum of  location demands, the number of  UAVs needed is at most the number of
locations |V|. So, the length of  UAV part is set to |V|, where the value of  the i th gene is the type of  UAV i and
zero if  UAV i is not used. An example of  the chromosome is shown in Figure 2. Suppose the number of  locations
is 11 and the number of  available UAVs is four. In the example, three UAVs are deployed – UAV 1 is type 1, UAV 2
is type 4, and UAV 3 is type 2. The route part in the chromosome contains UAV routes corresponding to the UAVs
in the UAV part. The UAV routes are highlighted in green in Figure 2. Each gene in a UAV route denotes a location,
and the route must start and end with gene one (the base station location). Value zeros are used to separate
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individual UAV routes. Unused genes following the last UAV route are set to one. So, two consecutive genes of
ones in the second part of  chromosome indicates the end of  UAV routes. In the worst case, each UAV visits only
one location and returns to the base station, which takes three genes in the chromosome, and there are at most
|V|-1 of  gene zeros to separate the UAV routes. So, the chromosome length of  |V| + 3|V| + (|V|-1) ~ 5|V|
is sufficient to handle all input scenarios.

The number of  maximum allowed trips plays an important role in finding optimal solutions. UAVs may not visit all
the locations if  the number of  maximum allowed trips is set too low while too high values unnecessarily increase
the computation time. So, the number of  maximum allowed trips can be determined from the worst-case scenario
based on the lowest battery capacity and lowest payload capacity of  the UAVs. First, we apply the Clarke and
Wright saving heuristic (Clarke & Wright, 1964) to a single-depot VRP to estimate the single-trip route covering all
the locations. From the route, the number of  trips taken by a single UAV with the lowest battery capacity and the
number of  trips taken by a single UAV with the lowest payload capacity over such a route are determined. Then,
the number of  maximum allowed trip is the maximum of  the two. The algorithm to estimate the number of
maximum allowed trips is shown in Figure 3.

 

Figure 2. Example chromosomes |V| of   = 11 locations with two maximum allowed trips and three UAVs being used

Figure 3. Algorithm to determine the number of  maximum allowed trips. 

3.3.2. Population Generation 

Due to the  complex constraints,  it  is  challenging to randomly  generate  feasible  chromosome for  the  initial
population. We design two methods to generate a population of  feasible solutions – Exhaustive method and
Clustering  method.  The  exhaustive  method  starts  by  initializing  the  UAV  part  of  the  chromosome  as  a
permutation of  all the locations. Then, the type of  UAV 1 is randomly selected and put in the first bit of  the
UAV part.  Initially,  the chromosome contains only a single UAV using a single-trip route that covers all  the
locations,  and the  repair  process is  applied to ensure feasibility.  Based on the  battery capacity  and payload
capacity of  the type of  UAV 1, locations in the route are visited one by one until either the battery capacity or
the  payload  capacity  of  UAV 1  is  depleted.  Gene  1  is  then  inserted  after  the  last  visited  location  in  the
chromosome to signify a new trip and the process continues with full battery and payload capacities. If  the
number of  maximum allowed trips is reached, gene 0 is inserted to indicate the next UAV route, and the type of
UAV 2 is randomly selected to put in the second bit of  the UAV part. The route of  UAV 2 continues from the
remaining  unvisited  locations  and  so  on.  A  feasible  chromosome is  obtained  if  the  UAV routes  cover  all
locations within the number of  maximum allowed trips and the number of  available UAVs. Otherwise,  the
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chromosome generation process starts over until the desired number of  feasible chromosomes in the population
is obtained. The algorithm of  the exhaustive method is given in Figure 4(a).

The clustering population initialization method applies K-Mean clustering based on the location coordinates to
cluster the locations into the number of  groups equal to the number of  UAVs used. Then, each UAV route is
initialized as the permutation of  locations in their corresponding cluster so that each UAV will  only visit  the
assigned locations from the clustering. The repair process like in the exhaustive method is then applied to generate
feasible solutions. The algorithm of  the clustering method is given in Figure 4(b). The major difference between the
two methods is that the exhaustive method forces the first UAV to visit  as many locations as possible before
deploying an additional UAV. On the other hand, the clustering method generates solutions with more UAVs used.
To increase the population diversity, both methods are used together where half  of  the population is generated
from each method.

