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Abstract:

Purpose: This paper studies the problem that occurs on material purchase quantity in price uncertainty
situation. Larger buying quantity when the price at high will increase the purchase amount while smaller
buying quantity could risk the inventory level. The decision on the purchase quantity of  a cycle takes future
price as input from price prediction output.

Design/methodology/approach: This paper examines five price prediction models, Classification and
Regression Tree (CART), Random Forest Regressor (RFR), Support Vector Regressor (SVR), Seasonal
Autoregressive Integrated Moving Average (SARIMA) and Long Short Term Memory (LSTM) to predict
four  Petrochemical  products,  Linear  Low  Density  Polyethylene  (LLDPE),  Low  Density  Polyethylene
(LDPE), Biaxially Oriented Polypropylene (BOPP) and Cast Polypropylene (CPP) using dataset built from
weekly datapoints from January 2020 to June 2023. The most performing model is validated with data
from July 2023 to September 2023 where the prediction result is fed into Linear Programming Simplex
method to minimize the amount of  purchase by making advanced or postpone orders.

Findings: Result that RFR performs higher at most products tested, while SVR performs higher in LDPE
product. The fitting of  RFR and SVR models prediction, as predicted price to Linear Programming that
decides optimum purchase quantity,  delivers a total 2.2% of  purchase amount reduction compared to
original purchase quantity reflecting base scenario issued by the planner. 

Research limitations/implications: This study does not include additional prediction factors such as
freight cost and the hyperparameters tuning studies on the existing factors.

Originality/value: The novelty of  this paper is prediction value is followed up by an optimization model
that would guide the Procurement team decisions for future anticipation because imported raw materials
should be purchased ahead of  time. This research will  provide a scientific approach input that would
counterbalance  or  strengthen  decision  making  that  is  typically  made  by  individuals  owning  years  of
experience. This combined approach is rarely researched and has not been done to polymer products.
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1. Introduction

Plastics, derived from petrochemicals like ethylene and propylene, are widely used for packaging food and non-food
products in both rigid and flexible forms. Polyethylene (PE) and polypropylene (PP) are examples of  plastic resins
that are considered commodities due to their abundant availability and dependence on petrochemical production
processes. The prices of  PE and PP fluctuate based on market demand and supply, influenced by various factors
such as the pandemic, inflation, geopolitics, production capacity, shipping, and natural disasters in the Southeast
Asia region.

Figure 1. Weekly Price of  Crude Oil, Ethylene and Propylene in Southeast Asia, January 2020-June 2023

Figure 1 illustrates the fluctuation in Crude Oil, Ethylene (C2), and Propylene (C3) prices during the pandemic,
with a subsequent steady rise. Additionally, geopolitical tensions between Russia and Ukraine in early 2022 resulted
in a rapid increase in PE and PP prices, even as the impact of  the COVID-19 pandemic gradually subsided. For
Procurement team, maintaining competitive prices at lowest possible level is crucial, as high material prices can
significantly affect company profitability, given that 60-70% of  the cost of  sales is attributed to material expenses.
Wrong decision to purchase could cause negative implication to business operation. High inventory value and
quantity will reduce the competitiveness in the market. Therefore, in the era of  Industry 4.0, data science plays a
crucial  role  in  Procurement  by  enhancing  knowledge,  improving  performance,  and  facilitating  better
decision-making  capabilities  (Hamed,  Richa  &  Dmitry,  2023).  Through  data  science,  organization  gains
understanding on the correlation between upstream market price indexes that enables accurate prediction of  PE
and PP resin or film prices as valuable inputs for Procurement decisions. Data published on wits.worldbank.org
reveals that the import trade values of  PE with HS code 390110, from all countries to Indonesia experienced an
increase from $673.72 million in 2021 to $713.02 million in 2022, indicating a growth of  5.83%. Similarly, PP with
HS code 390210 also witnessed a rise from $1,095.13 million in 2021 to $1,220 million in 2022, marking an increase
of  11.4%. With an increasing amount of  transaction of  imported PE and PP to Indonesia, In increasing demand
and value of  transaction year on year, it is evident that PE and PP has increasing importance to the industry and
price predictability and inventory value optimization will support business competitiveness for each company. This
paper presents a solution for predicting the price of  PE and PP products as target variable by using price indices as
input for future inventory and value optimization. The novelty of  this paper is prediction value is followed up by an
optimization model that would guide the Procurement team decisions for future anticipation because imported raw
materials should be purchased ahead of  time. This research will provide a scientific approach input that would
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counterbalance or strengthen decision making that is typically made by individuals owning years of  experience. This
combined approach is rarely researched and has not been done to polymer products.

1.1. Price Forecasting Studies

Commodity  price  forecasting  has  undergone  significant  evolution.  There  is  a  lot  of  literature  about  price
forecasting using statistical or Machine Learning (ML) and Deep Learning (DL) methods depending on the data
and the needs. These forecasting methods study the relationship between various factors and the impact to the
predicted value. 

