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Abstract:  

Purpose: The main purpose of this article is to explore the trade-off between ordering policies 

and disruption risks in a dual-sourcing network under specific (or not) service level constraints, 

assuming that both supply channels are susceptible to disruption risks.  

Design/methodology/approach: Stochastic newsvendor models are presented under both 

the unconstrained and fill rate constraint cases. The models can be applicable for different 

types of disruptions related among others to the supply of raw materials, the production 

process, and the distribution system, as well as security breaches and natural disasters.   

Findings: Through the model, we obtain some important managerial insights and evaluate the 

value of contingency strategies in managing uncertain supply chains. 

Originality/value: This paper attempts to combine explicitly disruption management with risk 

aversion issues for a two-stage supply chain with two unreliable suppliers. 

Keywords: ordering policies, disruption risks, two-stage supply chain, dual sourcing, risk aversion, 

stochastic model 
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1. Introduction  

As companies throughout all industries continue to globalize their operations and outsource 

significant portions of their value chain activities, they often end up relying heavily on order 

replenishments from distant suppliers (Patterson, 2007). The use of long-distance sourcing 

and the reliance on few key suppliers are exposing the procurement process to ever increasing 

disruption risks. Such trends have placed enormous pressures on supply chains. Organizations 

that cannot confront these challenges are facing tremendous difficulties in the new competitive 

environment.  

Disruption risk includes: operational risks (equipment malfunctions, unforeseen discontinuities 

in supply, human centered issues from strikes to fraud), and risks arising from natural 

hazards, terrorism, and political instability (Kleindorfer & Saad, 2005). Supply chain 

disruptions have been proven to have seriously negative impact on corporate profitability and 

shareholder value. Thus, it is essential for corporations to first analyze and understand these 

risks and then develop solutions to mitigate their impact. Risk management theory and 

practice provide alternative ways to hedge against specific disruption risks. One of the most 

common policies for risk mitigation is multiple-sourcing. Firms might use multiple-sourcing 

choice for a variety of strategic reasons, such as hedging against supply disruptions and 

safeguarding against predatory monopolistic practices (Burke, Carrillo & Vakharia, 2007). In 

such cases, how to make the optimal ordering decision among two or more suppliers is worth 

studying. 

In this paper, we focus mainly on the disruption risks of a dual sourcing supply chain. More 

specifically, generic newsvendor stochastic ordering models for risk-neutral and risk-averse 

decision-makers are proposed for a supply chain network of two unreliable competing suppliers 

and one retailer. The main objective is to capture the trade-off between ordering policies and 

disruption risks in a dual-sourcing network, assuming that both suppliers are susceptible to 

disruption risks. Finally, analytical solutions are obtained for the determination of the optimal 

expected total profit of the retailer. The consideration of two suppliers with different 

procurement prices and disruption probabilities, differentiates this work from the existing 

literature for dual-sourcing supply chains.  

2. Relevant literature 

The design and execution of appropriate approaches can play a critical role in handling risks 

and disruptions. Towards this direction, the literature dealing with the joint tackling of 

yield/inventory and risk management appears to be growing during the last decade. 

Firstly we present the relevant quantitative effort in the single sourcing problem. Xia, Yang, 

Golany, Gilbert and Yu (2004) developed a deterministic EOQ-type inventory model for a two-

http://apps.webofknowledge.com/OneClickSearch.do?product=WOS&search_mode=OneClickSearch&colName=WOS&SID=1CGgonBnpnbjbJi5BCF&field=AU&value=Burke,%20GJ
http://apps.webofknowledge.com/OneClickSearch.do?product=WOS&search_mode=OneClickSearch&colName=WOS&SID=1CGgonBnpnbjbJi5BCF&field=AU&value=Burke,%20GJ
http://apps.webofknowledge.com/DaisyOneClickSearch.do?product=WOS&search_mode=DaisyOneClickSearch&colName=WOS&SID=1CGgonBnpnbjbJi5BCF&author_name=Vakharia,%20AJ&dais_id=14303239
http://apps.webofknowledge.com/DaisyOneClickSearch.do?product=WOS&search_mode=DaisyOneClickSearch&colName=WOS&SID=1CGgonBnpnbjbJi5BCF&author_name=Xia,%20YS&dais_id=3248471
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stage supply chain with production-rate disruption risks. Yu and Zhao (2007) studied a random 

demand supply chain of a single supplier and a single retailer with different risk aversion and 

preference characteristics. They formulated and analyzed the optimal order quantities model, 

which revealed the impact of risk aversion and preference degree on optimal ordering quantity, 

price and supply chain coordination. Xiao and Qi (2008) investigated a one supplier–two 

competing retailers supply chain that experiences a disruption in cost and demand during a 

single period. Appropriate quantitative conditions are derived, which indicates when the 

maximum profit can be achieved once a disruption occurs. Moreover, Chahar and Taaffe (2009) 

formulated a stochastic programming model for the single sourcing case, in which the supplier 

is susceptible to risks of disruption.  