(a) Exhaustive method

(b) Clustering method

Figure 4. Population initialization methods

3.3.3. Fitness Score

The quality of  feasible solutions is evaluated by using the fitness score. Since GA attempts to find solutions with
the highest fitness score, we use the fitness score that is the inverse of  the cost function in (33). In particular,

(33)

(34)

The cost components in (33) can be readily determined from the chromosome as shown in Figure 5. The UAV
usage cost is calculated from the first part of  the chromosome. For each UAV route in the second part,  the
recharging cost and the overtime are respectively determined from the energy usage per trip and the total traveling
time. 
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Figure 5. Algorithm for fitness score evaluation

3.3.4. Selection Operation

Parent selection is very important in the convergence rate and contributes to the improvement of  fitness scores in
successive generations. The standard roulette wheel selection is adopted in this work, whereby a fitter individual has
a greater probability of  being selected. For example, the selection percentage is set to 0.9, which means we select
the top 90% of  solutions in the current population to produce the next generation. The effect of  the selection
probability will be studied in the parameter sensitivity section.

3.3.5. Crossover Operation

Crossover operation generates offspring chromosomes from two parent chromosomes to explore the solution
space. We adopt Partially-Mapped Crossover (PMX) (Goldberg & Lingle., 1985) for the crossover operator in this
work, as shown in Figure 6. This crossover technique randomly selects two parts, one from each parent to swap.
The procedure starts by selecting two adjacent chromosomes as the parents and then extracting the UAV part. The
repair process is applied by using the route construction (exhaustive and clustering methods) based on the extracted
UAV part and routes from PMX crossover and the one with the better fitness score is selected. PMX has been
shown to give relatively good results compared to other crossover operations (Kumar, Karambir and Kumar, 2012).
Furthermore, this crossover technique allows offspring to inherit parts of  the parent chromosome such that parts
of  the route are reserved. An example of  PMX is shown in Figure 7.

Figure 6. Algorithm for crossover operation

Figure 7. Example of  PMX crossover
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3.3.6. Mutation Operation

Mutation enhances the quality of  feasible solutions obtained from the crossover so that the solutions have diverse
characteristics and premature convergence to local optimum can be avoided. In this work, mutation is applied to
both UAV part and route part as follows: 

 Mutation of  Route part Randomly selected two locations in the route part and swapped them with the
pre-specified mutation probability (called the mutation rate). An example of  route mutation is shown in
Figure 8(a). If  the swapped locations violate the battery or payload capacity constraints, no mutation is
applied.

 Mutation of  UAV part Genes  in  UAV part  (except  the first  one)  are randomly  replaced by  values
(including zero) other than the current one. Value zero means the UAV is removed from the mission. If
the gene is replaced by zero, all the remaining genes will be set to zero. Therefore, several UAVs can be
removed in the mutation. Then, the route repair is performed by applying the clustering method discussed
earlier to obtain a feasible chromosome. An example of  UAV mutation is shown in Figure 8(b).

(a) Chromosomes before and after route mutation

(b) Chromosomes before and after UAV mutation 

Figure 8. Mutations of  routes and UAVs deployed

4. Results and Analysis
A set of  experiments are conducted to examine the computational performance of  both exact and proposed GA
methods. Square grid networks, or Manhattan networks, with various sizes as well as a real terrain map are used for
test problems. The location demands are randomly generated from a discrete uniform distribution in [1, 10]. The
vertical and horizontal distance between two adjacent grid points is 1000-meter for square grid networks. The real
terrain map is excerpted from the city of  Nong Khai province, Thailand. The map is first downloaded from
Google Maps and manually discretized into 25 by 15 grid points with a 130-meter distance between adjacent grid
points. Thirty points, which are major city locations, are manually specified as the grid points to visit as shown in
Figure 9. Two-level factorial design is applied to study effects of  the GA parameters on the solution quality. The
exact  method uses  the branch and bound algorithm from IBM ILOG CPLEX Optimization Studio Version
12.10.0.0 (International Business Machine, 2019) running on Ubuntu 18.04 LTS with an Intel® Xeon® 2.6 GHz
8-core E5-2640 V3 CPU and a VMware 500 GB hard disk. For the computational resource constraints of  the exact
method, we limit the CPU running time and hard disk resources to 24 hours and 500 GB respectively. The model
solving will be prematurely terminated if  either one of  these conditions is met, and the best current results will be
taken as the final solutions. The GA method is solved by using MATLAB version R2021b running on the same
machine as above. In each test problem, the algorithm will  be stopped if  it  reaches its maximum number of
population generations. The algorithm is repeated 10 times with different initial populations in each test problem
and the best result is taken.
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Figure 9. Example of  real terrain case with 30 locations (Google, 2022)

Four types of  UAVs are considered, with their specifications shown in Table 4. Note that β, Q, V, CR, RR, and P
are specific to UAV types, and each UAV type can carry the parcel half  of  its weight. Besides the number of  grid
points in test problems, the model parameters that are varied in the experiments include  α (the penalty cost of
mission overtime), the mission time, and number of  available UAVs, as in Table 5. The energy unit cost in baht per
mWh (γ) is fixed to 0.0039 in the experiments. 

