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Abstract:

Purpose:  Numerous  companies  are  expecting  their  knowledge  management  (KM)  to  be

performed  effectively  in  order  to  leverage  and  transform  the  knowledge  into  competitive

advantages.  However,  here raises  a critical  issue of  how companies can better  evaluate and

select a favorable KM strategy prior to a successful KM implementation.

Design/methodology/approach: An  extension  of  TOPSIS,  a  multi-attribute  decision  making

(MADM) technique, to a group decision environment is investigated. TOPSIS is a practical and

useful technique for ranking and selection of  a number of  externally determined alternatives

through distance measures.  The entropy method is  often used for assessing weights  in  the

TOPSIS method. Entropy in information theory is a criterion uses for measuring the amount

of  disorder represented by a discrete probability distribution. According to decrease resistance

degree of  employees opposite of  implementing a new strategy, it seems necessary to spot all

managers’  opinion.  The  normal  distribution  considered  the  most  prominent  probability

distribution in statistics is used to normalize gathered data.

Findings: The results of  this study show that by considering 6 criteria for alternatives Evaluation,

the most appropriate KM strategy to implement  in our company was ‘‘Personalization’’.

Research limitations/implications: In this research, there are some assumptions that might affect the

accuracy  of  the  approach  such  as  normal  distribution  of  sample  and  community.  These

assumptions can be changed in future work
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Originality/value: This paper  proposes an effective solution based on combined entropy and

TOPSIS  approach  to  help  companies  that  need  to  evaluate  and  select  KM  strategies.  In

represented solution, opinions of  all managers is gathered and normalized by using standard

normal distribution and central limit theorem.

Keywords: knowledge management; strategy; TOPSIS; Normal distribution; entropy

1. Introduction 

In the knowledge economy, it's necessary to find a way to create, share, and utilize knowledge

if we want to have a competitive advantage (Desouza, 2003). Nowadays business environment

has been more competitive, in such situation, many companies emphasize the importance of

knowledge  management  (KM),  and  base  the  KM  strategy  on  their  unique  resources  and

capabilities.  According  to  (Kamara,  Anumba  &  Carrillo,  2002),  KM  is  the  organizational

optimization  of  knowledge  to  achieve  enhanced  performance  through  the  use  of  various

methods  and  techniques.  Also,  KM  is  a  systemic  way  to  manage  knowledge  in  the

organizationally specified process of acquiring, organizing, and communicating knowledge. 

More importantly, the effective KM largely begins with a proper KM strategy. Hence, in order to

implement the KM successfully, there is a critical issue of how companies can better evaluate

and  select  a  favorable  KM  strategy.  However,  the  KM  strategy  selection  usually  involves

subjective and qualitative judgment. In particular, choosing KM strategies is a strategic issue

(Bierly & Chakrabarti,  1996),  which is  restricted by resource needs, realistic  support,  time

requirements, and conformity with expected outcomes or business purposes. In this sense, the

treatment of KM strategy selection is required to handle several complex factors in a better

sensible  and logical  manner.  Thus,  the KM strategy selection is  a kind of  multiple  criteria

decision-making (MCDM) problem, and requires MCDM methods to solve it appropriately. Many

traditional MCDM methods are based on the additive concept along with the independence

assumption, but each individual criterion is not always completely independent (Leung, Hui &

Zheng, 2003).For solving the interactions among elements, entropy as a relatively new MCDM

method was proposed by Shannon (Shannon, 1948). Although entropy has been used in this

article, TOPSIS presented by  Hwang and Yoon (Hwang & Yoon, 1981) has been utilized for

evaluation  of  alternatives.  According  to  decrease  resistance  of  employees  against

implementing  a  new  KM  strategy  in  our  organization,  we  extended  TOPSIS  and

formed62empty decision matrixes and distribute them between all managers of organization to

cooperate  in  decision  making  process  by  fulfilling  those  matrixes.  After  gathering  these

completed matrixes,  we should make a single matrix  as final  decision matrix  for  applying

TOPSIS and entropy. To reach this purpose we combined results of these 62 matrix. This was

by  using  arithmetic  average  of  every  cell's  value  in  all  decision  matrixes  completed  by
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managers. In order to normalize decision matrix, normal distribution and central limit theorem

has been utilized.