Proceeding to the dual and multiple sourcing research papers, Tomlin and Wang (2005) 

developed a single period dual sourcing model with yield uncertainty, considering one reliable 

and one unreliable supplier, for the purpose of inventory and sourcing mitigation. In the same 

context, Tomlin (2006) developed a Markov chain model by considering capacity constraints 

for both suppliers and order quantity flexibility for the reliable vendor. Berger and Zeng (2005) 

developed a decision-tree model to determine the optimal size of a buying firm’s supply base 

in the presence of risks. More recently, Wang and Gilland (2010) explored a model in which a 

firm can source from multiple suppliers or exert effort to improve supplier reliability. They 

characterize the optimal procurement quantities and improvement efforts and generate 

managerial insights. Schmitt and Snyder (2010) considered one case where a firm's only 

sourcing option is an unreliable supplier subject to disruptions and yield uncertainty, and a 

second case where a second, reliable (but more expensive) supplier is available. They develop 

models for both cases to determine the optimal order and reserve quantities. Although the 

literature covers several risk and yield management settings, in this paper, we attempt to 

bridge explicitly disruption management and risk aversion issues.  

3. Model Formulation 

3.1. Main Assumption and Parameters 

Specifically, we consider a supply chain of one retailer and two competing, potentially 

unreliable suppliers which are both susceptible to supply chain disruptions, such as production, 

transportation- and security-related disruptions. We propose a single period inventory system 

where a single ordering decision is to be made before the sales period begins and emergency 

replenishment is not allowed. We denote with pj the probability of a supply chain disruption. 

Moreover, when a disruption occurs we assume that the supplier can provide nothing to the 

retailer. Different procurement prices, as well as disruption probabilities are considered for the 

supply sources. The objective is to maximize expected total profit. 
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We first present the employed parameters. Demand X is assumed to be a positive stochastic 

random variable with probability density function f(x) and cumulative distribution function 

F(x). The length of the selling period is T time units. cj is the unit purchase cost paid to 

supplier j (j=1, 2). The unit selling price is denoted by s and it is assumed that s > cj (j=1, 2). 

The surplus stock that remains unsold at the end of the period can be sold to a secondary 

market at a unit salvage value g, it is assumed that g < cj (j=1, 2). In addition, b indicates the 

lost sales cost. 

3.2. Unconstrainted Model 

Initially, when none of the two supply channels faces a disruption (with probability (1-p1)(1-

p2)), the expected profit π0(Q1, Q2) is obtained by the classical newsvendor problem analysis:  

π0 (Q1, Q2)= dxxfxQQgQcQcsx
QQ

)(])([
21

0
212211



  

+ dxxfQQxbQcQcQQs
QQ

)()]()([ 212211
21

21 



 

(1) 

When a disruption occurs only to the first supplier's channel (event that occurs with probability 

p1 (1-p2)), a portion of Q2 initially ordered from supplier 2 can now be employed to satisfy 

demand. The expected profit π1 (Q1, Q2) is expressed by:  

π1 (Q1, Q2)= dxxfxQgQcsx
Q
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2

0
222   

+ dxxfQxbQcsQ
Q

)()]([ 222
2

2 


 

(2) 

Similarly, when a disruption occurs only to the second supplier's channel (event that occurs 

with probability (1-p1) p2), the expected profit π2 (Q1, Q2) is expressed by:  

π2 (Q1, Q2)= dxxfxQgQcsx
Q

)(])([
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0
111   
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Q
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

 
(3) 

Moreover, when disruptions occur simultaneously to both suppliers (event that occurs with 

probability p1p2), there will be nothing to satisfy demand, and the expected profit π12 (Q1, Q2) 

is given by:  

π12 (Q1, Q2)=- dxxfbx
QQ

)(
21

0


- dxxbxf
QQ

)(
21




 (4) 
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Finally, the total weighted expected profit π (Q1, Q2) is:  

π (Q1, Q2)=(1-p1)(1-p2) π0 (Q1, Q2)+ p1(1-p2) π1 (Q1, Q2) 

