

doi:10.3926/jiem.2009.v2n3.p418-436 ©© JIEM, 2009 – 2(3): 418-436 - ISSN: 2013-0953

Optimal priority ordering in PHP production of multiple part-types in a failure-prone machine 418

A. Sánchez; A. Corominas; R. Pastor

Optimal priority ordering in PHP production of multiple part-

types in a failure-prone machine

Ana Sánchez, Albert Corominas, Rafael Pastor

Universitat Politècnica de Catalunya (SPAIN)

ana.sanchez@upc.edu; albert.corominas@upc.edu; rafael.pastor@upc.edu

Received March 2009
Accepted September 2009

Abstract: This note deals with the problem of minimising the expected sum of quadratic

holding and shortage inventory costs when a single, failure-prone machine produces

multiple part-types. Shu and Perkins (2001) introduce the problem and, by restricting the

set of control policies to the class of prioritised hedging point (PHP) policies, establish

simple, analytical expressions for the optimal hedging points provided that the priority

ordering of the part-types is given. However, the determination of an optimal priority

ordering is left by the authors as an open question. This leaves an embedded sequencing

problem which we focus on in this note. We define a lower bound for the problem,

introduce a test bed for future developments, and propose three dynamic programming

approaches (with or without the lower bound) for determining the optimal priority

orderings for the instances of the test bed. This is an initial step in a research project aimed

at solving the optimal priority ordering problem, which will allow evaluating the

performance of future heuristic and metaheuristic procedures.

Keywords: scheduling, cumulative resources, failure-prone machines, prioritised hedging

point control, production control.

mailto:ana.sanchez@upc.edu�
mailto:albert.corominas@upc.edu�
mailto:rafael.pastor@upc.edu�
http://www.jiem.org
http://dx.doi.org/10.3926/jiem.2009.v2n3.p418-436

doi:10.3926/jiem.2009.v2n3.p418-436 ©© JIEM, 2009 – 2(3): 418-436 - ISSN: 2013-0953

Optimal priority ordering in PHP production of multiple part-types in a failure-prone machine 419

A. Sánchez; A. Corominas; R. Pastor

1 Introduction and problem statement

Shu and Perkins (2001) introduce the problem of optimising the costs of a

production system that consists in a single, failure-prone machine that is able to

produce up to n part-types simultaneously with constant demand rates

(); 1,...,jd j n= . The machine alternately adopts an “up” state, in which it is fully

functional, and a “down” state, in which it is not able to produce anything. The

time that the machine spends in each state before switching to the other is

distributed exponentially with parameters equal to 1 dq and 1 uq for the “down”

and “up” states respectively. The vector of the production rates to be determined

for each part-type in each instant of time t is []1 2() (), (),. . . ,()nx t x t x t x t= . Therefore,

the first derivative, (),
js t , of the inventory level of part-type j at time t , ()js t ,

satisfies the equation (), ()j j js t x t d= − . Backlog is unavoidable and therefore

admitted. Without loss of generality, it is assumed that the maximum production

rate for any part-type is equal to µ , which is the capacity of the machine;

therefore, the production rates, 0t∀ ≥ , must fulfil the condition ()
1

n

j
j

x t µ
=

≤∑ . It is

also assumed that
1

0
n

u
j

jd u

q d
q q

µ
=

− >
+ ∑ , i.e., that the machine has enough

capacity to meet demand. The instantaneous cost function of the system is

assumed to be equal to ()2

1
·

n

j j
j

c s t
=
∑ , where jc ()1, 2,...,j n= are nonnegative

constant costs; as it is pointed out in Shu and Perkins (2001), the quadratic

instantaneous cost function is a useful cost approximation for systems in with

productions are perishable or may become obsolete, as well as systems with

storage-space competition. The objective, then, is to minimise the expected long-

term average cost: ()2

0
1

1lim
nT

j jT j
J E c s t dt

T→∞
=

  
=   

   
∑∫ .

In real industrial systems, there are several kinds of failure-prone resources that

can share their capacity among various activities. A specific example known by the

authors is the case of a painting plant in which a pump (which has a limited

maximum flow, µ , and may break down) is able to simultaneously feed the flow

http://www.jiem.org
http://dx.doi.org/10.3926/jiem.2009.v2n3.p418-436

doi:10.3926/jiem.2009.v2n3.p418-436 ©© JIEM, 2009 – 2(3): 418-436 - ISSN: 2013-0953

Optimal priority ordering in PHP production of multiple part-types in a failure-prone machine 420

A. Sánchez; A. Corominas; R. Pastor

necessities, jd , of n canning stations ()1,...,j n= , each of which has a particular,

controllable rate of flow, ()jx t . This plant has different pumps, each of which feeds

the flow necessities of 4n = canning stations simultaneously. Many other

resources, such as ovens, autoclaves and treatment bath containers can also share

their capacity. Actually, an entire manufacturing system can play the role of the

“failure-prone machine” in this model and face the problem of how to share its

capacity among multiple products (Ketzenberg et al., 2006, discuss this in relation

to the problems of a pencil manufacturer that produces different pencil types for

the highly seasonal back-to-school market).

