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Abstract: This note deals with the problem of minimising the expected sum of quadratic 

holding and shortage inventory costs when a single, failure-prone machine produces 

multiple part-types. Shu and Perkins (2001) introduce the problem and, by restricting the 

set of control policies to the class of prioritised hedging point (PHP) policies, establish 

simple, analytical expressions for the optimal hedging points provided that the priority 

ordering of the part-types is given. However, the determination of an optimal priority 

ordering is left by the authors as an open question. This leaves an embedded sequencing 

problem which we focus on in this note. We define a lower bound for the problem, 

introduce a test bed for future developments, and propose three dynamic programming 

approaches (with or without the lower bound) for determining the optimal priority 

orderings for the instances of the test bed. This is an initial step in a research project aimed 

at solving the optimal priority ordering problem, which will allow evaluating the 

performance of future heuristic and metaheuristic procedures. 
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1 Introduction and problem statement 

Shu and Perkins (2001) introduce the problem of optimising the costs of a 

production system that consists in a single, failure-prone machine that is able to 

produce up to n  part-types simultaneously with constant demand rates 

( ); 1,...,jd j n= . The machine alternately adopts an “up” state, in which it is fully 

functional, and a “down” state, in which it is not able to produce anything. The 

time that the machine spends in each state before switching to the other is 

distributed exponentially with parameters equal to 1 dq  and 1 uq  for the “down” 

and “up” states respectively. The vector of the production rates to be determined 

for each part-type in each instant of time t  is [ ]1 2( ) ( ), ( ),. . . ,( )nx t x t x t x t= . Therefore, 

the first derivative, ( ),
js t , of the inventory level of part-type j  at time t , ( )js t , 

satisfies the equation ( ), ( )j j js t x t d= − . Backlog is unavoidable and therefore 

admitted. Without loss of generality, it is assumed that the maximum production 

rate for any part-type is equal to µ , which is the capacity of the machine; 

therefore, the production rates, 0t∀ ≥ , must fulfil the condition ( )
1

n

j
j

x t µ
=

≤∑ . It is 

also assumed that 
1

0
n

u
j

jd u

q d
q q

µ
=

− >
+ ∑ , i.e., that the machine has enough 

capacity to meet demand. The instantaneous cost function of the system is 

assumed to be equal to ( )2

1
·

n

j j
j

c s t
=
∑ , where jc  ( )1, 2,...,j n=  are nonnegative 

constant costs; as it is pointed out in Shu and Perkins (2001), the quadratic 

instantaneous cost function is a useful cost approximation for systems in with 

productions are perishable or may become obsolete, as well as systems with 

storage-space competition. The objective, then, is to minimise the expected long-

term average cost: ( )2

0
1

1lim
nT

j jT j
J E c s t dt

T→∞
=

  
=   

   
∑∫ . 

In real industrial systems, there are several kinds of failure-prone resources that 

can share their capacity among various activities. A specific example known by the 

authors is the case of a painting plant in which a pump (which has a limited 

maximum flow, µ , and may break down) is able to simultaneously feed the flow 
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necessities, jd , of n  canning stations ( )1,...,j n= , each of which has a particular, 

controllable rate of flow, ( )jx t . This plant has different pumps, each of which feeds 

the flow necessities of 4n =  canning stations simultaneously. Many other 

resources, such as ovens, autoclaves and treatment bath containers can also share 

their capacity. Actually, an entire manufacturing system can play the role of the 

“failure-prone machine” in this model and face the problem of how to share its 

capacity among multiple products (Ketzenberg et al., 2006, discuss this in relation 

to the problems of a pencil manufacturer that produces different pencil types for 

the highly seasonal back-to-school market). 