No UAV

Price / Day
(Thai Baht)

(β)

Capacity
(mwh)

(Q)

Speed
(m/s)

(V)

Energy
consumption
Rate (wh/m)

(CR)

Battery
recharging

Rate (s/wh)
(RR)

Payload
Capacity

(P)

1 DJI Spark 600 16872 13.85824 1.268198559 0.1849217639 15

2 DJI Mavic Air 907.01 27431.25 19 1.145833333 0.1203007519 21

3 DJI Phantom 4 Pro 1360.85 89224 20.1168 2.464054367 0.04707253654 69

4 Mavic Pro 1015.84 43662 17.8816 1.507239389 0.1099354129 36

Table 4. UAV specifications (CameraLens Rentals, 2022)

Varied Parameters Values

α – Overtime penalty unit cost None, 0.6, 1 baht/second

N - Number of  grid points 7, 12, 20, 36 for test problem cases
12, 15 for real-terrain cases

Nv - Number of  available UAVs 2, 4

T - Mission time None, 360, 720, 1200, 2400 seconds 
Table 5. Varied model parameters

4.1. Comparison with Exact Solutions

Solutions obtained from the exact method and the GA method are compared in the grid-network problems and
real-terrain cases to verify the integrity of  the GA method. The GA parameters are set to the following population
size of  1000, number of  maximum generations of  1000, selection probability of  90%, crossover rate of  95%, route
mutation rate of  30%, and UAV mutation rate of  30%. The runtime results of  grid-network problems are shown in
Table 6. For the GA method, the best, average, and standard deviation of  objective values are shown, as well as the
percentage  difference from the result  obtained from the exact method.  The GA method can obtain optimal
solutions as in the exact method for cases 1 to 6, where the number of  UAVs used and the network size are
relatively small (2 UAVs and 12 grid points). Additionally, the GA method can find the optimal solutions regardless
of  the initial populations as can be seen from zero standard deviation of  the objective values. As the number of
UAVs or the network size increases (cases 8-15), the exact method cannot find optimal solutions due to the limits
of  computational resources but the GA method can find solutions whose objective values are 24% to 49% better
and take several orders of  magnitude less computation time (a few minutes vs. almost a day). 
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Table 6. Runtime results of  exact and GA methods in the grid-network test problems

Table 7. Runtime results of  exact and GA methods in test problems (real-terrain cases)

The cost and runtime results for the real-terrain network with selected 12 and 15 grid points are shown in Table 7.
Like in the grid-network cases, the GA method can find the same solutions as the exact method with significantly
less computational time. However, the solution optimality is not guaranteed in cases 5-8 since the exact method is
prematurely terminated by the 24-hour time limit.

4.2. Sensitivity of  GA Parameters 

To assess the sensitivity of  GA parameters and determine appropriate GA parameter values to use, we conduct a
two-level factorial design and investigate the main and interaction effects of  GA parameters on the average total
cost from ten replications on two problem sizes – 12 and 36 grid points with the mission deadline of  720 and 2400
seconds respectively. The range of  GA parameters in the experimental design is shown in Table 8. 

Experimental Domain of  26 Full Factorial Design

Parameters Low Level High Level

Population Size 200 1000

Max Generation 200 1000

Selection Rate 0.6 0.9

Crossover Rate 0.6 0.9

Mutation Rate 0.1 0.4

MutationUAV Rate 0.1 0.4

Table 8. Range of  GA parameters used in two-level factorial design

The normal plot, main effects, and interactions plots from the experiments of  12 and 36 grid points are shown in
Figures 9 and 10 respectively. The normal plot in Figure 9(a) shows that for the 12 grid-point network, population
size, selection rate, and the interaction of  maximum generation and selection rate are all significant factors. From
the main effect plots in Figure 9(b), the population size of  1000 and the selection rate of  0.6 can be chosen as the
default values to be used. Due to the interaction between selection rate and the maximum generation in Figure 9(c),
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we recommend using the selection rate of  0.6 and the maximum generation of  1000. Since all the other parameters
are not significant over the ranges studied, we can arbitrarily set their values to be in the ranges.