The summary of  price prediction related studies is presented in  Table 1. Most price prediction studies discuss
techniques to accurately develop performing prediction models in commodities, agriculture and mostly Crude Oil.
The successful prediction on these studies have put important foundation to this research to choose which the
prediction models to for PE and PP.
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Gargano and Timmermann, 2014 Commodity X

Chen, Goh, Sin, Lim, Chung and 
Liew, 2021

Agriculture X X X X

Sen, Choudhury and Datta, 2023 Crude Oil X

Kwon, Do and Kim, 2020 Naphtha X MILP

Chen and He, 2019 Crude Oil X X X X

Urolagin, Sharma and Datta, 2021 Crude Oil X

Jahanshahi, Uzun, Kaçar, Yao and 
Alassafi, 2022

Crude Oil X X X X

Ensafi, Amin, Zhang and Shah, 
2022

Furniture X X

Kamdem, Essomba and Berinyuy, 
2020

Commodity X X

Table 1. Related studies

1.2. Classical Methods

Classical  terms  refer  to  the  implementation  of  statistical  approach for  price  prediction  using  regression  and
time-series methods. Multi-linear Regression (MLR) is used in a study to predict commodity prices using long-term
financial and economy data from 1947 to 2010. That study showed that financial indicators could predict the
commodity  price  movement  in  month and quarter  range (Gargano & Timmermann,  2014).  MLR is  used in
research to predict 10 months data of  Naphtha price based on dataset that contains supply-demand, margin, and
availability of  substitution material from 2008 to 2010 (Sung, Kwon, Lee, Yoon & Moon, 2012). As the dataset is
limited to 30 data points, it achieves R2 at 0.651 with 50% accuracy. Another crude oil prediction using MLR and
Random Forest is also applied (Chen & He, 2019). The study shows that MLR achieves lower performance than
Random Forest with dataset built with 312 records of  monthly crude oil price from 1992 to 2017.

Time-series  prediction  refers  to  a  sequence  of  data  meticulously  recorded  and  subsequently  analyzed  in  a
chronological  sequence with  uniform time intervals  (such as  yearly,  monthly,  daily,  or  hourly).  Autoregressive
Integrated Moving Average  (ARIMA) it  the  classical  method for  time-series  prediction however  ARIMA was
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unable to capture the recurring seasonal patterns in the data, but it did manage to identify an upward sales trend
towards the end of  each year (Ensafi et al., 2022). ARIMA shows best performance to predict stock for financial
and fast-moving consumer goods (FMCG) sector but lacking accuracy for banking and automobile (Mondal, Shit &
Goswami,  2014),  crude oil  (Chen & He,  2019) and  agricultural  commodity  (Ouyang,  Wei  & Wu,  2019).  To
overcome the need of  seasonal analysis, the Seasonal ARIMA (SARIMA) is model that includes seasonal terms of
ARIMA. SARIMA is denoted as by ARIMA(p,d,q)(P,D,Q)m. The p, d and q are non-seasonal while P, D and Q are
seasonal factors. With p refers to order of  the autoregressive part, d is degree of  first differencing, q as order of  the
moving average, P is seasonal autoregressive order, D as seasonal difference order, Q as seasonal moving average
order and m points to number of  observations per year.

Seasonal plot of  PE and PP products shown in Figure 2 is performed with Python statsmodels library (Vishwas &
Patel,  2020). The chart showcases a seasonal pattern of  upstream price indices and target variables in dataset
containing data from January 2020 to June 2023. The data visualize increase at around beginning of  the second
quarter every year that is known as the peak season. Then data gradually decreases into the third quarter where it is
known as the low season. As end of  year approaches, data trend starts to indicate a movement to the higher price
when the peak season occurs typically on the first quarter each year.

Figure 2. Seasonal plot of  Polyethylene and Polypropylene products from January 2020-June 2023

1.3. Machine Learning and Deep Learning Methods

Besides  the  statistical  method,  price  prediction  studies  have  employed  ML  and  DL  models.  The  discussion
encompasses Long Short-Term Memory (LSTM) and Support Vector Regression (SVR) approaches because of  their
capacity to handle non-linear patterns, comprehend intricate cause-and-effect relationships, and learn from extensive
historical datasets (Chen et al., 2021). LSTM is frequently employed for classification and prediction tasks based on
time-series data (Jahanshahi et al., 2022). LSTM is a type of  Recurrent Neural Network (RNN) that stands out due to
its distinctive memory cell configuration which effectively substituting the traditional hidden layer in RNN. Within the
LSTM model, data is filtered using a gate structure such as input, forget, and output components. A comprehensive
comparison between time-series forecasting concludes LSTM outperforms classical methods (ARIMA dan SARIMA)
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(Ensafi et al., 2022). High LSTM performance at 98.2% was also shown in study of  covid-19 spread implication to
commodity price such as Crude Oil WTI, Brent, Wheat and Silver (Kamdem et al., 2020). 

LSTM is used in the prediction of  crude oil variation from 2011 to 2022 with 2218 data points. Several factors are
included to determine crude oil variance. Granger causality test screens that S&P Index, gold variance, previous day
crude oil variance and dollar index variance cause to price oil  variance (Sen  et al., 2023) which on optimized
hyperparameter, the LSTM yielded R2 0.8074. 

Another research employs multivariate LSTM to forecast crude oil with an impressive R2 value at 0.954 based on
features variable such as Gold Prices, S&P Index, Dollar Index, US 10 Year Bond yield (Urolagin et al., 2021). The
high performance is achieved by reducing the data nominally by filtering 19.4% data out by Mahalanobis distance
and 9.62% by Z-score outlier. The Bidirectional LSTM was employed to study features from both forward and
backward directions  of  daily  crude oil  price  data  (Vo,  Nguyen & Le,  2020).  This  approach yielded the  best
performance compared to other methods like LSTM and CNN, achieving an RMSE of  1.55 and an MAE of  1.2.

Classification and regression tree (CART) is a non-parametric ML method for classification and regression tasks
(Choubin,, Moradi, Golshan, Adamowski, Sajedi-Hosseini & Mosavi, 2019). Being a non-parametric model, CART
does not depend on specific data distribution,  thus the presence of  outlier data does not affect performance
(Ghiasi, Zendehboudi & Mohsenipour, 2020). Random Forest is a popular machine learning procedure to develop
prediction models. Random forest uses binary split on the predictor to determine outcome predictions. Random
forest consists of  many classification and regression trees that are constructed by randomly selected training data
subsets. The result of  each tree is aggregated to give prediction of  each observation. This way, Random Forest
results in higher accuracy compared to a single decision tree (Speiser, Miller, Tooze & Ip, 2019). 