In prioritised hedging point (PHP) policies a priority ordering, { }1 2, ,..., np p p , is

established for the part-types ()1,...,j n= and the machine attempts to drive the

inventory level of each part-type j to its hedging point,
jpz , and to keep it at this

level. When the machine is “up” (when it is “down” the machine cannot work at all)

its production capacity is assigned as follows. If the difference ()
1 1p pz s t− for part-

type 1p , is positive, zero or negative (this can only happen in a transient state) the

production rate ()
1px t is respectively equal to µ ,

1pd or 0. The production rate of

any other part-type jp ()1j > is equal to zero unless the inventory levels of all the

part-types with greater priority are above or equal to their corresponding hedging

points. When this condition is fulfilled, if the difference ()
j jp pz s t− is positive, zero

or negative (this can also only happen in a transient state) the production rate

()
jpx t is respectively equal to µ minus the capacity assigned to the part-types

with greater priority,
jpd or 0. Figure 1 shows the evolution of the inventory level

of three part-types (A, B and C), taking into account the priority ordering { }, ,A B C

and without an initial inventory () () ()()0 0 0 0A B Cs s s= = = . For 10 t t≤ < , when

()1A As t z= , ()Ax t µ= and () () 0B Cx t x t= = ; for 1 2t t t≤ < , when ()2B Bs t z= ,

()A Ax t d= , ()B Ax t dµ= − and () 0Cx t = ; for 2 3t t t≤ < , when ()3C Cs t z= ,

()A Ax t d= , ()B Bx t d= and ()C A Bx t d dµ= − − ; for 3 4t t t≤ < , ()A Ax t d= ,

http://www.jiem.org
http://dx.doi.org/10.3926/jiem.2009.v2n3.p418-436

doi:10.3926/jiem.2009.v2n3.p418-436 ©© JIEM, 2009 – 2(3): 418-436 - ISSN: 2013-0953

Optimal priority ordering in PHP production of multiple part-types in a failure-prone machine 421

A. Sánchez; A. Corominas; R. Pastor

()B Bx t d= and ()C Cx t d= . At instant 4t the machine adopts a “down” state in

which it is not able to produce anything. In instant 5t the machine adopts an “up”

state and begins producing part-type A again with a production rate equal to µ .

Figure 1. “Evolution of the inventory level of three part-types”.

The optimal general solution of the problem is not known. However, Shu and

Perkins (2001) establish simple closed-form expressions for the optimal hedging

points and the corresponding cost, assuming that the prioritised hedging point

policy is applied and a priority order of the part-types is given. For part-type 1

* 1
1

1

1z γ
λ
−

= and
2

* 1
1 1 2

1

1J c γ
λ
−

= ⋅

and for part-type 1j >

1*

1

1 1j j
j

j j

z
γ γ

λ λ
−

−

− −
= − and ()2* *

j j j jJ C c z= −

where
1

j

j k
k

D d
=

=∑ , u d
j

j j

q q
D D

λ
µ

= −
−

,
()

()()
u d u j

j
j d u

q q q D
D q q

µ
γ

µ
− +

=
− +

,

()
()

1*

1 1

112
1

j j
j j j

j j j j

C c z
γ γ

λ γ γ λ
−

− −

 −
= − 

−  
 and the total cost is * *

1

n

j
j

J J
=

=∑ .

part-type A part-type B part-type C

 t1 t2 t3 t4 t5 t6 t7 t8

s(t)

ZB

ZA

ZC

t

sB

sA

sC

http://www.jiem.org
http://dx.doi.org/10.3926/jiem.2009.v2n3.p418-436

doi:10.3926/jiem.2009.v2n3.p418-436 ©© JIEM, 2009 – 2(3): 418-436 - ISSN: 2013-0953

Optimal priority ordering in PHP production of multiple part-types in a failure-prone machine 422

A. Sánchez; A. Corominas; R. Pastor

Nevertheless, only initial results of the optimal priority ordering, summarised here

in Section 3.1, are presented in Shu and Perkins (2001) and its authors point out

that this is an area for future research.

This problem raises at least three questions: (i) What structure do optimal policies

have? (ii) Given a priority ordering, how can the optimal values of the hedging

points be calculated for hedging point policies? (iii) How can optimal orderings be

found for prioritised policies?

As for many inventory management problems (Sethi & Thompson, 2000), it is very

natural to approach the first two questions with the help of control theory.

However, the third question corresponds to a family of scheduling problems in

which the elements are characterised by the distribution of the times the machine

spends in the “up” and “down” states and the cost function. The first objective of

this note is to place the problem in the field of scheduling and relate it to other

similar scheduling problems.

The distinction between disjunctive scheduling (a resource can execute one activity

at a time at most) and cumulative scheduling (some resources can execute several

activities in parallel, in our case several part-types, provided that their capacity is

not exceeded) is well known. When a cumulative resource intervenes, elastic

scheduling, i.e., the possibility of varying the amount of the resource assigned to

any activity over time (Baptiste et al., 1999, 2001) may sometimes be applied.

Therefore, the problems of the abovementioned family belong to the class of

elastic, cumulative scheduling problems, which have mainly been dealt with in the

field of project scheduling.

From another point of view, this problem falls into the category of scheduling

problems related to failure-prone manufacturing systems (i.e., the system switches

between an “operational” state and a “repair” state). Perkins and Srikant (1997)

focus on the two part-types case with a failure-prone production system, and in

Shu and Perkins (2001) the system spends an exponentially distributed interval of

time in a state before switching to the other; while Perkins (2004) assumes

exponentially distributed operational times and constant repair times, Bai and

Gershwin (1994) focus on multiple part-types; in contrast, Hu and Xiang (1995)

assume constant operational times and exponentially distributed repair times;

finally, in Corominas and Pastor (2009) the system spends a pre-known

http://www.jiem.org
http://dx.doi.org/10.3926/jiem.2009.v2n3.p418-436

doi:10.3926/jiem.2009.v2n3.p418-436 ©© JIEM, 2009 – 2(3): 418-436 - ISSN: 2013-0953

Optimal priority ordering in PHP production of multiple part-types in a failure-prone machine 423

A. Sánchez; A. Corominas; R. Pastor

operational time in a state, before switching to the other. As is pointed out in

Perkins (2004) the failure-prone problems are similar (or “dual”) to the problems in

which a variable demand stream is assumed (Perkins & Sikrant, 2001; Tan, 2001).