+(1-p1)p2 π2 (Q1, Q2)+ p1p2 π12 (Q1, Q2) 
(5) 

Therefore, the optimization model which represents the maximization of the total weighted 

expected profit π (Q1, Q2), considering all possible combinations of disruption events on none, 

on one or on both supply chains, is: 

(P)：max  π (Q1, Q2)  

1

2,1

Q

QQ
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 (8) 

 

Through calculation, we can get the result of |H1|<=0 and |H2|>0. Since the first order 

determinant has a negative value, and the second order one is greater than zero, then Eq. (5) 

is proved to be negative definite and thus concave to the optimal order lot sizes resulting from 

Eqs. (6) and (7). That is to say, the maximum value of π (Q1, Q2) is attained for Q1* and Q2* 

(optimal order lot sizes), by solving the system of equations (9) and (10), which are the 

simplified forms of (6) and (7). 

(1- p2)F(Q1+Q2)+ p2F(Q1)=(s-c1+b)/(s-g+b) (9) 

(1- p1) F(Q1+Q2)+ p1 F(Q2)=(s-c2+b)/(s-g+b) (10) 

3.3. Model with Fill Rate constraint 

The basic model (P) presented in the previous subsection corresponds to risk neutral decision-

makers. Model (P) can also be extended through the consideration of a fill rate constraint in 

order to take into account the risk aversion factor. Fill rate r measures the proportion of the 

stochastic demand that is met from the delivered quantity of products. As motivated earlier, 

http://www.sciencedirect.com/science/article/pii/S0305054811001110#eq0025#eq0025
http://www.sciencedirect.com/science/article/pii/S0305054811001110#eq0030#eq0030
http://www.sciencedirect.com/science/article/pii/S0305054811001110#eq0035#eq0035
http://www.sciencedirect.com/science/article/pii/S0305054811001110#eq0030#eq0030
http://www.sciencedirect.com/science/article/pii/S0305054811001110#eq0035#eq0035


Journal of Industrial Engineering and Management – http://dx.doi.org/10.3926/jiem.690 

 

 
- 395 - 

 

risk-averse decision makers would prefer more “conservative” policies that lead to larger order 

quantities by setting an appropriate service level constraint. 

The resulting optimization model, which represents the maximization of the total weighted 

expected profit subject to a fill rate constraint is:  

(Pr)：max  π (Q1, Q2) 

Subject to：                              

r>r0 

With: 

r=1-
DemandMean 

unitsstockout  ofnumber  Expected
=1-


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
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(12) 

The Lagrangian relaxation of problem (Pr) is the following:  

(LPr)：max  L(Q1, Q2,λ) 

With: 

L(Q1, Q2,λ)= π (Q1, Q2)-λ(r0 –r) 

πr (Q1, Q2) =r0 –r (13) 

Combining Eqs. (11), (12) and (13), the results of derivation for πr (Q1, Q2) are as follows: 

1

Q2) r(Q1,

Q


=



1  [(1- p1) (1- p2) F(Q1+Q2)+ (1- p1)p2 F(Q1)]=0 (14) 

2

Q2) r(Q1,

Q


=



1  [(1- p1) (1- p2) F(Q1+Q2)+ p1(1- p2) F(Q2)]=0 (15) 

H(x)= 



1   

p2)f(Q2)]-(1 p1 

Q2)p2)f(Q1 -(1 p1) -(1
 

Q2)f(Q1 p2) -(1 p1) -(1

Q2)f(Q1  p2) -(1 p1) -(1
f(Q1)] p2 1-1

Q2)p2)f(Q1 -(1 p1) -1








）（

（

p  (16) 



Journal of Industrial Engineering and Management – http://dx.doi.org/10.3926/jiem.690 

 

 
- 396 - 

 

The first order determinant |H1|>0, and the second order one |H2| >0, which gives the fact 

that π r (Q1, Q2) function is convex, then -π r function is concave. Due to the fact that the 

Lagrangian is equal to the sum of two concave functions, it is also a concave function and thus 

the solution of the first order conditions of the Lagrangian relaxation problem gives the global 

maximum value for problem (LPr) and subsequently to problem (Pr).  

The global maximum value for problem (Pr) is attained for Q1* and Q2* (optimal order lot 

sizes) and λ* (optimal value of the Lagrangian multiplier), by solving the following system of 

equations: 

(1- p2)F(Q1+Q2)+ p2F(Q1)=(s-c1+b+



 )/(s-g+b+
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 ) 
(17) 
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

]= r0 

(19) 

4. Numerical Analysis 

Considering the above analysis, it appears useful to explore the behavior of the proposed 

models for alternative sets of parameters for the unconstrained problem (P). Two levels are 

considered for the values of the purchase costs (cj) and disruption probabilities (pj) for each 

supply channel. 