2. Literature survey

In this section, some essentials of the entropy and the TOPSIS are briefly described. A table

that contained all normalization methods is represented too. At the end of this part a brief

description about Normal distribution and Central limit theorem is represented.

2.1. Entropy

The entropy method can be used not only to quantitatively estimate data quantity, but also to

calculate objectively the relative weight of information (Shannon, 1948). Entropy was originally

intended to simplify a physical phenomenon of numerator turbulence degree or the probability

scale under a specified condition. If entropy values are lower, the numerator degrees are more

proportional, implying as close to perfect entropy as possible. Conversely, if entropy values are

higher,  the numerator degrees have a more irregular inflection.  Therefore,  entropy weight

method  was  introduced  to  obtain  the  relative  weight  of  each  attribute.  Additionally,  in

information theory, entropy can be used to measure expected information content of a certain

message.  Entropy  in  information  theory  is  a  criterion  for  the  amount  of  uncertainty

represented by a discrete probability distribution (Jaynes, 1957). Each attribute is assigned

measured a value by each alternatives to calculate the entropy values. The entropy values for

each  criterion  are  then  compared,  and  the  relative  significance  levels  of  each  other  are

calculated  (i.e.,  the  relative  weight).  Next,  the  entropy  weight  is  obtained  based  on  the

appraisal  matrix  information,  which  belongs  to  the  objective  weight  values.  Calculation

procedure for the entropy weight method has been described in part 3, evaluation framework.

2.2. TOPSIS

The TOPSIS method was first developed by Hwang and Yoon (Hwang & Yoon, 1981) and ranks

the alternatives according to their distances from the ideal and the negative ideal solution, i.e.

the best alternative has simultaneously the shortest distance from the ideal solution and the

farthest  distance  from  the  negative  ideal  solution.  The  ideal  solution  is  identified  with  a

hypothetical  alternative  that  has  the  best  values  for  all  considered  criteria  whereas  the

negative ideal solution is identified with a hypothetical alternative that has the worst criteria

values.  In  practice,  TOPSIS  has  been  successfully  applied  to  solve  selection/evaluation

problems with a finite number of alternatives (Jee & Kang,  2000; Yong, 2006) because it is

intuitive and easy to understand and implement. Furthermore, TOPSIS has a sound logic that

represents the rationale of human choice (Shih, Syur & Lee, 2007) and has been proved to be

one of the best methods in addressing the issue of rank reversal (Zanakis, Solomon, Wishart &

Dublish, 1998).In this paper we extended TOPSIS for KM strategies selection problem because

of following reasons and advantages as Shih and his cooperators did for consultant selection
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problem (Shih et al., 2007).

• A sound logic that represents the rational of human choice.

• A scalar value that accounts for both the best and worst alternative simultaneously.

• A simple computation process that can be easily programmed into a spreadsheet.

• The performance  measures  of  all  alternatives  on attributes  can  be  visualized  on  a

polyhedron, at least for any two dimensions.

2.3. Common methods of normalization for TOPSIS

For MADM, a decision matrix is usually required prior to the beginning of the process. The

decision  matrix  contains  competitive  alternatives  row-wise,  with  their  attributes’  ratings.

Normalization  is  an operation  to  make these  scores  conform to  or  reduced to  a  norm or

standard. To compare the alternatives on each attribute, the normalized process is usually

made column-wise, and the normalized value will be a positive value between 0 and 1. In this

way, computational problems, resulting from different measurements in the decision matrix,

are eliminated (Yoon & Hwang, 1995). Attributes have been partitioned into three groups:

benefit attributes, cost attributes, and non-monotonic attributes (Hwang & Yoon, 1981). A few

common normalization methods are organized in Table 1 (Milani, Shanian, Madoliat & Nemes,

2005;  Hwang  & Yoon,  1981;  Yoon  & Hwang,  1995).  These  are  classified  as  vector

normalization, linear normalization and fuzzy normalization to fit real-world situations under

different circumstances. Additionally, three forms for linear normalization are listed in Table 1.