In prioritised hedging point (PHP) policies a priority ordering, { }1 2, ,..., np p p , is 

established for the part-types ( )1,...,j n=  and the machine attempts to drive the 

inventory level of each part-type j  to its hedging point, 
jpz , and to keep it at this 

level. When the machine is “up” (when it is “down” the machine cannot work at all) 

its production capacity is assigned as follows. If the difference ( )
1 1p pz s t−  for part-

type 1p , is positive, zero or negative (this can only happen in a transient state) the 

production rate ( )
1px t  is respectively equal to µ , 

1pd  or 0. The production rate of 

any other part-type jp  ( )1j >  is equal to zero unless the inventory levels of all the 

part-types with greater priority are above or equal to their corresponding hedging 

points. When this condition is fulfilled, if the difference ( )
j jp pz s t−  is positive, zero 

or negative (this can also only happen in a transient state) the production rate 

( )
jpx t  is respectively equal to µ  minus the capacity assigned to the part-types 

with greater priority, 
jpd  or 0. Figure 1 shows the evolution of the inventory level 

of three part-types (A, B and C), taking into account the priority ordering { }, ,A B C  

and without an initial inventory ( ) ( ) ( )( )0 0 0 0A B Cs s s= = = . For 10 t t≤ < , when 

( )1A As t z= , ( )Ax t µ=  and ( ) ( ) 0B Cx t x t= = ; for 1 2t t t≤ < , when ( )2B Bs t z= , 

( )A Ax t d= , ( )B Ax t dµ= −  and ( ) 0Cx t = ; for 2 3t t t≤ < , when ( )3C Cs t z= , 

( )A Ax t d= , ( )B Bx t d=  and ( )C A Bx t d dµ= − − ; for 3 4t t t≤ < , ( )A Ax t d= , 
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( )B Bx t d=  and ( )C Cx t d= . At instant 4t  the machine adopts a “down” state in 

which it is not able to produce anything. In instant 5t  the machine adopts an “up” 

state and begins producing part-type A again with a production rate equal to µ . 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 1. “Evolution of the inventory level of three part-types”. 

The optimal general solution of the problem is not known. However, Shu and 

Perkins (2001) establish simple closed-form expressions for the optimal hedging 

points and the corresponding cost, assuming that the prioritised hedging point 

policy is applied and a priority order of the part-types is given. For part-type 1 
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Nevertheless, only initial results of the optimal priority ordering, summarised here 

in Section 3.1, are presented in Shu and Perkins (2001) and its authors point out 

that this is an area for future research. 

This problem raises at least three questions: (i) What structure do optimal policies 

have? (ii) Given a priority ordering, how can the optimal values of the hedging 

points be calculated for hedging point policies? (iii) How can optimal orderings be 

found for prioritised policies? 

As for many inventory management problems (Sethi & Thompson, 2000), it is very 

natural to approach the first two questions with the help of control theory. 

However, the third question corresponds to a family of scheduling problems in 

which the elements are characterised by the distribution of the times the machine 

spends in the “up” and “down” states and the cost function. The first objective of 

this note is to place the problem in the field of scheduling and relate it to other 

similar scheduling problems. 

The distinction between disjunctive scheduling (a resource can execute one activity 

at a time at most) and cumulative scheduling (some resources can execute several 

activities in parallel, in our case several part-types, provided that their capacity is 

not exceeded) is well known. When a cumulative resource intervenes, elastic 

scheduling, i.e., the possibility of varying the amount of the resource assigned to 

any activity over time (Baptiste et al., 1999, 2001) may sometimes be applied. 

Therefore, the problems of the abovementioned family belong to the class of 

elastic, cumulative scheduling problems, which have mainly been dealt with in the 

field of project scheduling. 

From another point of view, this problem falls into the category of scheduling 

problems related to failure-prone manufacturing systems (i.e., the system switches 

between an “operational” state and a “repair” state). Perkins and Srikant (1997) 

focus on the two part-types case with a failure-prone production system, and in 

Shu and Perkins (2001) the system spends an exponentially distributed interval of 

time in a state before switching to the other; while Perkins (2004) assumes 

exponentially distributed operational times and constant repair times, Bai and 

Gershwin (1994) focus on multiple part-types; in contrast, Hu and Xiang (1995) 

assume constant operational times and exponentially distributed repair times; 

finally, in Corominas and Pastor (2009) the system spends a pre-known 
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operational time in a state, before switching to the other. As is pointed out in 

Perkins (2004) the failure-prone problems are similar (or “dual”) to the problems in 

which a variable demand stream is assumed (Perkins & Sikrant, 2001; Tan, 2001). 

Obviously, they are also similar to some problems of production systems with 

random yields (see, for instance, Ben-Zvi & Grosfeld-Nir, 2007). 