Obviously, they are also similar to some problems of production systems with

random yields (see, for instance, Ben-Zvi & Grosfeld-Nir, 2007).

The rest of this note is organised as follows: Section 2 defines a lower bound for

the problem. Section 3 and Section 4 introduce a test bed and present a

computational experiment in which the test bed is used to explain three dynamic

programming approaches for determining optimal priority orderings. This test bed,

the lower bound defined, the procedures developed and the optimal priority

orderings obtained for the instances of the test bed will allow evaluating the

performance of future heuristic and metaheuristic procedures. Section 5 outlines

brief conclusions.

2 Calculating a lower bound

In Sánchez (2007) it is proved that the sign of the first derivative of the expected

sum of quadratic holding and storage costs corresponding to a part-type j , *
jJ ,

according to 1jD − ,
*

1

j

j

dJ
dD −

, is always positive (see an sketch of the proof in the

Annex). Therefore, function *
jJ is strictly increasing according to 1jD − . This means

that the real quadratic holding and storage costs of a part-type j in the i th

position of the priority ordering is not less than the cost of this product assuming

that the ()1i − preceding products are those of minor demand rates (excluding j).

Therefore, a lower bound for the problem can be calculated as follows: We obtain

the quadratic holding and shortage inventory cost to sequence each part-type j

()1,...,j n= in the i th position of the priority ordering ()1,...,i n= , taking into

account that the ()1i − preceding products are those of minor demand rates

(excluding j). Then, a square matrix of costs Q of dimension n is obtained. The

lower bound is calculated by resolving the assignment problem with Q . In this

note we use the Jonker and Volgenant algorithm (Jonker & Volgenant, 1987),

whose code can be found at http://www.magiclogic.com/assignment.html).

http://www.magiclogic.com/assignment.html�
http://www.jiem.org
http://dx.doi.org/10.3926/jiem.2009.v2n3.p418-436

doi:10.3926/jiem.2009.v2n3.p418-436 ©© JIEM, 2009 – 2(3): 418-436 - ISSN: 2013-0953

Optimal priority ordering in PHP production of multiple part-types in a failure-prone machine 424

A. Sánchez; A. Corominas; R. Pastor

3 Determining the optimal priority orderings

3.1 Introduction

Shu and Perkins (2001) show that the expected cost corresponding to a part-type

does not depend on the order of the part-types with greater priority, but only on

the sum of all their demand rates. They also show that placing i directly before j

when a part-type i dominates a part-type j yields a cost that is no greater than

the cost corresponding to placing j directly before i (i.e., in order to find an

optimal priority ordering there is no need to take into account orderings in which j

is placed immediately before i). The definition of the dominance relations that we

use in the present note is as follows, i dominates j if and only if one of the three

following conditions is fulfilled: (i) i jc c> and · ·i i j jc d c d≥ ; (ii) i jc c= and

· ·i i j jc d c d> ; or (iii) i jc c= , i jd d= and i j< (we have added this last condition in

order to avoid reciprocity in the dominance relation).

These two properties allow the enumerative effort involved in finding an optimal

priority ordering to be reduced. If there are no domination relations between pairs

of part-types, or if these relations are not used, the computational complexity of

the calculations is proportional to 1

1

1
· ·2

1

n
n

k

n
n n

k
−

=

− 
= − 

∑ . Of course, the domination

relations, insofar as they reduce the number of orderings that need to be taken

into account, help to reduce the computational effort.

3.2 Three dynamic programming approaches

The first property exposed in the previous subsection leads to approach the

optimisation problem with dynamic programming. We have adopted the following

decisions in our implementation of a dynamic programming scheme:

• The solutions are coded employing a vector { }1 2, ,..., np p p , where jp

denotes the part-type sequenced in the j th position of the priority

ordering. A state q in the k th stage of the dynamic programming

procedure is defined by the set of the k already prioritised part-types

(remember that the expected cost corresponding to a part-type does not

http://www.jiem.org
http://dx.doi.org/10.3926/jiem.2009.v2n3.p418-436

doi:10.3926/jiem.2009.v2n3.p418-436 ©© JIEM, 2009 – 2(3): 418-436 - ISSN: 2013-0953

Optimal priority ordering in PHP production of multiple part-types in a failure-prone machine 425

A. Sánchez; A. Corominas; R. Pastor

depend on the order of the part-types with greater priority, but only on the

sum of all their demand rates). This is represented by a partial sequence in

which prioritised part-types are ordered from lowest to highest according to

their product index. If dominance relations are used, the characterisation of

a state must also include an indication of which element is the last in the

set, kp . In order to increase the efficiency of the procedure, a bijective

correspondence between the code of each state q of the k th stage and its

position in the table that contains the states of the k th stage has been

established.

• In each state q of the k th stage, the next part-type in the priority

ordering, 1kp + , needs to be determined. This part-type must not yet be

prioritised and, if the dominance relations defined in Section 3.1 are used,

this part-type should not be dominated by the last part-type in the partial

preceding priority ordering.