2.4. Normal distribution

In many applications in which some random variable X is normally distributed with mean µ and

variance  σ2, we will standardize X to obtain z-scores (z=(x-µ)/σ2). The distribution of the z-

scores is the standard normal distribution, that is, the normal distribution with a mean of zero

and a variance of one.

Therefore, if X complies N(µ, σ2), then Z abides by N(0,1) also (Belsom, 1992). The probability

density function of the standard normal distribution is as follows:

The  cumulative  distribution  function  (CDF)  of  a  probability  distribution  contains  the

probabilities that a random variable X is less than or equal to X. The cumulative distribution

function of the normal distribution is expressed as follows:
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The normal distribution is considered the most prominent probability distribution in statistics.

There are several reasons for this. One of them is that normal distribution is very tractable

analytically,  that is, a large number of results involving this distribution can be derived in

explicit form (Casella & Berger, 1990).

Table 1. Common methods of normalization for TOPSIS

2.5. Central limit theorem

The importance of normal distribution as a model of quantitative phenomena in the natural and

behavioral sciences is due to the central limit theorem. Under certain conditions (such as being

independent and identically  distributed with finite variance) the sum of a large number of

random variables is approximately normally distributed, this is the central limit theorem. Many

psychological measurements and physical phenomena (like noise) can be approximated well by

the  normal  distribution.  While  the  mechanisms  underlying  these  phenomena  are  often

unknown, the use of the normal model can be theoretically justified by assuming that many

small, independent effects additively contribute to each observation.

Zhonggen devoted to the study of central limit theorems and the domain of normal attraction

for some random processes with sample paths in exponential  spaces under metric entropy

conditions (Zhonggen, 1997).

Yokoyama studied on this line the functional central  limit theorem and law of the iterated

logarithm for stationary processes, not necessarily possessing the boundary decomposition,

with applications to stationary linear processes (Yokoyama, 1995).

Dedecker and Prieur proved a central limit theorem for the d-dimensional distribution function

of a class of stationary sequences(Dedecker & Prieur, 2007).
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3. Evaluation framework

Selection of KM strategy is a kind of MCDM problem that needs multiple evaluation criteria.

(Opricovic  &  Tzeng, 2004) represented  that,  MCDM problem solving  is  required  to  define

evaluation  criteria,  find  alternatives and  evaluating of  them in  terms of  criteria,  apply  an

appropriate multi-criteria analysis method, and choose the best alternatives. Decision making

is  the  process  of  defining  the  decision  goals,  gathering  relevant  criteria  and  possible

alternatives, evaluating the alternatives for advantages and disadvantages, and selecting the

optimal alternative (Hess & Siciliano, 1996).

In  this  paper,  a  new  method  of  normalization  has  been  represented.  This  method  called

statistical method for normalization is so applicable when our data has been selected from a

normal statistical society. In fact when judgment about some alternatives is  implemented by

some persons and we selected average value of  each element and create  decision matrix

based on them and want to evaluate alternatives according to this matrix, we can use this

method for normalization of decision matrix. We use in this article consists of four steps. In the

next section a brief description about each of these steps has been represented.

• Defining the problem objectives

• Defining alternatives and criteria for evaluating

• Applying ENTROPY model and TOPSIS

• Choosing the most appropriate strategy

3.1. Defining the problems objectives:

As mentioned in the past section, decision making is the process of defining the decision goals,

gathering relevant criteria and possible alternatives, evaluating the alternatives for advantages

and  disadvantages,  and  selecting  the  optimal  alternative  (Hess  &  Siciliano,  1996).  Each

organization has it's own purpose by implementing KM strategies. For instance, KM is the way

to improve an organization’s performance, productivity, and competitiveness and to promote

learning, sharing, and usage of knowledge. The purpose of KM can be different such as: to

initiate action based on knowledge; to support business strategy implementation; to become

an intelligent enterprise; to increase competitive advantage; to create an innovative culture

and environment; to entrench collaboration as a work practice; and to improve work efficiency

(Plessis, 2005). In this phase, the objectives of our decision should become evident. Here is

defining  and  choosing  the  appropriate  KM strategy  as  defining  the  problem objectives in

phase 1.
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3.2. Defining alternatives and criteria for evaluating