Random Forest models outperformed MLR and ARIMA by demonstrating significantly higher forecasting accuracy
with an impressive R2 value of  0.996, RMSE 3.64, MAE 2.56. This analysis was conducted using 312 monthly data
points of  8 predictors spanning from 1992 to 2017 to predict spot crude oil price (Chen & He, 2019). Random
Forest is utilized to predict the stock price from May 2009 to May 2019 of  the next closing day based on feature
variables such as Open, High, Low, Close prices and moving average of  seven, fourteen, twenty-one days and
standard deviation  of  past  seven days.  In that  study Random Forest  RMSE,  MAPE and MAE have similar
performance  compared  to  ANN  for  Pfizer,  Johnson  &  Johnson,  and  Goldman  Sachs  stocks,  while  ANN
outperform Random Forest for Nike and JP Morgan (Vijh, Chandola, Tikkiwal & Kumar, 2020). Random Forest
Regressor (RFR) showed predictive capability for water prices (Xu, Lian, Bin, Hua, Xu & Chan, 2019) to offer
solutions to the water market price uncertainty problem. In this study, RFR demonstrated potential in capturing
complex and non-linear relationship between water price as target with many factors that traditional regression
often fails (Xu et al., 2019) and RFR results R2 value at 0.692 compared to decision tree at 0.541. 

LSTM and RFR models developed in this study have great reputation to predict, yet there is still lack of  past research
that studies beyond the prediction specially to use the prediction output as input for decision making. One research
example predicts time series Naphtha price that could influence the production of  petrochemical products (Kwon et
al., 2020) such as Ethylene, Propylene, Butadiene, Benzene, Toluene and Xylene to optimize the profit. The prediction
factors are historical prices, quantity of  demand and supply, price profiles, crude oil and financial statistics taken
sourced from May 2009-December 2010 to train three prediction models multi-linear regression, Artificial Neural
Network (ANN) and System Dynamic (SD) which result accuracy of  84% to predict January 2011-December 2011
data. Profit optimization is performed with Mixed Integer Linear Programming (MILP) at each decision stage.

1.4. Optimization Methods

In a situation of  high commodity product price volatility, price minimization delivers significant profitability to the
company. However, there is not much literature that concerns price optimization recently. Linear programming is a
mathematical  equation  that  seeks  for  optimum  solution  whether  to  maximize  or  minimize  output  in  given
constraint. This study employs Linear Programming as inventory value increases or decreases as a function of  price
and quantity of  the purchase. Linear Programming is used to analyze network of  revenue of  airline industry to
maximize revenue (An, Mikhaylov & Jung, 2021) and optimize inventory (Perez, Hubbs, Li & Grossmann, 2021).
Mixed Integer Linear Programming (MILP) used in research to increase the profitability of  Liquid Natural Gas
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(LNG) (Sangaiah, Tirkolaee, Goli & Dehnavi-Arani, 2020) that focuses on under uncertainty of  the constraints
such as supply situation, sales strategy, planning period and price discount possibility. A combination of  prediction
and integer programming to optimize R&D budget was studied in (Jang, 2019) research to maximize output on
allocated budget.

2. Methodology
To conduct price prediction research a dataset is constructed for model training and testing purposes. This dataset
consists of  183 data points of  Ethylene (C2), LLDPE, LDPE, Propylene (C3) and Polypropylene (PP) price which
the source is taken from Independent Commodity Intelligence Services (ICIS) weekly price list consolidated from
the 1st week of  January 2020 to the 30th week 2023 or end June 2023. Crude oil price refers to WTI grade source
that is weekly data point collected from investing.com and the Naphtha price source is from weekly data from
tradingeconomics.com. 

Figure 3. Research Framework

Target material prices such as LLDPE, LDPE, BOPP and CPP are actual data obtained from supplier price list.
Dataset’s the most important information for time-series forecasting is that date of  each datapoint (Ensafi et al., 2022)
therefore the dataset index is set according to date format to generate a discrete time-series dataset. All models will be
trained and tested with this dataset as pictured in Figure 3. Model prediction performance is measured with new data
records from the first week of  July 2023 to end September 2023 is appended to the dataset. 
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Variable Count Mean SD Min 25% 50% 75% Max

Crude Oil 183 68 23 17 51 71 82 121

Naphtha 183 596 189 139 471 625 699 1,078

Ethylene 183 922 194 340 803 935 1,028 1,425

LLCPE C4 183 1,084 190 690 948 1,060 1,245 1,495

LDPE C4 183 1,283 281 840 1,048 1,220 1,550 1,768

LLDPE Target 183 1,329 199 1,030 1,160 1,260 1,480 1,760

LDPE Target 183 1,529 321 945 1,330 1,580 1,820 2,090

Propylene 183 915 148 503 855 910 975 1,325

ICIS MIN 183 1,107 178 770 963 1,070 1,243 1,480

ICIS MAX 183 1,200 196 830 1,040 1,170 1,358 1,590

Local PP 183 19,399 3,141 14,140 16,930 19,180 21,590 26,450

BOPP Target 183 24,808 3,635 19,562 21,727 23,842 28,211 32,818

CPP Target 183 26,680 4,747 20,980 22,300 25,976 30,955 35,714

Table 2. Dataset descriptive statistics

The statistical data provided in  Table 2 pertains to the dataset intended for both training and testing stages in
constructing  various  prediction  models  for  polyethylene  (PE)  and  polypropylene  (PP)  materials,  which  are
petrochemical products. Models developed in this study, including CART, RFR, SVR, SARIMA, and LSTM, were
selected due to their proven effectiveness in predicting commodity materials derived from crude oil, as indicated in
previous research.