• Let Γk be the set of states belonging to the k th stage (where

{ } { }{ }1 1 ,...,Γ = n); *
,χk q and *

1,χ −k s , respectively, the optimal costs

corresponding to the state q of k th stage, and to the state s of 1−k th

stage; and ()
*

1, ,κ − kk s p , the cost of adding kp as the k th part-type in the

partial priority ordering that defines the state s of 1−k th stage.

The recursive function is as follows:

()()
1

* * *
, 1, 1, ,s

min ; 2,...,χ χ κ
−

− −∀ ∈Γ
= + ∀ ∈Γ =

kk
k q k s kk s p q k n

The costs () ()*
1, , 2,...,κ − =

kk s p k n are computed as indicated for the *
jJ in

Section 1

Two dynamic programming approaches were designed: one that takes dominance

relations into account, and one that does not. We will denominate these two

procedures _DP Yes DR− and _DP No DR− respectively.

http://www.jiem.org
http://dx.doi.org/10.3926/jiem.2009.v2n3.p418-436

doi:10.3926/jiem.2009.v2n3.p418-436 ©© JIEM, 2009 – 2(3): 418-436 - ISSN: 2013-0953

Optimal priority ordering in PHP production of multiple part-types in a failure-prone machine 426

A. Sánchez; A. Corominas; R. Pastor

Of course, the limitations of these procedures stem from the fact that the number

of states increases exponentially as n increases. It is straightforward that for 1n >

part-types the maximum number of states is reached at stage
1

2
nk + =   

 (and

also, when
1

2
n +

 is an integer, at
1 1

2
nk + = −  

); for instance, the number of

states for 23n = at stages 11 and 12 is equal to 1,352,078. Finally, we also

designed a third dynamic programming approach that uses the lower bound

defined in Section 2 but not the dominance relations introduced in Section 3.1. We

will denominate this procedure −DP LB . The introduction of bounds in the

dynamic programming scheme allows reducing the number of states considered in

the search process. The operation is as follows:

• First, a feasible solution X (and the value of the objective function Z) is

calculated with a heuristic procedure. The heuristic used in this note

consisted in determining the ordering of the part-types according to the

non-increasing values of the product jd ⋅ jc (which is the best heuristic

developed in Sánchez, 2007).

• A lower bound is calculated in each state q from each k th stage. If the

lower bound value is lower than Z , the next part-type in the priority

ordering, 1kp + , is determined. If it is not lower than Z , the state q is

rejected.

• If the dynamic programming does not provide a solution, X is an optimal

solution.

As shown in Section 4, procedure DP LB− yields the worst results. Thus, we

decided not to define a dynamic programming approach that used jointly the lower

bound and the dominance relations.

In this new scheduling problem, it is necessary to have a procedure for finding

optimal solutions to the problem, even for a limited number of part-types, since

the optimal priority orderings allow evaluating the performance of future heuristic

and metaheuristic procedures.

http://www.jiem.org
http://dx.doi.org/10.3926/jiem.2009.v2n3.p418-436

doi:10.3926/jiem.2009.v2n3.p418-436 ©© JIEM, 2009 – 2(3): 418-436 - ISSN: 2013-0953

Optimal priority ordering in PHP production of multiple part-types in a failure-prone machine 427

A. Sánchez; A. Corominas; R. Pastor

4 Computational experiment

First, we introduce a test bed for the problem. Then we report the results of a

computational experiment in which optimal priority orderings for the instances of

the test bed were determined using the three dynamic programming approaches

defined in Section 3.2.

4.1 A test bed for the problem

To the authors’ knowledge, there is no standard test bed for the problem.

Therefore, the following test bed was generated: the set consisted of 1,400

instances, 100 instances for each value of n in [10,23]; the values of jd and jc

were generated at random using uniform discrete distributions in [1,100] and

[1, 20] respectively.

In order to guarantee that the machine had enough capacity to meet demand, the

value of µ was set equal to
1

n
d u

j
ju

q q d
q

α
=

+
⋅ ⋅∑ , where 1α > . Given the statement of

the problem, the influence of the values of α and the ratio d u

u

q q
q
+

 on the

computing times was assumed to be insignificant. This assumption was confirmed

by performing a short, initial experiment using 25 instances in which 18n = with

the values 1.05,1.10,1.25,1.50,2.00α = and 3.00,2.00,1.50,1.20,1.10d u

u

q q
q
+

= . For

the different combinations of the parameter values, the computing times for

solving each instance turned out to be almost identical. Therefore, the parameter

values α and d u

u

q q
q
+

 could be fixed (specifically, we established that 1.10α = and

1.20d u

u

q q
q
+

= , and therefore that
1

1.32
n

j
j

dµ
=

= ⋅∑).

Presenting the design of the test bed for this new scheduling problem was another

purpose of the present technical note. It can be obtained from

http://www.ioc.upc.edu/EOLI/ for future developments in order to compare the

results of new algorithms or solvers.

http://www.ioc.upc.edu/EOLI/�
http://www.jiem.org
http://dx.doi.org/10.3926/jiem.2009.v2n3.p418-436

doi:10.3926/jiem.2009.v2n3.p418-436 ©© JIEM, 2009 – 2(3): 418-436 - ISSN: 2013-0953

Optimal priority ordering in PHP production of multiple part-types in a failure-prone machine 428

A. Sánchez; A. Corominas; R. Pastor

4.2 Results of a computational experiment

The following three dynamic programming approaches were used in the

computational experiment: an approach that only takes dominance relations

()_DP Yes DR− into account, one that does not ()_DP No DR− , and one that

takes into account the lower bound but not the dominance relations ()DP LB− .