The rest of this note is organised as follows: Section 2 defines a lower bound for 

the problem. Section 3 and Section 4 introduce a test bed and present a 

computational experiment in which the test bed is used to explain three dynamic 

programming approaches for determining optimal priority orderings. This test bed, 

the lower bound defined, the procedures developed and the optimal priority 

orderings obtained for the instances of the test bed will allow evaluating the 

performance of future heuristic and metaheuristic procedures. Section 5 outlines 

brief conclusions. 

2 Calculating a lower bound 

In Sánchez (2007) it is proved that the sign of the first derivative of the expected 

sum of quadratic holding and storage costs corresponding to a part-type j , *
jJ , 

according to 1jD − , 
*

1

j

j

dJ
dD −

, is always positive (see an sketch of the proof in the 

Annex). Therefore, function *
jJ  is strictly increasing according to 1jD − . This means 

that the real quadratic holding and storage costs of a part-type j  in the i th 

position of the priority ordering is not less than the cost of this product assuming 

that the ( )1i −  preceding products are those of minor demand rates (excluding j ). 

Therefore, a lower bound for the problem can be calculated as follows: We obtain 

the quadratic holding and shortage inventory cost to sequence each part-type j  

( )1,...,j n=  in the i th position of the priority ordering ( )1,...,i n= , taking into 

account that the ( )1i −  preceding products are those of minor demand rates 

(excluding j ). Then, a square matrix of costs Q  of dimension n  is obtained. The 

lower bound is calculated by resolving the assignment problem with Q . In this 

note we use the Jonker and Volgenant algorithm (Jonker & Volgenant, 1987), 

whose code can be found at http://www.magiclogic.com/assignment.html). 

http://www.magiclogic.com/assignment.html�
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3 Determining the optimal priority orderings 

3.1 Introduction 

Shu and Perkins (2001) show that the expected cost corresponding to a part-type 

does not depend on the order of the part-types with greater priority, but only on 

the sum of all their demand rates. They also show that placing i  directly before j  

when a part-type i  dominates a part-type j  yields a cost that is no greater than 

the cost corresponding to placing j  directly before i  (i.e., in order to find an 

optimal priority ordering there is no need to take into account orderings in which j  

is placed immediately before i ). The definition of the dominance relations that we 

use in the present note is as follows, i  dominates j  if and only if one of the three 

following conditions is fulfilled: (i) i jc c>  and · ·i i j jc d c d≥ ; (ii) i jc c=  and 

· ·i i j jc d c d> ; or (iii) i jc c= , i jd d=  and i j<  (we have added this last condition in 

order to avoid reciprocity in the dominance relation). 

These two properties allow the enumerative effort involved in finding an optimal 

priority ordering to be reduced. If there are no domination relations between pairs 

of part-types, or if these relations are not used, the computational complexity of 

the calculations is proportional to 1

1

1
· ·2

1

n
n

k

n
n n

k
−

=

− 
= − 

∑ . Of course, the domination 

relations, insofar as they reduce the number of orderings that need to be taken 

into account, help to reduce the computational effort. 

3.2 Three dynamic programming approaches 

The first property exposed in the previous subsection leads to approach the 

optimisation problem with dynamic programming. We have adopted the following 

decisions in our implementation of a dynamic programming scheme: 

• The solutions are coded employing a vector { }1 2, ,..., np p p , where jp  

denotes the part-type sequenced in the j th position of the priority 

ordering. A state q  in the k th stage of the dynamic programming 

procedure is defined by the set of the k  already prioritised part-types 

(remember that the expected cost corresponding to a part-type does not 
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depend on the order of the part-types with greater priority, but only on the 

sum of all their demand rates). This is represented by a partial sequence in 

which prioritised part-types are ordered from lowest to highest according to 

their product index. If dominance relations are used, the characterisation of 

a state must also include an indication of which element is the last in the 

set, kp . In order to increase the efficiency of the procedure, a bijective 

correspondence between the code of each state q  of the k th stage and its 

position in the table that contains the states of the k th stage has been 

established. 

• In each state q  of the k th stage, the next part-type in the priority 

ordering, 1kp + , needs to be determined. This part-type must not yet be 

prioritised and, if the dominance relations defined in Section 3.1 are used, 

this part-type should not be dominated by the last part-type in the partial 

preceding priority ordering. 