(a) Analysis of  variance and normal plot

(b) Main effects plot

(c) Interactions plot

Figure 9. Results from two-level factorial experiment of  the 12 grid-point network

For the case of  36 grid points, the significant factors are shown in Figure 10(a). The main effects plot in Figure
10(b) shows that population size and UAV mutation rate are both significant, and their default values can be set to
1000 and 0.4. From the ANOVA table, we can observe that the interaction between selection rate and crossover
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rate is significant. It is suggested using the selection rate of  0.9 and the crossover rate of  0.9 to achieve a lower
totalcost as shown Figure 10(c). Similar to the previous case, the other GA parameters are not significant and using
arbitrary values selected from the specified ranges should only have negligible impact on the results.

(a) Analysis of  variance and normal plot

(b) Main effects plot

(c) Interactions plot

Figure 10. Results from two-level factorial experiment of  the 36 grid-point network

The experimental results above suggest the default values of  the GA parameters can be used for other problems or
used as starting points for later tuning as shown in Table 9. The population size and the maximum generation can
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be both set to 1,000. In fact, the larger the values for these two parameters the better the total cost because the
larger population size and number of  generations will  provide more chances for GA to discover the optimal
solution. The selection rate of  0.9 appears to give low total costs in both 12 and 36 grid-point networks while the
crossover rate of  0.9 provides consistently good results. MutationUAV rate can be set to 0.4 based on the studied,
while mutation rate is set to 0.1.

Parameters Recommended Value

Population Size 1000

Max Generation 1000

Selection Rate 0.9

Crossover Rate 0.9

Mutation Rate 0.1

MutationUAV Rate 0.4

Table 9. Summary of  recommended GA parameter values

4.3. Real Terrain Scenarios

From the default GA parameter values obtained from the previous section, we apply them to real-terrain networks
with 15, 20, and 30 grid points to assess the robustness of  the proposed GA method and the GA parameter values.
The number of  available UAVs, time penalty constraints, and the time penalty cost are varied and the results of  the
experiment are shown in Table 10. For 15 and 20 grid points, the best total costs are close to the lower 95%
confidence limits of  the mean total cost and the standard deviation of  the total costs are quite small. However,
when the problem size gets large as in the cases of  30 grid points, there exists more variability in the resulting total
costs, which can be seen in wider 95% confidence intervals of  the mean total cost. Many of  the best total costs are
much less than the lower 95% confidence limits, implying that the GA method is capable of  exploring different
regions of  the solution space for solutions. 

Table 10. Results of  real-terrain network with different problem sizes
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5. Conclusion

In this paper, a mathematical model for route planning of  heterogeneous UAVs under recharging and mission
time  with  payload  carrying  constraints  and  multi-trips  has  been  formulated  and solved  by  using  a  genetic
algorithm. Unlike existing works, the proposed work includes the recharging period into the mission time based
on the remaining energy of  the UAV in each trip and the payload carrying capacity of  different types of  UAVs.
The objective function is the monetary cost, which is the sum of  the recharging cost of  each UAV, the UAV
rental cost, and the cost of  mission overtime. The problem is formulated as a mixed-integer programming model
and a genetic algorithm is developed to solve the problem. Our results show that the exact solution method
using  branch-and-bound is  only  feasible  for  small  problem sizes  with  a  few UAVs and locations  while  the
proposed GA method can obtain the optimal solutions as the exact method but with remarkably less running
time. For larger problem sizes, the GA method can find solutions in a few minutes, with 29% to 49% lower costs
than suboptimal solutions obtained from the exact method. The sensitivity of  GA parameters has been studied
by using two-level factorial experiments. The population size and maximum generation are significant, and there
exists an interaction between the selection rate and the crossover rate. Appropriate default values of  the GA
parameters are identified and then applied to larger problem sizes of  real terrain networks. The results show that
when the problem size becomes large and complex,  the GA method can explore the solution space under
different initial populations to find solutions. For further research, the problem assumptions could be relaxed to
handle more flexible constraints. For example, UAVs may not start with full battery capacity, the network can
have multiple base stations, and individual location demands are allowed to be larger than the UAV payload
capacity so that some locations must be visited more than once. 
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