We assume that the unit selling price is s=45, the unit purchase cost paid to supplier 1 is 

c1=21, to supplier 2 is c2=24, the salvage value of unsold products is g = 10, the shortage 

cost is b = 15. Moreover, it has been assumed that the retail firm faces a demand with a 

uniform distribution pattern; the maximum demand is equal to 1000 units, while the minimum 

demand is equal to 0 unit.  

We first investigate how the value of Q1*, Q2* and the total weighted expected profit is 

affected by simultaneous changes of the disruption probabilities (pj). Table 1 illustrates the 

effect of various combinations of p1 and p2 on the optimal ordering quantity and then total 

weighted expected profit. 
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          p1 

(Q1*,Q2*,π)  

p2 

0 0.05 0.1 0.15 0.2 

0 (600,0,4200) (600,0,3615) (462,138,3092) (308,292,2862) (231,369,2746) 

0.05 (600,0,4200) (600,0,3615) (509,95,3071) (384,228,2753) (308,308,2562) 

0.1 (600,0,4200) (600,0,3615) (534,73,3060) (432,187,2684) (363,264,2430) 

0.15 (600,0,4200) (600,0,3615) (550,59,3053) (466,158,2636) (404,231,2331) 

0.2 (600,0,4200) (600,0,3615) (560,49,3048) (490,137,2601) (436,205,2254) 

Table 1. Optimal ordering quantity and total weighted expected profit based on p1 and p2 

It is observed that when the probabilities of a disruption on the first channel lower than 5%, 

the retailer utilizes only supplier 1. While as the probabilities increases, the optimal solution 

moves from a solution that mainly utilizes the first supply chain to a solution that mainly 

utilizes the second one. When the disruption probabilities of two suppliers are the same, it is 

obvious that ordering more form supplier 1 brings better result because of its lower purchase 

cost. In case of p1=0.2 and p2=0.05 both channels are equally attractive, that is to say the 

15% lower risk of supplier 2 just make up for his 3 units higher cost under this risks 

combination. Similar findings are obtained when keeping constant all the parameters and 

altering only the purchase costs or the ordering quantities. 

(Q1*,Q2*,π)      p1 
p2 

0.1 0.15 0.2 

0 (462,138,3092) (308,292,2862) (231,369,2746) 

0.05 (509,95,3071) (384,228,2753) (308,308,2562) 

0.1 (534,73,3060) (432,187,2684) (363,264,2430) 

0.15 (550,59,3053) (466,158,2636) (404,231,2331) 

 (600,0,3030） (600,0,2445) (600,0,1860) 

Table 2. contrast of decisions considering risks or not 

Furthermore, this research can also explain why dual sourcing is better than single sourcing 

for risk mitigation. When the disruption probability of supplier1 is less than 5%, the optimal 

ordering policy is purchasing 600 units only from the supplier 1 to obtain the highest expected 

profit. While once this probability rises to more than 5%, the expected profit would be 

constantly reduced along with the increase of the disruption probability. At this time, the 

introduction of a lower risk auxiliary supplier is very necessary. From table 2, we can clearly 

see that when the main supplier exists higher disruption risk, allocating a part of order 

quantities to the auxiliary supplier is a good choice to enhance the expected profit. While the 

models formulated in this article exactly solve how to allocate order quantities between two 

uncertain suppliers to obtain highest expected profit. 

5. Summary and Conclusions 

An effective disruption management strategy that enhances supply chain resilience is a 

necessary component of a firm’s overall hedging strategy. Firms that do not account for the 
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risk of disruptions are susceptible to the risk of severe financial and market-share loss. In this 

article, we examined the trade-off between ordering policies and disruption risks for an 

unreliable dual sourcing supply network. Stochastic newsvendor models are presented under 

both the unconstrained and fill rate constraint cases. Analytical solutions were obtained, while 

through the relevant numerical investigation important managerial insights are also provided.  

This paper considered only the profit of retailer and the objective was retailer’s profit 

maximization. While in fact, suppliers also make decisions in consideration of their own 

benefit. Thus, further research can extend to the whole supply chain, exploring the best 

solution for both retailers and suppliers, finally the whole supply chain. Future research 

directions to this work could also include the extension of the proposed models for multiple 

types of products, for more than one disruptive event that can simultaneously appear, for 

more than two supply sources, and for supply chains of more tiers. 
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