• Let Γk  be the set of states belonging to the k th stage (where 

{ } { }{ }1 1 ,...,Γ = n ); *
,χk q  and *

1,χ −k s , respectively, the optimal costs 

corresponding to the state q  of k th stage, and to the state s  of 1−k th 

stage; and ( )
*

1, ,κ − kk s p , the cost of adding kp  as the k th part-type in the 

partial priority ordering that defines the state s  of 1−k th stage. 

The recursive function is as follows: 

( )( )
1

* * *
, 1, 1, ,s

min ; 2,...,χ χ κ
−

− −∀ ∈Γ
= + ∀ ∈Γ =

kk
k q k s kk s p q k n  

The costs ( ) ( )*
1, , 2,...,κ − =

kk s p k n  are computed as indicated for the *
jJ  in 

Section 1 

Two dynamic programming approaches were designed: one that takes dominance 

relations into account, and one that does not. We will denominate these two 

procedures _DP Yes DR−  and _DP No DR−  respectively. 
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Of course, the limitations of these procedures stem from the fact that the number 

of states increases exponentially as n  increases. It is straightforward that for 1n >  

part-types the maximum number of states is reached at stage 
1

2
nk + =   

 (and 

also, when 
1

2
n +

 is an integer, at 
1 1

2
nk + = −  

); for instance, the number of 

states for 23n =  at stages 11 and 12 is equal to 1,352,078. Finally, we also 

designed a third dynamic programming approach that uses the lower bound 

defined in Section 2 but not the dominance relations introduced in Section 3.1. We 

will denominate this procedure −DP LB . The introduction of bounds in the 

dynamic programming scheme allows reducing the number of states considered in 

the search process. The operation is as follows: 

• First, a feasible solution X  (and the value of the objective function Z ) is 

calculated with a heuristic procedure. The heuristic used in this note 

consisted in determining the ordering of the part-types according to the 

non-increasing values of the product jd ⋅ jc  (which is the best heuristic 

developed in Sánchez, 2007). 

• A lower bound is calculated in each state q  from each k th stage. If the 

lower bound value is lower than Z , the next part-type in the priority 

ordering, 1kp + , is determined. If it is not lower than Z , the state q  is 

rejected. 

• If the dynamic programming does not provide a solution, X  is an optimal 

solution. 

As shown in Section 4, procedure DP LB−  yields the worst results. Thus, we 

decided not to define a dynamic programming approach that used jointly the lower 

bound and the dominance relations. 

In this new scheduling problem, it is necessary to have a procedure for finding 

optimal solutions to the problem, even for a limited number of part-types, since 

the optimal priority orderings allow evaluating the performance of future heuristic 

and metaheuristic procedures. 
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4 Computational experiment 

First, we introduce a test bed for the problem. Then we report the results of a 

computational experiment in which optimal priority orderings for the instances of 

the test bed were determined using the three dynamic programming approaches 

defined in Section 3.2. 

4.1 A test bed for the problem 

To the authors’ knowledge, there is no standard test bed for the problem. 

Therefore, the following test bed was generated: the set consisted of 1,400 

instances, 100 instances for each value of n  in [10,23]; the values of jd  and jc  

were generated at random using uniform discrete distributions in [1,100] and 

[1, 20]  respectively. 

In order to guarantee that the machine had enough capacity to meet demand, the 

value of µ  was set equal to 
1

n
d u

j
ju

q q d
q

α
=

+
⋅ ⋅∑ , where 1α > . Given the statement of 

the problem, the influence of the values of α  and the ratio d u

u

q q
q
+

 on the 

computing times was assumed to be insignificant. This assumption was confirmed 

by performing a short, initial experiment using 25 instances in which 18n =  with 

the values 1.05,1.10,1.25,1.50,2.00α =  and 3.00,2.00,1.50,1.20,1.10d u

u

q q
q
+

= . For 

the different combinations of the parameter values, the computing times for 

solving each instance turned out to be almost identical. Therefore, the parameter 

values α  and d u

u

q q
q
+

 could be fixed (specifically, we established that 1.10α =  and 

1.20d u

u

q q
q
+

= , and therefore that 
1

1.32
n

j
j

dµ
=

= ⋅∑ ). 