These three procedures have different degrees of calculation difficulty and different

numbers of generated states; hence, it was not possible to determine a priori

which would be the most efficient.

These three approaches were applied to the set of instances generated in

subsection 4.1. The experiment was performed on a PC Pentium IV, at 3.2 GHz,

with 1 Gb RAM. Table 1 shows the minimum ()mint , average ()va et and maximum

()maxt computing times in seconds, which correspond to applying _DP No DR− .

n 10 11 12 13 14 15 16 17 18 19 20 21 22 23

mint 0.00 0.00 0.02 0.03 0.08 0.44 0.98 2.13 4.36 9.56 21.03 45.27 96.70 207.28

va et 0.00 0.01 0.02 0.04 0.09 0.47 1.08 2.43 4.79 10.53 22.91 50.70 110.44 231.14

maxt 0.02 0.02 0.03 0.06 0.14 0.56 1.20 3.02 5.88 12.91 25.83 55.48 126.80 267.98

Table 1. “Minimum, average and maximum computing times (in seconds) with

_DP No DR− ”.

One can appreciate the low dispersion of the computing times for a given value of

n , and furthermore that the ratio between the average computing times

corresponding to n and 1n − is approximately equal to 2·
1

n
n −

, as could be

expected from the analysis of the complexity of the algorithm. Figure 2 shows the

average computing time as a function of the number of part-types, n .

The computing times using _DP Yes DR− depend on the density of these

relations, which is defined as the ratio between the number of actual dominance

relations corresponding to the instance and its maximum possible value (which is

http://www.jiem.org
http://dx.doi.org/10.3926/jiem.2009.v2n3.p418-436

doi:10.3926/jiem.2009.v2n3.p418-436 ©© JIEM, 2009 – 2(3): 418-436 - ISSN: 2013-0953

Optimal priority ordering in PHP production of multiple part-types in a failure-prone machine 429

A. Sánchez; A. Corominas; R. Pastor

equal to ·(1) / 2n n −). Table 2 shows the minimum ()min% , average ()v%a e and

maximum ()max% density of dominance relations corresponding to the set of

instances used in the experiment, expressed as percentages. Table 3 shows the

minimum ()mint , average ()va et and maximum ()maxt computing times in seconds

using _DP Yes DR− .

n 10 11 12 13 14 15 16 17 18 19 20 21 22 23

min% 35.6 47.3 48.5 57.7 56.0 56.2 50.0 54.4 57.5 59.1 59.5 58.1 61.0 50.2

v%a e 76.2 76.0 78.4 75.8 75.6 77.8 77.2 76.5 75.5 75.9 76.7 77.6 75.9 75.5

max% 97.8 98.2 97.0 92.3 93.4 95.2 94.2 91.2 88.9 90.6 88.4 94.8 87.0 88.9

Table 2. “Minimum, average and maximum density of dominance relations (in %)”.

n 10 11 12 13 14 15 16 17 18 19 20 21 22 23

mint 0.00 0.00 0.02 0.03 0.08 0.19 0.41 0.84 1.91 3.48 7.39 15.42 30.97 72.78

va et 0.01 0.01 0.03 0.07 0.13 0.27 0.62 1.35 2.90 5.95 11.44 24.79 52.34 108.21

maxt 0.02 0.03 0.06 0.24 0.22 0.63 1.38 2.55 5.08 12.83 21.72 44.66 100.58 187.5

Table 3. “Minimum, average and maximum computing times (in seconds) with

_DP Yes DR− ”.

In general, the computing times are shorter when dominance relations are used

than when they are not used. However, the dispersion for a given value of n is

greater, as was expected. The average computing times increase exponentially

with the value of n , as occurs when dominances are not taken into account (Figure

2).

http://www.jiem.org
http://dx.doi.org/10.3926/jiem.2009.v2n3.p418-436

doi:10.3926/jiem.2009.v2n3.p418-436 ©© JIEM, 2009 – 2(3): 418-436 - ISSN: 2013-0953

Optimal priority ordering in PHP production of multiple part-types in a failure-prone machine 430

A. Sánchez; A. Corominas; R. Pastor

0

50

100

150

200

250

300

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Figure 2. “Average computing time versus number of part-types”.

Table 4 allows comparing, for 10 16≤ ≤n the average computing times in seconds

that correspond to applying DP LB− and _DP No DR− (DP LB− is similar to

_DP No DR− , but it uses the lower bound).

n 10 11 12 13 14 15 16

DP LB− 0.71 1.98 5.38 15.29 42.51 109.94 286.50

_DP No DR− 0.00 0.01 0.02 0.04 0.09 0.47 1.08

Table 4. “Average computing times (in seconds) with DP LB− and _DP No DR− ”.

With the application of the lower bound, the computing times not only do not

decrease but in fact they increase considerably (see also Figure 2). Using the lower

bound in the dynamic programming procedure involves a decrease in the number

of states compared to not using it, as can be seen in Table 5. The reason why the

computing times corresponding to DP LB− are higher than those corresponding to

_DP No DR− may be that, for DP LB− , the lower bound has to be calculated in

every state and this takes more time than when it is not calculated (when certain

rejected states are not considered).

To sum up, the computational experiment shows that it is worthwhile using

dominance relations and that instances with up to approximately 25 part-types can

be solved in relatively short computing times with the procedure _DP Yes DR− .