Defining alternatives and criteria  for  evaluating of them is  the second phase as gathering

relevant  criteria  and  possible  alternatives.  In  selecting  appropriate  strategy  for  an

organization,  it  is  critical  to  form  a  team  and  involve  several  experts  from  different

departments to create the best adaptability between organization and proposed strategies for

organization (Saremi, Mousavi & Sanayei, 2009). It's very important to make an effective and

efficient communication between different experts because the better the parties are informed

about  strategy  selection,  the  higher  the probability  that  the  parties  will  be  committed  to

supporting this selection, The more different perspectives are initially taken into account, and

the greater the complexity of convergence, the smaller the chances of addressing the wrong

problem and reaching an inadequate solution (Karacapilidis, Adamides & Evangelou, 2006).

The objectives of selection, the scope of selection, and the possible alternatives should become

defined as well as possible. In this phase, after gathering data by Interviewing with elites, the

data  has  been  categorized,  analyzed,  and  summarized  to  decision  making  matrix.  As  to

alternatives of KM strategy, (Hansen, Nohria & Tierney, 1999) represented two types of KM

strategies: the codification strategy (seeking to document and store knowledge in databases)

and the personalization strategy (seeking to develop networks of people for communicating

ideas).

In our research, the strategic management team of the organization defined third strategy as

Blend strategy (a mixture between codification and personalization). Evaluation criteria of KM

strategy  can  range  from  top  management  support,  communication,  creativity,  culture  and

people,  sharing  knowledge,  incentives,  time,  and  evaluation  (Martensson,  2000).  Strategic

management team of the organization represented that evaluation criteria of KM strategy can

range from top management support, time, cost, degree of acceptance by employees, technical

knowledge, and knowledge sharing. So, 6 criteria selected for evaluation of 3 chosen strategies.

At  the  end of this  phase a set of  possible alternatives for  implemention in organization is

prepared that we called them A = {A1, A2, …, Am}. Also,  a set of necessary criteria selected

that we called them C = {C1, C2, ..., Am}.

3.3. Applying entropy and TOPSIS methods

After defining alternatives and evaluation criteria, it is necessary to apply an entropy model

and the TOPSIS; the entropy model is used to calculate the elements of evaluation criteria's

weights,  and the TOPSIS  is  used to  solve problem and  choose the best  strategy for  this

organization. Here are the steps of applying entropy and TOPSIS on this problem.
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3.3.1. Establish a decision matrix for alternative performance

According to select the best knowledge strategy for our organization, we formed strategic team

from  top  managers  of  organization  at  first.  Outcome  of  this  team  after  forming  several

meeting, as mentioned in past paragraphs,  was 3 strategy and 6 criteria for evaluation of

them. After  definition of  alternatives and criteria,  we must gather  relevant data for  these

alternatives. According to this purpose, 62 empty decision matrix is included 3 rows and 6

columns  formed  and  delivered  to  all  managers  of  organization  in  strategic,  middle  and

functional level. There were 62 managers in these levels in our organization. These managers

evaluated  different  alternatives  and  completed  these  matrixes.  In  order  to  evaluation  of

results, we, as investigative teams, need just one matrix. As mentioned in the past paragraph

that we had 62 matrixes, it was necessary to convert these matrixes to only one matrix. To

reach this purpose, we formed an empty matrix by 3 rows and 6 columns and filled it's cells by

using arithmetic average of that cell in all 62 matrixes by below form:

Rij is the final value for each final decision matrix cells and xij is that cell value in 62 matrixes

fulfilled by 62 managers.

The strategy selection problem can be expressed in the matrix format for k-th decision maker

as follows:

Where fij is a linguistic variable, indicates the performance rating of each i th alternative with

respect to each jth criterion. In fact each element of final matrix is the average of that element

in 62 primary decision matrixes. We have shown our alternatives as S i = {S1, S2, S3} and

criteria as Cj = {C1, C2, C3} and the data belongs them in Table 2 as final decision matrix.