Presenting the design of the test bed for this new scheduling problem was another 

purpose of the present technical note. It can be obtained from 

http://www.ioc.upc.edu/EOLI/ for future developments in order to compare the 

results of new algorithms or solvers. 
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4.2 Results of a computational experiment 

The following three dynamic programming approaches were used in the 

computational experiment: an approach that only takes dominance relations 

( )_DP Yes DR−  into account, one that does not ( )_DP No DR− , and one that 

takes into account the lower bound but not the dominance relations ( )DP LB− . 

These three procedures have different degrees of calculation difficulty and different 

numbers of generated states; hence, it was not possible to determine a priori 

which would be the most efficient. 

These three approaches were applied to the set of instances generated in 

subsection 4.1. The experiment was performed on a PC Pentium IV, at 3.2 GHz, 

with 1 Gb RAM. Table 1 shows the minimum ( )mint , average ( )va et  and maximum 

( )maxt  computing times in seconds, which correspond to applying _DP No DR− . 

n  10 11 12 13 14 15 16 17 18 19 20 21 22 23 

mint  0.00 0.00 0.02 0.03 0.08 0.44 0.98 2.13 4.36 9.56 21.03 45.27 96.70 207.28 

va et  0.00 0.01 0.02 0.04 0.09 0.47 1.08 2.43 4.79 10.53 22.91 50.70 110.44 231.14 

maxt  0.02 0.02 0.03 0.06 0.14 0.56 1.20 3.02 5.88 12.91 25.83 55.48 126.80 267.98 

Table 1. “Minimum, average and maximum computing times (in seconds) with 

_DP No DR− ”. 

One can appreciate the low dispersion of the computing times for a given value of 

n , and furthermore that the ratio between the average computing times 

corresponding to n  and 1n −  is approximately equal to 2·
1

n
n −

, as could be 

expected from the analysis of the complexity of the algorithm. Figure 2 shows the 

average computing time as a function of the number of part-types, n . 

The computing times using _DP Yes DR−  depend on the density of these 

relations, which is defined as the ratio between the number of actual dominance 

relations corresponding to the instance and its maximum possible value (which is 

http://www.jiem.org
http://dx.doi.org/10.3926/jiem.2009.v2n3.p418-436


 
doi:10.3926/jiem.2009.v2n3.p418-436  ©© JIEM, 2009 – 2(3): 418-436 - ISSN: 2013-0953 

 

Optimal priority ordering in PHP production of multiple part-types in a failure-prone machine 429 

A. Sánchez; A. Corominas; R. Pastor 

equal to ·( 1) / 2n n − ). Table 2 shows the minimum ( )min% , average ( )v%a e  and 

maximum ( )max%  density of dominance relations corresponding to the set of 

instances used in the experiment, expressed as percentages. Table 3 shows the 

minimum ( )mint , average ( )va et  and maximum ( )maxt  computing times in seconds 

using _DP Yes DR− . 

n  10 11 12 13 14 15 16 17 18 19 20 21 22 23 

min%  35.6 47.3 48.5 57.7 56.0 56.2 50.0 54.4 57.5 59.1 59.5 58.1 61.0 50.2 

v%a e  76.2 76.0 78.4 75.8 75.6 77.8 77.2 76.5 75.5 75.9 76.7 77.6 75.9 75.5 

max%  97.8 98.2 97.0 92.3 93.4 95.2 94.2 91.2 88.9 90.6 88.4 94.8 87.0 88.9 

Table 2. “Minimum, average and maximum density of dominance relations (in %)”. 

n  10 11 12 13 14 15 16 17 18 19 20 21 22 23 

mint  0.00 0.00 0.02 0.03 0.08 0.19 0.41 0.84 1.91 3.48 7.39 15.42 30.97 72.78 

va et  0.01 0.01 0.03 0.07 0.13 0.27 0.62 1.35 2.90 5.95 11.44 24.79 52.34 108.21 

maxt  0.02 0.03 0.06 0.24 0.22 0.63 1.38 2.55 5.08 12.83 21.72 44.66 100.58 187.5 

Table 3. “Minimum, average and maximum computing times (in seconds) with 

_DP Yes DR− ”. 

In general, the computing times are shorter when dominance relations are used 

than when they are not used. However, the dispersion for a given value of n  is 

greater, as was expected. The average computing times increase exponentially 

with the value of n , as occurs when dominances are not taken into account (Figure 

2). 
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Figure 2. “Average computing time versus number of part-types”. 