2.1. Data Preprocessing

Data outlier filtration is not implemented (Kwon et al., 2020) because each data point represents the price volatility
of  commodity grade material (Sen et al., 2023), that naturally occurs due to supply and demand. Crude oil price unit
is US dollar per barrel, meanwhile Naphtha and the rest of  variables are in US dollar per ton except Local PP,
BOPP target and CPP target are in local currency. LSTM prediction procedure follows three main steps such as
data  normalization,  data  training  and parameter  tuning  (Kamdem  et  al.,  2020).  Data  normalization  is  LSTM
pre-processing step that scales  all  input  features  to common range because  each feature  has  different  scales.
MinMax scaling is performed with Scikit-Learn library in Python that is in accordance with Equation (1). MinMax
data normalization is performed separately to the train and test dataset after the split. 

(1)

2.2. Correlation Check

Pearson  Correlation  Coefficient  (PCC)  is  required  to  evaluate  the  relationship  between  variables  (Kotu  &
Deshpande, 2019). It is important to indicate the strength of  feature variables that influence the target variable.
PCC is calculated according to formula in Equation (2) below.

(2)

with r as Pearson Correlation Coefficient, Xi and Yi are individual data, X̅ and Y̅  are the means. PCC value greater
than 0.5 indicates a correlation between the variables.
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2.3. Dataset Split

Splitting the data into training and testing subsets is a crucial step in time series analysis and variables for the
purpose of  model evaluation and performance assessment.  The primary reasons for splitting the data are to
simulate real-world scenarios (Ensafi et al., 2022) and to avoid introducing data leakage, which can lead to overly
optimistic performance metrics (Kamdem et al., 2020). This research implemented train and test data split at 80:20
that will be used in the regression algorithm such as Classification and Regression Tree (CART), Random Forest
Regression (RFR) and Support Vector Regression (SVR). Quantitatively, out of  a total of  183 data records, 142 will
serve as training data, while 36 will be reserved for testing purposes to validate the model. Meanwhile, dataset split
on time-series prediction LSTM and SARIMAX is 90:10 to achieve best performance. The 10% time-series test
data covers 5 months prediction from February 2023 to June 2023.

2.4. Prediction Performance Measurement

Model performance is assessed by four measures as used in literature study. Mean Squared Error (MSE) as in
Equation (3) determines the average of  squared predicted error.

(3)

Root Mean Squared Error (RMSE) in Equation (4) determines the standard deviation of  MSE.

(4)

Mean Absolute Error (MAE) is an error measure between paired observation in regression analysis. It quantifies
the closeness between the predicted value against the actual observed values expressed in Equation (5).

(5)

with n as number of  data points, Yi, is actual value and Fi, as predicted value.

Mean Absolute Percentage Error (MAPE) in Equation (6) determines the absolute percentage error function for
the prediction and actual.

(6)

Coefficient of  determination R2 as in Equation (7) determines how well the predictor explains the dependent variable.

(7)

With n as number of  data points, Yi, is actual value of  the dependent variable for the ith data point, Fi, is predicted
value of  the dependent variable for ith data point and F̅ is mean of  predicted value.

To complement the prediction performance, residual analysis will provide insight where the prediction performs
well and where it may struggle. The residual of  ith data point is difference between actual Yi, and predicted data Fi,
as formulated in Equation (8) below.

(8)
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2.5. K-Fold Cross Validation and Hyperparameter Tuning

K-Fold  cross-validation  is  a  method  in  machine  learning  and  statistical  modeling  for  evaluating  a  model’s
performance and its ability to generalize. This approach divides a dataset into K subsets or folds and subsequently
conducts K rounds of  training and testing. In each round, one of  the folds is designated as the test set, while the
remaining K-1 folds serve as the training set. The process is repeated K times, with each fold acting as the test set
once. The results are then averaged to provide an overall assessment of  the model’s performance (Han, Kamber &
Pei, 2012). The result of  cross-validation depends on model’s hyperparameters tuning. Hyperparameters are model’s
variables  that  control  the  behavior of  the  model  to  fit  with the  data  that  is  part  of  experimental  efforts  to
determine a configuration that delivers best and stable performance (Passos & Mishra, 2022). Therefore, it  is
important to perform cross validation and parameter tuning simultaneously as the number of  iterations of  each
hyperparameter combination could be overwhelming. To overcome the situation, this paper uses GridSearchCV in
Python sklearn library. 

Dataset  train  and test  split  for  LSTM follows the same proportion as in  SARIMA that  is  90:10 for  unbiased
comparison and analysis  of  both  method’s  performance.  This  research  uses  Python tensorflow.keras  library  to
transform time-series data to supervised learning using previous observation as input and actual observation as
output. LSTM model can be further tuned to determine the model at desired level of  performance. Hyperparameter
tuning of  LSTM in Table 3 is performed on three parameters such as LSTM units (neurons), learning rate (steps) and
batch  size.  Higher  LSTM unit  number  affect  to  ability  for  LSTM to  capture  complex  models  at  the  cost  of
computational resources. Learning rate or step size controls the gradient descent optimization. Step size contributes to
convergence stability. Batch size regulates the number of  samples during the training stage. Large batch size may
generate stable convergence and may be less accurate because of  the effect of  generalization.

Neuron Learning Rate Batch Size Layer Optimizer Activation Epoch Dropout

60 2 8 1 Adam ReLu 100 0

100 5 16 1 Adam ReLu 100 0

150 10 32 1 Adam ReLu 100 0

Table 3. LSTM Hyperparameters Search Combination

2.6. Seasonal ARIMA Model Optimization

Seasonal  ARIMA is  an  extended  model  from ARIMA to  predict  seasonal  time-series  which  is  denoted  by
ARIMA(p,d,q)(P,D,Q)m. The p, d and q are non-seasonal while P, D and Q are seasonal factors. This research set m
as 12 to cover the season in the yearly horizon. To identify the best parameters for SARIMA, this research adopted
a stepwise approach using autoarima as used in (Ensafi et al., 2022) paper using Python pdmarima library to find
the  lowest  Akaike  Information  Criterion  (AIC)  value.  AIC  is  a  statistical  test  and  comparative  measure  for
time-series model. AIC provides estimation of  information lost when a specific model is used, lower AIC indicates
the best model. Mathematically, AIC is calculated by Equation (9) below.