DP-No_DR

DP-Yes_DR

Number of part-types

A
ve

ra
ge

 c
om

pu
tin

g
ti
m

e
(i

n
se

co
nd

s)

DP-LB

http://www.jiem.org
http://dx.doi.org/10.3926/jiem.2009.v2n3.p418-436

doi:10.3926/jiem.2009.v2n3.p418-436 ©© JIEM, 2009 – 2(3): 418-436 - ISSN: 2013-0953

Optimal priority ordering in PHP production of multiple part-types in a failure-prone machine 431

A. Sánchez; A. Corominas; R. Pastor

The values of the optimal solutions of the instances of the test bed can be obtained

from http://www.ioc.upc.edu/EOLI/.

n 10 11 12 13 14 15 16

Number of states for

_DP No DR−
1023 2047 4095 8191 16383 32767 65535

Average of states for

DP LB−
632 1265 2745 5876 11992 24810 51445

% Decrease 38.25 38.22 32.97 28.26 26.80 24.28 21.50

Table 5. “Number of states with _DP No DR− and average of states for DP LB− ”.

5 Conclusions and research prospects

This work establishes optimal priority orderings for prioritised hedging point (PHP)

control policies in the problem of minimising the expected sum of quadratic holding

and shortage inventory costs when a single, failure-prone machine produces

multiple part-types.

In this note, the problem is placed in the field of scheduling and a lower bound for

the problem is proposed. Three dynamic programming approaches for determining

optimal priority orderings are explained and a test bed is introduced. Finally, a

computational experiment in which the algorithms are applied to the test bed is

presented. This test bed, the lower bound proposed, the procedures developed and

the optimal priority orderings obtained for the instances of the test bed allow the

performance of future developments to be evaluated.

The computational experiment shows that it is worthwhile using dominance

relations and that instances with up to approximately 25 part-types can be solved

in relatively short computing times. Moreover, using the lower bound in a dynamic

programming scheme increases the computing time needed. However, as the

memory required and the computing time increase exponentially with n , in order

to solve larger instances future research must be based on:

a) Using heuristic and metaheuristic procedures.

http://www.ioc.upc.edu/EOLI/�
http://www.jiem.org
http://dx.doi.org/10.3926/jiem.2009.v2n3.p418-436

doi:10.3926/jiem.2009.v2n3.p418-436 ©© JIEM, 2009 – 2(3): 418-436 - ISSN: 2013-0953

Optimal priority ordering in PHP production of multiple part-types in a failure-prone machine 432

A. Sánchez; A. Corominas; R. Pastor

b) Using the lower bound only in some states of the multistage graph of

dynamic programming—for example, using the lower bound only in

states with a high value of the partial solution built so far, which are

more likely to be eliminated by taking into account the lower bound.

Annex

In this Annex it is proved that the sign of the first derivative of the expected sum

of quadratic holding and storage costs corresponding to a part-type j , *
jJ , respect

to 1jD − ,
*

1

j

j

dJ
dD −

, is always positive. Maple © and Derive 5 © commercial software

have been used to help in this proof.

According to the terminology presented in Section 1

(
()

()
1*

1 1

112
1

j j
j j j

j j j j

C c z
γ γ

λ γ γ λ
−

− −

 −
= − 

−  
, 1*

1

1 1j j
j

j j

z
γ γ

λ λ
−

−

− −
= − , u d

j
j j

q q
D D

λ
µ

= −
−

 and

()
()()

u d u j
j

j d u

q q q D
D q q

µ
γ

µ
− +

=
− +

), the expected sum of quadratic holding and storage costs

corresponding to a part-type j , ()2* *
j j j jJ C c z= − , can be expressed as follows (1):

* 3 2 2 2
1 1(2 () () () (2 () ()j j d u j j d u d u j d u j d u d uJ c q q d D q q q q D q q d q q q q− −= ⋅µ ⋅ ⋅ ⋅ ⋅ ⋅ − ⋅ + + ⋅ + ⋅ ⋅ + ⋅ −

2 2 3
1(4)) (2 () (2)))] /[() (())u u d u j d u d u d u j d u uq q q q d q q q q q q D q q qµ µ µ µ−+ ⋅ ⋅ − + ⋅ ⋅ ⋅ + − ⋅ + + ⋅ ⋅ + − ⋅

2
1(() ())]j d u j d u uD q q d q q qµ−⋅ ⋅ + + ⋅ + − ⋅ (1)

Then, we calculate the first derivative of *
jJ respect to 1jD − :

*
2 3 3 2 2

1 1
1

[2 (3 () () () (5 () ()j
j j d u j d u d u j d u j d u d u

j

dJ
c d q q D q q q q D q q d q q q q

dD
µ − −

−

= − ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ − ⋅ + + ⋅ + ⋅ ⋅ + ⋅ −

2 2
13 (3)) (2 () () 2 () (5)u u d j j d u d u j u d u u dq q q D d q q q q d q q q q qµ µ−+ ⋅ ⋅ − + ⋅ ⋅ − ⋅ + + ⋅ ⋅ ⋅ + ⋅ −

2 2 2 2 23 (3)) (() (2) (3 5) 3))] /u d u u j d u d u j u d u uq q q q d q q q q d q q q qµ µ µ µ− ⋅ ⋅ + + ⋅ ⋅ ⋅ + ⋅ + − ⋅ ⋅ ⋅ + + ⋅
3 4

1 1[(() ()) (())]j u d j u d u j u d uD q q d q q q D q q qµ µ− −⋅ + + ⋅ + − ⋅ ⋅ ⋅ + − ⋅ (2)

http://www.jiem.org
http://dx.doi.org/10.3926/jiem.2009.v2n3.p418-436

doi:10.3926/jiem.2009.v2n3.p418-436 ©© JIEM, 2009 – 2(3): 418-436 - ISSN: 2013-0953