Table 4 allows comparing, for 10 16≤ ≤n  the average computing times in seconds 

that correspond to applying DP LB−  and _DP No DR−  ( DP LB−  is similar to 

_DP No DR− , but it uses the lower bound). 

n  10 11 12 13 14 15 16 

DP LB−  0.71 1.98 5.38 15.29 42.51 109.94 286.50 

_DP No DR−  0.00 0.01 0.02 0.04 0.09 0.47 1.08 

Table 4. “Average computing times (in seconds) with DP LB−  and _DP No DR− ”. 

With the application of the lower bound, the computing times not only do not 

decrease but in fact they increase considerably (see also Figure 2). Using the lower 

bound in the dynamic programming procedure involves a decrease in the number 

of states compared to not using it, as can be seen in Table 5. The reason why the 

computing times corresponding to DP LB−  are higher than those corresponding to 

_DP No DR−  may be that, for DP LB− , the lower bound has to be calculated in 

every state and this takes more time than when it is not calculated (when certain 

rejected states are not considered). 

To sum up, the computational experiment shows that it is worthwhile using 

dominance relations and that instances with up to approximately 25 part-types can 

be solved in relatively short computing times with the procedure _DP Yes DR− . 
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The values of the optimal solutions of the instances of the test bed can be obtained 

from http://www.ioc.upc.edu/EOLI/. 

n  10 11 12 13 14 15 16 

Number of states for 

_DP No DR−  
1023 2047 4095 8191 16383 32767 65535 

Average of states for 

DP LB−  
632 1265 2745 5876 11992 24810 51445 

% Decrease 38.25 38.22 32.97 28.26 26.80 24.28 21.50 

Table 5. “Number of states with _DP No DR−  and average of states for DP LB− ”. 

5 Conclusions and research prospects 

This work establishes optimal priority orderings for prioritised hedging point (PHP) 

control policies in the problem of minimising the expected sum of quadratic holding 

and shortage inventory costs when a single, failure-prone machine produces 

multiple part-types. 

In this note, the problem is placed in the field of scheduling and a lower bound for 

the problem is proposed. Three dynamic programming approaches for determining 

optimal priority orderings are explained and a test bed is introduced. Finally, a 

computational experiment in which the algorithms are applied to the test bed is 

presented. This test bed, the lower bound proposed, the procedures developed and 

the optimal priority orderings obtained for the instances of the test bed allow the 

performance of future developments to be evaluated. 

The computational experiment shows that it is worthwhile using dominance 

relations and that instances with up to approximately 25 part-types can be solved 

in relatively short computing times. Moreover, using the lower bound in a dynamic 

programming scheme increases the computing time needed. However, as the 

memory required and the computing time increase exponentially with n , in order 

to solve larger instances future research must be based on: 

a) Using heuristic and metaheuristic procedures. 
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b) Using the lower bound only in some states of the multistage graph of 

dynamic programming—for example, using the lower bound only in 

states with a high value of the partial solution built so far, which are 

more likely to be eliminated by taking into account the lower bound. 

Annex 

In this Annex it is proved that the sign of the first derivative of the expected sum 

of quadratic holding and storage costs corresponding to a part-type j , *
jJ , respect 

to 1jD − , 
*

1

j

j

dJ
dD −

, is always positive. Maple © and Derive 5 © commercial software 

have been used to help in this proof. 

According to the terminology presented in Section 1 

(
( )

( )
1*

1 1

112
1

j j
j j j

j j j j

C c z
γ γ

λ γ γ λ
−

− −

 −
= − 

−  
, 1*

1

1 1j j
j

j j

z
γ γ

λ λ
−

−

− −
= − , u d

j
j j

q q
D D

λ
µ

= −
−

 and 

( )
( )( )

u d u j
j

j d u

q q q D
D q q

µ
γ

µ
− +

=
− +

), the expected sum of quadratic holding and storage costs 

corresponding to a part-type j , ( )2* *
j j j jJ C c z= − , can be expressed as follows (1): 

* 3 2 2 2
1 1(2 ( ) ( ) ( ) (2 ( ) ( )j j d u j j d u d u j d u j d u d uJ c q q d D q q q q D q q d q q q q− −= ⋅µ ⋅ ⋅ ⋅ ⋅ ⋅ − ⋅ + + ⋅ + ⋅ ⋅ + ⋅ −