(9)

with n as number of  data or observation, k as number of  estimated parameters (regressor and intercept) and l as
the log of  likelihood. When evaluating numerous alternative models, selecting the one with the lowest AIC value
guarantees a well-rounded equilibrium between the goodness of  fit and completeness (Profillidis & Botzoris, 2019).

2.7. Optimization Problem and Mathematical Model

Imagine a buyer engaged in price negotiations for imported material m during month i. This purchaser possesses
information about the inventory value at the start of  month i  since the warehouse retains the material from the
preceding purchase quantity qi-1 at the prior order price Pi-1. When the supplier presents a new pricing offer, the
purchaser faces the task of  determining the purchase quantity  qpi  which may align with, be lesser than, or exceed
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the base quantity qbi initially  suggested by  the planner in the purchase request.  The planner has released the
purchase quantity qbi three times, considering the assumed consistent usage of  each material Uj,i.

This approach enables the purchaser to deliberate whether to postpone a portion of  the quantity to the subsequent
purchase cycle or expedite a portion ahead. To guide the decision the total quantity qpi of  each month should be
equal to three times qbi and the purchase should adhere to the month-end-stock ratio range. To provide guidance
for the decision-making process, it is important that the total quantity qpi for each month corresponds to three
times the qbi value as formulated in Equation (13), while also ensuring that the purchases adhere to the range of
month-end stock ratios as in Equation (14).

Minimizing  inventory  value  becomes  crucial  in  the  face  of  fluctuating  commodity  prices,  as  it  underpins  a
sustainable approach for customer contracts, consistent operational costs, and predictable cash flow, therefore the
objective of  the minimization process is formulated in Equation (10) as follows:

(10)

(11)

(12)

subject to:

(13)

(14)

Decision variable:

qpi: Purchased quantity after adjustment decision arriving at month i

where: 

m is total material group,

j is material group (i.e., LLDPE, LDPE, BOPP, CPP),
n is total months in prediction range,
i is the month number,
Uj,i is usage quantity of  material j in month i,
Pbj,i is base price of  material j in month i,
Ppj,i is predicted price of  material j in month i
Pi-1 Price of  previous month, stock price of  month i,
qi-1 Balance quantity of  previous month, beginning quantity of  month i,
Pi Price current month from purchase arriving at month i, from the prediction,
qbi Purchased quantity according to base requirement arriving at month i

3. Result
3.1. Pearson Correlation Check

The correlation between upstream price indices  and target  is  presented in  Figure  4.  In general,  the price of
petrochemical downstream products such as LLDPE, LDPE, BOPP and CPP have strong correlation to the upper
stream products such as PE and PP which also strongly correlates to crude oil price.
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Figure 4. Pearson Correlation Check Result

This general finding implies that the fluctuation of  Crude Oil could influence the price of  lower stream products
including the target. Correlation between upstream price indices as dataset feature and downstream price as dataset
target shows clear direction therefore the dataset does not require data reduction to reveal the correlation (Salem &
Hussein, 2019). Further, the data shows Crude Oil has a relatively stronger correlation to Naphtha (0.94) than to
Ethylene (0.77) and Propylene (0.70). Naphtha price influence Ethylene (0.87) and Propylene (0.81) but may not be
as strong as Crude Oil to Naphtha. This means Naphtha price fluctuation has more influence to lift or push
Ethylene and Propylene price higher. Ethylene has a stronger correlation to LLDPE C4 than LDPE C4 and
LLDPE Target. While LDPE target has stronger correlation to LLDPE target. To this correlation check, main
factors that influence LLDPE target and LDPE target are Ethylene, LLDPE C4 and LDPE C4. While at the other
end, Propylene, minimum ICIS, maximum ICIS, and local PP price have stronger correlations to BOPP and CPP
target. Crude oil is not included as dataset feature as it has weaker correlation to the targets LLDPE (0.63), LDPE
(0.72), BOPP (0.52), CPP (0.60). Naphtha also is not included as a dataset feature as its weaker correlation to the
targets as well. The result is in line with  Figure 2 where the data display seasonal pattern. Therefore time-series
analysis to adopt is SARIMA instead of  ARIMA.

3.2. Regression Model Performance

The efficacy of  each regression model is assessed using evaluation criteria like MSERMSE, MAE, MAPE, and R2.
The accuracy of  these predictions is contingent upon the hyperparameter value selected during the training phase.
This involves the simultaneous execution of  the training process and 5-fold cross-validation, employing the Python
scikit-learn GridSearchCV library  to minimize  the  MSE.  The  outcome of  GridSearchCV is  best  performing
hyperparameter configuration summarized in Table 4.