C1 C2 C3 C4 C5 C6

S1 5.41 24 15,700 7.25 6.58 7.69

S2 8.32 12 6,400 3.5 4.12 3.87

S3 5.98 19 12,800 5.2 8.5 5.63

Table 2. Final decision matrix
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3.3.2. Apply entropy method

Each criterion  in  a  MADM methods  needs  a weight  to  show its  important.  There is  some

methods for dedication of weight to criterias. As mentioned in Literature, one of this methods

that is often used for assessing weight in the TOPSIS method, is entropy (Starr & Zeleny,

1977). Entropy usually has been used as a criterion for measuring of represented disorder by a

discrete probability distribution (Pratyyush & Jian-Bo, 1998). The assumption of entropy is that

a wide data distribution shows more disorder than a packed distribution (Pratyyush & Jian-Bo,

1998). When we want to seek for contrast between sets of data, its useful to use entropy

method. Here is the entropy steps and it's result on our decision making matrix:

(a) Normalization of original decision matrix as:

The normalized form of our decision matrix has been shown in Table.3

C1 C2 C3 C4 C5 C6

S1 0.27 0.44 0.45 0.45 0.34 0.45

S2 0.42 0.22 0.18 0.22 0.21 0.23

S3 0.30 0.35 0.37 0.33 0.44 0.33

Table 3. Normalized decision matrix

(b) Calculate the entropy of data for each criterion:

The entropy of the set of normalized outcomes of the j th criterion in the decision matrix is given

by:

k is a constant (normalizing) value and taken to be 1 = Ln(m). Note that if all normalized

values fora criterion become identical, pij =1/m, and thus Ej = 1.

(c) Calculate the weights based on the entropies as follows:

Where, Dj = 1 – Ej, and it is the degree of diversity of the information involved in the outcomes

of  the  jth criterion.  If  the  decision  maker  (DM)  wants  to  add  his/her  subjective  weights
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according to experience, particular constraints or expectations and so on, the above weights

are modified (Yoon & Hwang, 1980). We face such situation in our problem. When elites of our

organization  faced with  the  entropy's  weights,  they recognized  that  these  weight  are  not

appropriate  for  criteria,  so  they  merged  and  modified  their  desirable  weight  with  entropy

weight with the below formula:

Table 4 showes final matrix that include E j , Dj , Wj , W' and λj.

C1 C2 C3 C4 C5 C6

Ej 1.188 1.166 1.141 1.161 1.162 1.166

Dj -0.187 -0.166 -0.141 -0.161 -0.162 -0.166

Wj 0.191 0.169 0.143 0.164 0.165 0.169

λj 0.209 0.127 0.143 0.252 0.075 0.194

W' 0.237 0.127 0.122 0.245 0.074 0.195

Table 4. Final matrix

3.3.3. Apply TOPSIS method

Yoon and Hwang introduced the TOPSIS method based on the idea that the best strategy should

have the shortest distance from an ideal solution. They assumed that if each attribute takes a

monotonically increasing or decreasing variation, then it is easy to define an ideal solution (Yoon

& Hwang, 1980). The steps of TOPSIS solution method and its results are shown as bellow:

(a) Normalization of the decision matrix

In this article we normalized decision matrix by a using concepts of Normal distribution. In

fact, we represent the statistical normalization method. Here is definition of the steps of this

method with it's result on our decision matrix:

(a.1). Calculation of Z parameter:

It's obvious that normal distribution convert basic value of different statistics to standard value

between -3.59 and +3.59 by decreasing mean of meter and dividing the result of this function

on the standard deviation of data as show below formula:
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Zij is  the  standard value  of  each data,  µj is  more favorable  and  rational  content  of  each

criterion that has been defined by experts of organization and s x  is standard deviation of each

criterion that calculates by below formula:

N is number of alternative or in another hand, number of data for each criteria. Here is Z

matrix in Table.5 that contains Z value of each data.

C1 C2 C3 C4 C5 C6

S1 -0.92 1.15 1.05 1.26 0.10 1.26

S2 1.39 -1.29 -1.35 -1.18 -1.27 -1.19

S3 -0.47 0.14 0.30 -0.08 1.17 -0.06

Table 5. Z matrix

(a.2) Calculation of probability matrix:

After calculating standard value for each parameter by using standard distribution formula, it's

time to calculate the probability of occurrence of standardized content. In this part we apply

the below formula to obtain probability of occurrence of each criteria. For example, when we

convert the content of first strategy (codification strategy) for first criterion (top management

support)  to  probability  of  their  occurrence,  we  actually  calculated  how much  percent  top

management of organization support from implementing codification strategy and so on. 