2 2 3
1(4 )) (2 ( ) ( 2 )))] /[( ) ( ( ) )u u d u j d u d u d u j d u uq q q q d q q q q q q D q q qµ µ µ µ−+ ⋅ ⋅ − + ⋅ ⋅ ⋅ + − ⋅ + + ⋅ ⋅ + − ⋅

2
1( ( ) ( ) ) ]j d u j d u uD q q d q q qµ−⋅ ⋅ + + ⋅ + − ⋅            (1) 

Then, we calculate the first derivative of *
jJ  respect to 1jD − : 

*
2 3 3 2 2

1 1
1

[2 (3 ( ) ( ) ( ) (5 ( ) ( )j
j j d u j d u d u j d u j d u d u

j

dJ
c d q q D q q q q D q q d q q q q

dD
µ − −

−

= − ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ − ⋅ + + ⋅ + ⋅ ⋅ + ⋅ −

2 2
13 (3 )) (2 ( ) ( ) 2 ( ) (5 )u u d j j d u d u j u d u u dq q q D d q q q q d q q q q qµ µ−+ ⋅ ⋅ − + ⋅ ⋅ − ⋅ + + ⋅ ⋅ ⋅ + ⋅ −

2 2 2 2 23 ( 3 )) ( ( ) ( 2 ) (3 5 ) 3 ))] /u d u u j d u d u j u d u uq q q q d q q q q d q q q qµ µ µ µ− ⋅ ⋅ + + ⋅ ⋅ ⋅ + ⋅ + − ⋅ ⋅ ⋅ + + ⋅
3 4

1 1[( ( ) ( ) ) ( ( ) ) ]j u d j u d u j u d uD q q d q q q D q q qµ µ− −⋅ + + ⋅ + − ⋅ ⋅ ⋅ + − ⋅         (2) 
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Taking into account that 0jc > , 0jd > , 0µ > , 0uq > , 0dq > , 
1

j

j k
k

D d
=

=∑ , 

4
1( ( ) ) 0j u d uD q q qµ− ⋅ + − ⋅ >  and 3

1( ( ) ( ) ) 0j u d j u d uD q q d q q qµ− ⋅ + + ⋅ + − ⋅ <  (because 

( )
1

/( )
n

u d u j
j

q q q dµ
=

⋅ + >∑ ), the sign of (3) has to be studied (it must be positive for 

the proof): 

3 2 2
1 1(3 ( ) ( ) ( ) (5 ( ) ( ) 3 (3 ))j d u d u j d u j d u d u u u dD q q q q D q q d q q q q q q qµ− −⋅ − ⋅ + + ⋅ + ⋅ ⋅ + ⋅ − + ⋅ ⋅ −

2 2 2 2
1 (2 ( ) ( ) 2 ( ) (5 ) 3 ( 3 ))j j d u d u j u d u u d u d uD d q q q q d q q q q q q q qµ µ−+ ⋅ ⋅ − ⋅ + + ⋅ ⋅ ⋅ + ⋅ − − ⋅ ⋅ +

2 2 2( ( ) ( 2 ) (3 5 ) 3 ))u j d u d u j u d u uq d q q q q d q q q qµ µ µ+ ⋅ ⋅ ⋅ + ⋅ + − ⋅ ⋅ ⋅ + + ⋅        (3) 

Given that the units used to express the demand rate may be chosen arbitrarily, 

one can take, without loss of generality, 1jd =  and replace 1 /j jD d−  with X . This 

way, expression (3) is reduced to expression (4): 

3 2 2(3 ( ) ( ) ( ) (5 ( ) ( ) 3 (3 ))d u d u d u d u d u u u dX q q q q X q q q q q q q q qµ⋅ − ⋅ + + ⋅ + ⋅ ⋅ + ⋅ − + ⋅ ⋅ −
2 2 2(2 ( ) ( ) 2 ( ) (5 ) 3 ( 3 ))d u d u u d u u d u d uX q q q q q q q q q q q qµ µ+ ⋅ ⋅ − ⋅ + + ⋅ ⋅ + ⋅ − − ⋅ ⋅ +