CART, RFR and SVR demonstrated strong linearity to predict LLDPE value as indicated by high R2 value in Figure
5a, Figure 5b and Figure 5c with RFR being the strongest model to predict LLDPE. High performance of  RFR
could be further explained from residual plot  Figure 5f. Compared to CART and SVR RFR low MSE score is
indicated by residual value that converge around the ideal line while high RFR R2 score is indicated by the proximity
of  the residuals to zero line across value range compared to other models.
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LLDPE

CART Absolute error 10 10 1 2402.8716 49.0191 26.2838 1.8303 0.9504

RFR 200 10 2 1 1263.1907 35.5414 22.5192 1.6063 0.9739

SVR linear 0.1 0.5 2872.9371 53.5998 36.3398 2.67 0.9406

LDPE

CART poisson 20 5 4 3087.6737 55.5668 36.4739 2.5326 0.9744

RFR 50 10 2 2 2320.3025 48.1695 29.0736 2.0007 0.9807

SVR linear 10 0.5 2418.4998 49.1782 35.6594 2.5656 0.9799

BOPP

CART Absolute error 10 1 2 1113716.081 1055.3275 547.2162 2.1422 0.9259

RFR 200 10 2 1 839360.6427 916.1663 592.3425 2.2795 0.9441

SVR linear 0.1 0.1 1404730.82 1185.2134 1002.3049 4.0907 0.9065

CPP

CART friedman mse None 2 2 3363973.703 1834.1139 862.1712 3.1588 0.8597

RFR 50 20 5 2 2730226.426 1652.3397 874.1079 3.2967 0.8861

SVR linear 1 0.5 4273603.17 2067.2695 1648.5414 6.4245 0.8217

Table 4. Test dataset prediction performance in cross-validation run

(a) LLDPE: CART R2 (b) LLDPE: RFR R2 (c) LLDPE: SVR R2

(d) LLDPE: CART Residual (e) LLDPE RFR Residual (f) LLDPE: SVR Residual

Figure 5. R2 and residual of  models to predict LLDPE test dataset

Meanwhile, SVR lowest performance to predict LLDPE is clearly plot in Figure 5f where the residual datapoints on
both training and test dataset are scattered in wider spread. This spread indicates that all models struggle to predict
upper range value, however adding more data in the space of  higher value range to train and test dataset might
potentially improve prediction performance of  RFR.

LDPE prediction performance shown in Figure 6. RFRin Figure 6b, demonstrated best performance than CART
and SVR from R2 score. For the CART, residual plot in Figure 6d shows that residual spread runs wider when the
value shift to higher range. Meanwhile, RFR residual plot in Figure 6d has narrower spread across the value range,
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especially on the high value range. Lastly, SVR lower performance to estimate LDPE value is due to wider residual
spread than other two models. However, SVR generates narrow residual spread between 1300-1600 value range is
observed in Figure 6f.

(a) LDPE: CART R2 (b) LDPE: RFR R2 (c) LDPE: SVR R2

(d) LDPE: CART Residual (e) LDPE RFR Residual (f) LDPE: SVR Residual

Figure 6. R2 and residual of  models to predict LDPE test dataset

(a) BOPP: CART R2 (b) BOPP: RFR R2 (c) BOPP: SVR R2

(d) BOPP: CART Residual (e) BOPP: RFR Residual (f) BOPP: SVR Residual

Figure 7. R2 and residual of  models to predict BOPP test dataset
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The comparison of  BOPP best prediction model is shown in Figure 7. All three models result in a high R2 value.
The residual plot of  BOPP in Figure 7a, b and c have consistent observable behavior with previous material. RFR
shows better performance than CART and SVR model. RFR shows narrower spread of  training and test dataset at
value range 20000-24000 but wider on higher value range. BOPP SVR training data residual plot in  Figure 7f
demonstrates weaker performance. The widespread of  residual in training and test dataset is observed across the
value range. Thus, adding more BOPP data to training dataset may not be able to influence better prediction
performance with SVR.

(a) CPP: CART R2 (b) CPP: RFR R2 (c) CPP: SVR R2

(d) CPP: CART Residual (e) CPP: RFR Residual (f) CPP: SVR Residual

Figure 8. R2 and residual of  models to predict CPP test dataset

The performance of  CART, RFR and SVR to predict CPP price could be seen in Figure 8. Compared to LLDPE,
LDPE and BOPP, the performance of  CPP prediction model has lower R2 and higher MAPE value. The residual
plot  of  CART in  Figure  8a  and  RFR in  Figure  8b shows  that  the  both  models  have potential  to  perform
equivalently as indicated by close MAE score of  both in  Table 4 and specifically in when prediction value falls
between 20000-24000 range. SVR residual plot in  Figure 8f  has poor performance. The widespread residual of
training and test dataset is observed across value range. Therefore, like BOPP, adding more CPP data points to
training dataset may not influence better CPP prediction performance using SVR.

3.3. SARIMA Model Optimization

Result of  SARIMA best fit model using stepwise process is summarized in Table 5 with steps to achieve lowest
AIC shown in Figure 9 plot a, e, i, and m. The performance of  this model on test data subset is measured with the
same metrics such as MSE, RMSE, MAE, MAP for data that spans from February 2023-June 2023. The saved
model is then used to predict test data subset and compared against actual test data as in Figure 9 plot b, f, j and n.
In  overall,  SARIMA shows  poor  prediction  performance  for  all  target  variables.  However,  SARIMA shows
promising qualitative results due to its ability to track the future trend of  LLDPE and LDPE but struggles to track
BOPP and CPP future trend.
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Target Model MSE RMSE MAE MAPE

LLDPE ARIMA(0,1,0)(2,1,0)[12] 1896.299 43.5465 3.072 37.1046

LDPE ARIMA(0,1,0)(2,1,0)[12] 23794.92 154.256 143.8585 10.5146

BOPP ARIMA(0,1,0)(2,1,1)[12] 2706450 1645.129 1342.524 6.4163

CPP ARIMA(1,1,0)(0,1,1)[12] 1444831 1202.011 837.6754 3.7576

Table 5. Sarima stepwise optimum result

Figure 9. SARIMA and LSTM prediction result

3.4. LSTM Model Optimization

Hyperparameter tuning of  LSTM is an experimental process, thus 27 fits involving number of  neurons, learning
rate and batch size as in  Table 3 conducted to determine which hyperparameters that could deliver higher and
stable prediction performance. The optimal LSTM hyperparameters are shown in Table 6. These parameters will be
used for prediction. Other hyperparameters such as number of  LSTM layers, optimizer, activation are not studied
in this paper. The use of  Epoch at 100 shown in Figure 9 plot d, h, l and p provided clear indication that the model
loss stationarity could be achieved without needing of  further extension. Dropout is not implemented due to
limited dataset size. 