Zij is the standard value for each rij.

Also we can use normal distribution table and calculate Probability of any standard content. it's

important to mention that after such convert, the value of all content will become between 0

and 1 and in this time, we can continue extant steps of TOPSIS. Table 6 shows matrix of

probabilities.

P1 P2 P3 P4 P5 P6

S1 0.1778 0.8749 0.8531 0.8962 0.5398 0.8962

S2 0.9177 0.0985 0.0885 0.119 0.102 0.117

S3 0.3192 0.5557 0.6179 0.4681 0.879 0.4761

Table 6. Matrix of probabilities
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(b) Multiply the columns of normalized decision matrix by the associated weights from entropy

method. The weighted and normalized decision matrix is obtained as:

W'j  represents  the weight of  the jth attribute.  Weighted and normalized decision matrix  is

shown in Table 7 as below:

V1 V2 V3 V4 V5 V6

S1 0.042 0.111 0.104 0.220 0.040 0.175

S2 0.217 0.013 0.011 0.029 0.008 0.023

S3 0.076 0.071 0.075 0.115 0.065 0.093

Table 7. Weighted and normalized decision matrix

(c) Determine the ideal and nadir ideal solutions. The ideal values set and the nadir values set

are determined as follows:

Where, K is the index set of benefit criteria and K' is the index set of cost criteria.

(d) Measure distances from the ideal and nadir solutions. The two Euclidean distances for each

alternative are calculated as:

(e) Calculate the relative closeness to the ideal solution. The relative closeness to the ideal

solution can be determined as:

We calculated the content of ideal and nadir ideal, distances of each alternative from the ideal

and nadir  for  our  problem,  and the relative  closeness to  the ideal  solution  and represent

results in Table 8.
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S+ S- C

S1 0.22404106 0.24496318 0.52230483

S2 0.243683 0.22898631 0.48445352

S3 0.22052238 0.12579726 0.36324032

Table 8. Relative closeness to the ideal solution

According to  Table 8, because of the highest grant for strategy number 1 (personalization

strategy) as relevant closeness grant, it is the most appropriate strategy for Implementation in

our organization.

4. Conclusion

As knowledge is taking on an important strategic role, numerous companies are expecting

their KM to be performed effectively in order to leverage and transform the knowledge into

competitive advantages. More importantly, the successful KM starts with a proper KM strategy

that is produced through a robust evaluation method. However, the KM strategy selection is a

kind of  MCDM problem,  which requires considering a large  number  of  complex factors  as

multiple evaluation criteria. Although numerous creditable works are devoted to the study of

how to build a KM strategy and to execute the KM successfully, few of those have provided

methods which can systematically evaluate and model complex factors of the KM strategy.

Dealing with the MCDM problem of this KM strategy selection, it is better to employ MCDM

methods for reaching an effective problem-solving. The entropy method is useful because of

high capability of this method in estimating weights. It's important to alert that when criteria

for evaluation of some alternative have interdependence relation with each other, we can't

define criteria's weight without any attention to the other criteria and their effects on each

other. Moreover, the TOPSIS not only can be used as a way to handle the inner dependences

within a set of criteria, but also can produce more valuable information for making decisions.

Hence, this paper proposes a solution based on a combined entropy and TOPSIS approach to

help companies needed to evaluate and select KM strategies.

It's important to note establishing a new technology or implementing a new strategy such as

KM strategy always has a degree of resistance by employees. For decreasing this resistance,

we use an extension of TOPSIS for group thinking, want every manager of organization to

evaluate 3 alternatives by 6 criteria, and finally put average of each parameter in final decision

matrix.

Because of using average of each parameter as basic data, we use central limit theorem and

normal distribution for standardizing data.

The results of this study show that the most appropriate KM strategy was ‘‘Personalization’’.

Because the proposed solution can handle the effects of dependences, it is relatively useful and

makes the evaluation result to be more reasonable. Additionally, this study has contributed to
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extend practical applications of both entropy and TOPSIS in KM field.

Furthermore,  using  the  suggested  statistical  procedure  for  normalization,  can  effectively

handle any problem of selection with multi-decision matrix.
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