2 2(( ) ( 2 ) (3 5 ) 3 ))u d u d u u d u uq q q q q q q q qµ µ µ+ ⋅ ⋅ + ⋅ + − ⋅ ⋅ + + ⋅         (4) 

Replacing ( )u dq q+  with C  and uqµ ⋅  with B , expression (4) is reduced to 

expression (5): 

3 2 23 ( 2 ) (5 ( 2 ) 3 ( 4 ))u u uX C q C X C C C q B C q⋅ − ⋅ + ⋅ ⋅ ⋅ − − ⋅ −
2 2(3 ( 2 ) 2 ( 6 ) 2 ( 2 ) )u u uX B C q B C C q C q C− ⋅ ⋅ + + ⋅ ⋅ − − − ⋅ ⋅

2(3 (3 2 ) ( ))u uB B B C q C C q+ ⋅ − ⋅ + + ⋅ +            (5) 

The expression 1( ) /( )u u d j jq q q D dµ −⋅ + > +  is equivalent to expression 1B C X> +  

and 0C > . Therefore ( 1)B C X> ⋅ +  and we can set ( 1)B A C X= ⋅ ⋅ + , where 1A >  

(see expression (6)): 

3 3 3 2 3 3 2 2 3 3 3 2 3 3 3 2 33 3 6 3 12 3 6u u uA C X A C X A C X q A C X A C X q C X C X q⋅ ⋅ − ⋅ ⋅ − ⋅ ⋅ ⋅ − ⋅ ⋅ + ⋅ ⋅ ⋅ + ⋅ − ⋅ ⋅
3 3 2 2 3 2 2 2 2 3 2 2 2 3 2 2 29 9 14 5 24 5 10u u uA C X A C X A C X q A C X A C X q C X C X q+ ⋅ ⋅ − ⋅ ⋅ − ⋅ ⋅ ⋅ − ⋅ ⋅ + ⋅ ⋅ ⋅ + ⋅ − ⋅ ⋅
3 3 2 3 2 2 3 2 3 29 9 10 13 2 4u u uA C X A C X A C X q A C X A C X q C X C X q+ ⋅ ⋅ − ⋅ ⋅ − ⋅ ⋅ ⋅ − ⋅ ⋅ + ⋅ ⋅ ⋅ + ⋅ − ⋅ ⋅
3 3 2 3 2 2 3 23 3 2 u uA C A C A C q A C A C q+ ⋅ − ⋅ − ⋅ ⋅ + ⋅ + ⋅ ⋅          (6) 
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The sign of the coefficients of 3X , 2X , 1X  and 0X  can be studied separately, in 

order to show that they are always positive and that, therefore, taking into account 

that 0X ≥ , the whole expression (2) is positive. 

As an example, we prove that the sign of the coefficient of 3X  is positive. 

Expression (7) shows, taken from (6) the expression that gives the value of this 

coefficient: 

3 3 2 3 2 2 3 2 3 23 3 6 3 12 3 6u u uA C A C A C q A C A C q C C q⋅ − ⋅ − ⋅ ⋅ − ⋅ + ⋅ ⋅ + − ⋅        (7) 

Whose sign is the same than that (8): 

3 2 2 3 2 22 4 2 ( 1) ( 2 4 2)u u u uA C A C A q A C A q C q C A A A q A A⋅ − ⋅ − ⋅ − ⋅ + ⋅ + − = ⋅ − − + + ⋅ − + − (8) 

Remember that 1A > . Then, the coefficient of C  is positive 3 2( 1 0)A A A− − + > . 

However, the coefficient of uq  is negative 2 2( 2 4 2 ( 1) )A A A− + − = − − . 

As ( )u dC q q= + , to prove that 3 2 2( 1) ( 2 4 2) 0uC A A A q A A⋅ − − + + ⋅ − + − >  it suffices 

to show that 3 2 2( 1) ( 2 4 2) 0C A A A C A A⋅ − − + + ⋅ − + − > , which is equivalent to show 

that 3 2 2 3 2( 1) ( 2 4 2) 3 3 1 0A A A A A A A A− − + + − + − = − + − > . And this last 

proposition is straightforward, since 1A >  and the expression is equal to 0 for 

1A =  and its derivative ( )23 6 3A A− +  is > 0 for 1A > . 
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