Table 6 and Figure 9 plot c, g, k and o demonstrate capability single layer LSTM to track trend of  test data subset
of  all target variables. All plots in  Figure 9 indicates that the superiority of  LSTM over SARIMA model with
limited data the train data subset.
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Material Steps Neurons Batch Size MSE RMSE MAPE R2

LLDPE 5 60 16 349.0924 18.6645 1.222 0.7412

LDPE 10 150 8 2031.251 44.9234 2.6393 0.2284

BOPP 2 100 16 1004839 1001.725 3.9777 0.3235

CPP 2 150 16 741471 859.1224 3.2092 0.6611

Table 6. LSTM Optimal Hyperparameter Performance

4. Discussion
4.1. Prediction Performance

This section will focus on how trained regression and time-series model delivers prediction result of  new dataset of
weekly data points from July 2023 to end September 2023 displayed as solid red line in the following chart figures.
This data is not part of  the training and test data; therefore it is unseen from the model development process.
Generated prediction result from the highest performing model will be employed in the inventory optimization
with linear programming.

Figure 10. LLDPE actual and model prediction

Model MSE RMSE MAE MAPE
CART 165.385 12.86 10 0.8586
RFR 74.0712 8.607 5.618 0.4893
SVR 343.917 18.55 16.71 1.4255
SARIMA 7269.9 85.26 73.17 6.2131
LSTM 1343 36.65 27.87 2.35

Table 7. New LLDPE data prediction metrics

LLDPE actual data prediction and the performance is shown in Figure 10 and Table 7. RFR achieves the highest
performance with the lowest MSE, RMSE, MAE and MAPE compared to other models. The R2 value is not
measured due to a small number of  data composed from 13 weekly data from the first week of  July 2023 to the last
week of  September 2023. RFR prediction value tracks the new data closely compared to CART, SVR, SARIMA
and LSTM. LSTM and SARIMA are not able to predict the target, further SARIMA displays the opposite trend
than all other models.

LDPE prediction shown in  Figure 11 and  Table 8 clearly show that SVR outperforms all other models. SVR
prediction of  new data is consistent with finding in residual plot. in training process. Where This performance is
contributed by  trained SVR model  that  has  narrow residual  range in  the  range 1300-1600.  CART and RFR
demonstrate the ability to track the price change, however both methods have a similar pattern that is higher than
the actual. SARIMA shows different prediction meanwhile LSTM qualitatively able to indicate higher trend for the
first 4 weeks.

BOPP prediction performance is displayed in Figure 12 and Table 9. RFR has the highest performance compared
to the rest when comparing the MAPE value and the ability to trace the weekly data points. SVR shows the ability
to trace the trend, which means the model could follow the feature data lead. SARIMA and LSTM are not able to
indicate trend.
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Figure 11. LDPE actual and model prediction

Model MSE RMSE MAE MAPE
CART 5803.532 76.181 69.67 5.5072
RFR 4701.341 68.566 63.485 5.0082
SVR 332.5969 18.237 13.569 1.0829
SARIMA 50439.13 224.59 212.95 16.615
LSTM 4977.308 70.55 58.385 4.6134

Table 8. New LDPE data prediction metrics

Figure 12. BOPP actual and model prediction

Model MSE RMSE MAE MAPE
CART 1155973.4 1075.2 833.231 3.7568
RFR 262266.04 512.12 412.615 1.8755
SVR 798379.31 893.52 788.508 3.5875
SARIMA 462603.61 224.59 571.562 2.6169
LSTM 3674381.1 70.55 1823.58 8.2031

Table 9. New BOPP data prediction metrics

Figure 13. CPP actual and model prediction

Model MSE RMSE MAE MAPE
CART 820318.08 905.714 810.385 3.6575
RFR 133924.29 365.957 308.2 1.4047
SVR 814710.2 902.613 691.708 3.0955
SARIMA 12217522 3495.36 3446.67 15.752
LSTM 721606.04 849.474 642.023 2.9913

Table 10. New CPP data prediction metrics

Similar performance of  models is observed in CPP in in Figure 13 and Table 10 where RFR outperforms other
models and SVR can predict the trend. As for LSTM, although it results lower MAPE demonstrate rather flat
prediction. 

Therefore, based on the actual data from July to September 2023, RFR is the best fit  model used to predict
LLDPE, BOPP and CPP, while SVR fits for LDPE. As upstream data indices are updated on a weekly basis,
LLDPE, LDPE, BOPP and CPP prediction price could be used as input for spot price negotiation that could take
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place on a weekly basis with the local supplier. Meanwhile, for imported goods purchased from overseas suppliers,
LSTM could be used for qualitative forecast whether the price will increase or decrease within 4 weeks. Lastly,
SARIMA is found to be not fit for LLDPE, LDPE, BOPP and CPP prediction.

The  limitation  of  this  study  that  might  contribute  to  the  performance  of  regression  and time-series  model
prediction might be caused by the number of  total data and limited hyperparameters tuning conducted.

4.2. Inventory Optimization

One objective of  this research is how to benefit machine learning and deep learning models for price prediction
that provide input for developing purchasing strategy to optimize the inventory and its value. The predicted value is
input for Linear Programming (LP) that considers the predicted price fluctuation to determine the quantity to
purchase. The optimization problem brought in this paper is how to minimize cost and purchase inventory based
on future price. Linear Programming optimization is selected for price and inventory optimization as there is linear
correlation between the price, quantity, and the value of  material. The optimization is performed using simplex
method in Excel Solver. 