Optimal priority ordering in PHP production of multiple part-types in a failure-prone machine 433

A. Sánchez; A. Corominas; R. Pastor

Taking into account that 0jc > , 0jd > , 0µ > , 0uq > , 0dq > ,
1

j

j k
k

D d
=

=∑ ,

4
1(()) 0j u d uD q q qµ− ⋅ + − ⋅ > and 3

1(() ()) 0j u d j u d uD q q d q q qµ− ⋅ + + ⋅ + − ⋅ < (because

()
1

/()
n

u d u j
j

q q q dµ
=

⋅ + >∑), the sign of (3) has to be studied (it must be positive for

the proof):

3 2 2
1 1(3 () () () (5 () () 3 (3))j d u d u j d u j d u d u u u dD q q q q D q q d q q q q q q qµ− −⋅ − ⋅ + + ⋅ + ⋅ ⋅ + ⋅ − + ⋅ ⋅ −

2 2 2 2
1 (2 () () 2 () (5) 3 (3))j j d u d u j u d u u d u d uD d q q q q d q q q q q q q qµ µ−+ ⋅ ⋅ − ⋅ + + ⋅ ⋅ ⋅ + ⋅ − − ⋅ ⋅ +

2 2 2(() (2) (3 5) 3))u j d u d u j u d u uq d q q q q d q q q qµ µ µ+ ⋅ ⋅ ⋅ + ⋅ + − ⋅ ⋅ ⋅ + + ⋅ (3)

Given that the units used to express the demand rate may be chosen arbitrarily,

one can take, without loss of generality, 1jd = and replace 1 /j jD d− with X . This

way, expression (3) is reduced to expression (4):

3 2 2(3 () () () (5 () () 3 (3))d u d u d u d u d u u u dX q q q q X q q q q q q q q qµ⋅ − ⋅ + + ⋅ + ⋅ ⋅ + ⋅ − + ⋅ ⋅ −
2 2 2(2 () () 2 () (5) 3 (3))d u d u u d u u d u d uX q q q q q q q q q q q qµ µ+ ⋅ ⋅ − ⋅ + + ⋅ ⋅ + ⋅ − − ⋅ ⋅ +

2 2(() (2) (3 5) 3))u d u d u u d u uq q q q q q q q qµ µ µ+ ⋅ ⋅ + ⋅ + − ⋅ ⋅ + + ⋅ (4)

Replacing ()u dq q+ with C and uqµ ⋅ with B , expression (4) is reduced to

expression (5):

3 2 23 (2) (5 (2) 3 (4))u u uX C q C X C C C q B C q⋅ − ⋅ + ⋅ ⋅ ⋅ − − ⋅ −
2 2(3 (2) 2 (6) 2 (2))u u uX B C q B C C q C q C− ⋅ ⋅ + + ⋅ ⋅ − − − ⋅ ⋅

2(3 (3 2) ())u uB B B C q C C q+ ⋅ − ⋅ + + ⋅ + (5)

The expression 1() /()u u d j jq q q D dµ −⋅ + > + is equivalent to expression 1B C X> +

and 0C > . Therefore (1)B C X> ⋅ + and we can set (1)B A C X= ⋅ ⋅ + , where 1A >

(see expression (6)):

3 3 3 2 3 3 2 2 3 3 3 2 3 3 3 2 33 3 6 3 12 3 6u u uA C X A C X A C X q A C X A C X q C X C X q⋅ ⋅ − ⋅ ⋅ − ⋅ ⋅ ⋅ − ⋅ ⋅ + ⋅ ⋅ ⋅ + ⋅ − ⋅ ⋅
3 3 2 2 3 2 2 2 2 3 2 2 2 3 2 2 29 9 14 5 24 5 10u u uA C X A C X A C X q A C X A C X q C X C X q+ ⋅ ⋅ − ⋅ ⋅ − ⋅ ⋅ ⋅ − ⋅ ⋅ + ⋅ ⋅ ⋅ + ⋅ − ⋅ ⋅
3 3 2 3 2 2 3 2 3 29 9 10 13 2 4u u uA C X A C X A C X q A C X A C X q C X C X q+ ⋅ ⋅ − ⋅ ⋅ − ⋅ ⋅ ⋅ − ⋅ ⋅ + ⋅ ⋅ ⋅ + ⋅ − ⋅ ⋅
3 3 2 3 2 2 3 23 3 2 u uA C A C A C q A C A C q+ ⋅ − ⋅ − ⋅ ⋅ + ⋅ + ⋅ ⋅ (6)

http://www.jiem.org
http://dx.doi.org/10.3926/jiem.2009.v2n3.p418-436

doi:10.3926/jiem.2009.v2n3.p418-436 ©© JIEM, 2009 – 2(3): 418-436 - ISSN: 2013-0953

Optimal priority ordering in PHP production of multiple part-types in a failure-prone machine 434

A. Sánchez; A. Corominas; R. Pastor

The sign of the coefficients of 3X , 2X , 1X and 0X can be studied separately, in

order to show that they are always positive and that, therefore, taking into account

that 0X ≥ , the whole expression (2) is positive.

As an example, we prove that the sign of the coefficient of 3X is positive.