In general, the organization have implemented strict control of  inventory, therefore the planner maintains the stock
within the allowable MES ratio as pointed in Equation  (14) where the stock at end of  month should be within
0.3-1.0 ratio. This optimization works to squeeze further opportunity to lower the purchase cost. Referring to Table
11, purchasing period is denoted with P1, P2 and P3 with P0 as current period. Beginning stock is the last inventory
quantity accumulated at the end of  previous period. 

Table 11. Comparison between base and optimized scenario of  LLDPE purchase

Inventory Planner release Purchase Requisition (PR) quantity identified in Base Purchase Quantity column with
quantity slotted in P1, P2 and P3. The purchase request quantity in P1, P2 and P3 are regulated by the Month End
Stock (MES) ratio as calculated in Equation (14) that reflects the organization inventory control policy. The MES
ratio value is typically maintained at 0.5 for LLDPE and LDPE as these materials are mostly imported. For locally
supplied material such as BOPP and CPP it is maintained at min 0.3 due to shorter lead time. Predicted value is
prediction result of  in the last week of  each month that reflect the supplier’s new offering time window. Base
Inventory  Value  is  the  multiplication  between  Base  Purchase  Quantity  and  the  Predicted  value.  Optimized
Inventory Value is the multiplication between Optimized Purchased Quantity as decision variable and the predicted
price.  The  Optimized  Purchased  Quantity  must  not  exceed  the  Base  Purchase  Quantity  as  described  as
optimization  constraint  in  Equation  (13).  The  objective  of  optimization  is  determining  Optimized  Purchase
Quantity at each period as decision variable to minimize inventory value.

In Table 11, LLDPE price is predicted to increase from P1 to P3. Therefore, to minimize the inventory value, LP
set MES of  P1 and P2 to maximum 1.0 which plot them Figure 14a as higher than base scenario. However, as more
quantity has been purchased in P1 and P2, less quantity in P3 as remainder is released when the price reached the
highest point. As result, total inventory value after optimization in Figure 14b is reduced by 0.71% compared to the
base scenario.

Next product is LDPE. In Table 12, the base scenario has indicated inventory control that is in adherence with
organizational policy since the planner set the base purchase quantity if  P1, P2 and P3 according to MES ratio 0.5
from previously high in P0 at 1.2.
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Figure 14. LLDPE value comparison per period and total inventory value reduction

Table 12. Comparison between base and optimized scenario of  LDPE purchase

To optimize the inventory value on increasing predicted price in P1,  P2 and P3, LP maximizes the allowable
purchase quantity by advancing quantity to earlier period which plot P1 in Figure 15a higher than base. However, as
more quantity has been purchased earlier in P1 and P2, less quantity is purchased in P3 when the predicted price is
highest. As result, total LDPE inventory value is reduced by 1.0% as shown in Figure 15b.

Figure 15. LDPE value comparison per period and total inventory value reduction

BOPP base scenario indicates a low inventory control with MES ratio 0.3 at P0 as in  Table 13. Predicted price
indicate increase on P1 and P2 then decline in P3.

Table 13. Comparison between base an optimized scenario of  BOPP purchase
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Despite of  already in a tight inventory control, the inventory value optimization could still be achieved because LP
maximizes purchase on P1 and P2 with limited MES ratio at 0.5. Figure 16a shows progression of  value reduction
since P2 because larger quantity was processed P1 before price rise to the highest point in P2.

As result,  total  BOPP inventory value after  optimization is  reduced by 0.31% from base scenario as seen in
Figure 16b.

Figure 16. BOPP value comparison per period and total inventory value reduction

In regards of  CPP, Table 14 shows that inventory position in P0 is at maximum level as indicated by MES ratio 1.0.
Base quantity set by the planner is intended to restore the MES ratio at 0.5 in P3 while the price is predicted to
exhibit an increase in P2 and then decrease in P3.

Table 14. Comparison between base an optimized scenario of  CPP purchase

LP works to maximize the quantity at P1 when the price is at the lowest then LP reduces the quantity at P2 when
the price is the highest. Therefore, the value of  P2 plot in Figure 17a drops. The remaining quantity is released as
purchase order in P3.  When the price declines,  more quantity  is  placed to meet MES ratio at 0.5. As result,
Figure 17b shows CPP inventory value reduction by 0.31 % compared to base scenario.

Figure 17. CPP value comparison per period and total inventory value reduction
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5. Conclusion

Commodity markets are complex and subject to a wide range of  factors that cause price fluctuations. Supply and
demand are the most fundamental reason that could be influenced by other factors such as economic condition,
governmental  policies,  geopolitical  tensions,  weather,  and  natural  disasters.  These  factors  cause  high  price
volatility and speculation of  what to come. In the era of  Industry 4.0, the implementation of  Machine Learning
and Deep Learning approach in the Procurement department strengthen strategic role to predict material future
price and optimize the inventory value. Regression models such as CART, RFR and SVR offer better prediction
performance of  LLDPE, LDPE, BOPP and CPP materials in comparison to time-series models such as classic
SARIMA and Deep Learning model LSTM. Among the models, RFR is the best predictor for LLDPE, BOPP
and CPP while  SVR is  best  for LDPE. The follow up of  prediction result  to linear  programming delivers
inventory  quantity  and  value  optimization  to  deal  with  future  price  trends.  Linear  programming  enables
Procurement  whether  to  purchase  material  earlier  or  postpone  minimizing  the  inventory  value.  As  result
combined value reduction is 2.2 % which contributes to competitive advantage of  company in price sensitive
market and global economy situation that diminishes demand. Future research is needed to address other factors’
role  that  is  currently  present  in  the  commodity  value  chain  of  petrochemical  products  delivery  from the
producer to the user such as the freight cost.
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