Expression (7) shows, taken from (6) the expression that gives the value of this

coefficient:

3 3 2 3 2 2 3 2 3 23 3 6 3 12 3 6u u uA C A C A C q A C A C q C C q⋅ − ⋅ − ⋅ ⋅ − ⋅ + ⋅ ⋅ + − ⋅ (7)

Whose sign is the same than that (8):

3 2 2 3 2 22 4 2 (1) (2 4 2)u u u uA C A C A q A C A q C q C A A A q A A⋅ − ⋅ − ⋅ − ⋅ + ⋅ + − = ⋅ − − + + ⋅ − + − (8)

Remember that 1A > . Then, the coefficient of C is positive 3 2(1 0)A A A− − + > .

However, the coefficient of uq is negative 2 2(2 4 2 (1))A A A− + − = − − .

As ()u dC q q= + , to prove that 3 2 2(1) (2 4 2) 0uC A A A q A A⋅ − − + + ⋅ − + − > it suffices

to show that 3 2 2(1) (2 4 2) 0C A A A C A A⋅ − − + + ⋅ − + − > , which is equivalent to show

that 3 2 2 3 2(1) (2 4 2) 3 3 1 0A A A A A A A A− − + + − + − = − + − > . And this last

proposition is straightforward, since 1A > and the expression is equal to 0 for

1A = and its derivative ()23 6 3A A− + is > 0 for 1A > .

References

Bai, S. X., & Gershwin S. B. (1994). Scheduling manufacturing systems with work-

in-process inventory control: multiple-part-type systems. International Journal of

Production Research, 32, 365-385.

Baptiste, Ph., Le Pape, C., & Nuijten, W. (1999). Satisfiability tests and time_bound

adjustments for cumulative scheduling problems. Annals of Operations Research,

92, 305-333.

Baptiste, Ph., Le Pape, C., & Nuijten, W. (2001). Constraint-based scheduling.

Applying Constraint Programming to Scheduling Problems. Kluwer.

http://www.jiem.org
http://dx.doi.org/10.3926/jiem.2009.v2n3.p418-436

doi:10.3926/jiem.2009.v2n3.p418-436 ©© JIEM, 2009 – 2(3): 418-436 - ISSN: 2013-0953

Optimal priority ordering in PHP production of multiple part-types in a failure-prone machine 435

A. Sánchez; A. Corominas; R. Pastor

Ben-Zvi, T., & Grosfeld-Nir, A. (2007). Serial production systems with random

yields and rigid demand: A heuristic. Operations Research Letters, 35, 235-244.

Corominas, A., & Pastor, R. (2009). Scheduling production of multiple part-types in

a system with pre-known demands and deterministic inactive time intervals.

European Journal of Operational Research, 193, 639-643.

Hu, J. Q., & Xiang D. (1995). Optimal control for systems with deterministic

production cycles. IEEE Transactions on Automatic Control, 40, 782-786.

Jonker, R., & Volgenant, A. (1987). A shortest augmenting path algorithm for dense

and sparse linear assignment problems. Computing, 38, 325-340.

Ketzenberg, M., Metters, R., & Semple, J. (2006). A heuristic for multi-item

production with seasonal demand. IIE Transactions, 38, 201-211.

Perkins, J. R. (2004). Optimal control of failure-prone manufacturing systems with

constant repair-times. Annals of Operations Research, 125, 233-261.

Perkins, J. R., & Srikant, R. (1997). Scheduling multiple partt-types in an unreliable

single machine manufacturing system. IEEE Transactions on Automatic Control,

42, 364-377.

Perkins J. R., & Srikant, R. (2001). Failure-prone production systems with uncertain

demand. IEEE Transactions on Automatic Control, 46, 441-449.

Sánchez, A. (2007). Determinación de secuencias en una máquina multiproducto

sujeta a fallos y con costes cuadráticos. Doctoral Thesis, Universitat Politècnica de

Catalunya, Barcelona.

Shu, C., & Perkins, J. R. (2001). Optimal PHP production of multiple part-types on a

failure-prone machine with quadratic buffer costs. IEEE Transactions on Automatic

Control, 46, 541-549.

Sethi S. P., & Thompson, G. L. (2000). Optimal control theory: Applications to

management science and Economics, 2nd edition. Kluwer.

Tan, B. (2001). Production control of a pull system with production and demand

uncertainty. Working paper, Graduate School of Business, Koç University.

http://www.jiem.org
http://dx.doi.org/10.3926/jiem.2009.v2n3.p418-436

doi:10.3926/jiem.2009.v2n3.p418-436 ©© JIEM, 2009 – 2(3): 418-436 - ISSN: 2013-0953

Optimal priority ordering in PHP production of multiple part-types in a failure-prone machine 436

A. Sánchez; A. Corominas; R. Pastor

©© Journal of Industrial Engineering and Management, 2009 (www.jiem.org)

Article's contents are provided on a Attribution-Non Commercial 3.0 Creative commons license. Readers are
allowed to copy, distribute and communicate article's contents, provided the author's and Journal of Industrial

Engineering and Management's names are included. It must not be used for commercial purposes. To see the complete
license contents, please visit http://creativecommons.org/licenses/by-nc/3.0/.

http://www.jiem.org/�
http://creativecommons.org/licenses/by-nc/3.0/�
http://www.jiem.org
http://dx.doi.org/10.3926/jiem.2009.v2n3.p418-436

	Optimal priority ordering in PHP production of multiple part-types in a failure-prone machine
	Abstract
	Keywords
	1 Introduction and problem statement
	2 Calculating a lower bound
	3 Determining the optimal priority orderings
	3.1 Introduction
	3.2 Three dynamic programming approaches

	4 Computational experiment
	4.1 A test bed for the problem
	4.2 Results of a computational experiment

	5 Conclusions and research prospects
	Annex
	References
	Attribution-Non Commercial 3.0 Creative Commons licens

