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Abstract:

Purpose: This paper investigates a batch scheduling problem where pre-processing is required for parts
before  processing,  considering  time-changing  effects  from  part  deterioration  and  operator  learning-
forgetting.

Design/methodology/approach: A mathematical model was developed with the decision variables of
the number of  batches, the number of  pre-processings, batch sizes, and the schedule of  processes and
pre-processings to minimize total actual flow time. Different numbers of  batches were gradually tried and
increased until the objective function stopped improving. The minimum number of  pre-processings that
resulted in a feasible solution was examined at each number of  batches.

Findings: Our experiment showed that: (1) A faster operator learning led to a lower optimal number of
batches and a lower total actual flow time, (2) A faster part deterioration brought a higher number of
batches and a higher total actual flow time, (3) The model minimized the number of  pre-processings by
only scheduling pre-processings before the operations at machine 1, and (4) The model divided the parts
into small batches to prevent increased processing time due to part deterioration.

Research limitations: The research did not consider multi-due date and multi-item system which require
pre-processings with different times and capacities.

Practical implications: Production managers should assign fast learning operators to shorter batches and
faster deteriorating parts.

Originality/value: This research was the first to consider pre-processing in batch scheduling.
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1. Introduction

In  manufacturing,  pre-processing  stands  as  the  crucial  first  step,  meticulously  preparing  raw  materials  or
components  to meet  stringent  final  product  specifications  and simultaneously  optimizing  both efficiency  and
quality throughout the production process. One of  the most common pre-processing techniques across diverse
industries is pre-heating, employed in processes such as steel slab rolling for producing steel plates or coils (Singh,
Kumar & Ghose, 2024), steel welding (Wang, Li, Huang, Wang & Zhou, 2022), steel nitro-carburization (Illing, Ren
& Ernst, 2023), laser beam welding of  martensitic stainless steel (Panov, Naumov, Stepanov, Sokolovsky, Volokitina,
Kashaev et al., 2022), stretch forming of  a fiber metal laminate (Rahiminejad & Compston, 2021), injection-mold
for shoe soles production (Kuo,  Tasi,  Huang & Tseng,  2023),  and even  metal  crafts  (Baral,  Divyadarshan &
Amulya, 2017; Mardi, Syarif  & Syakir, 2021).  Importantly, after pre-processing, parts require further processing
within a specific timeframe (Demir & Previtali, 2017).  Failure to complete this subsequent processing within the
designated period necessitates another round of  pre-processing. 

Flow  shop  scheduling  plays  a  crucial  role  in  optimizing  various  aspects  of  manufacturing  and  production
environments. However, challenges arise when part processing times change over time due to two dynamic effects:
part deterioration and operator learning-forgetting (Strusevich & Rustogi, 2017). Part deterioration results from the
loss  of  pre-processing-induced properties  during  flow shop processing,  leading  to longer  processing times if
delayed (Nikolaeva & Vlasov, 2017). Conversely, operators become faster with repeated processing but experience
forgetting during breaks (Kurniawan, Cakravastia, Suprayogi & Halim, 2022). This learning effect, initially observed
by  Wright (1936), involves processing time consistently decreasing with each doubling of  repetitions. Jaber and
Bonney (1996) mathematically modeled this alternating process of  learning and forgetting across production lots.
Notably, Nembhard and Uzumeri (2000) highlighted the importance of  understanding the learning effect in various
manual-operation industries for setting standard times,  estimating labor costs,  and creating schedules. Further,
Sebrina,  Diawati  and Cakravastia  (2011)  experimentally  demonstrated  that  product  complexity  and  takt  time
influence learning rates in an automotive setting, with faster learning potentially leading to higher defect rates.

Batch production, a widely adopted technique in manufacturing (Fowler & Mönch, 2022), offers the potential to
improve makespan, mean flow time, and average work-in-process levels (Kalir & Sarin, 2000). However, it presents
unique  scheduling  challenges,  including  determining  the  optimal  number  of  batches,  batch  sizes,  and  their
scheduling sequence (Halim, Miyazaki & Ohta, 1994). Common scheduling performance metrics include makespan,
flow time, lateness, tardiness, and the number of  tardy jobs (Bedworth & Bailey, 1987). These metrics, however, fail
to address the simultaneous demands of  meeting due dates and reducing inventory levels.  Actual flow time, a
measure defined in Halim and Ohta (1993) as the time between production start and due date, addresses these
needs. With actual flow time as the performance measure, parts do not need to arrive simultaneously at the shop
floor; instead, they arrive when needed and are delivered to customers by their due dates (Halim & Ohta, 1993). 

Previous studies, such as those by  Yusriski,  Sukoyo, Samadhi and Halim (2015), Kurniawan, Raja, Suprayogi and
Halim (2020) and Kurniawan et al. (2022) focused on batch scheduling models with learning and forgetting effects,
neglecting the impact of  part deterioration. Conversely, Sukoyo, Samadhi, Iskandar and Halim (2010) proposed a
multi-item batch scheduling model with part deterioration, but their model assumed uniform processing times
within  a  batch  and did  not  consider  learning  and forgetting  effects.  Building  upon these  works,  Kurniawan,
Yusriski, Isnaini, Ma’ruf  and Halim (2021) incorporated operator learning-forgetting from Kurniawan et al. (2020)
and part deterioration from Sukoyo et al. (2010) into their model. However, this integration did not consider the
crucial requirement for pre-processing steps,  despite the inherent connection between pre-processing and part
deterioration where required material properties are alternately gained and lost.

In batch production, pre-processing and part deterioration can occur concurrently with operator learning, creating
significant scheduling complexities. Examples include wedding ring production, where metal powder undergoes
pressing,  sintering,  and rolling  (Raw,  2000),  and metal  crafts,  where  metal  ingots  are  heated between manual
hammering to maintain malleability (Baral et al., 2017; Mardi et al., 2021). To address this challenge, integrating the
learning model from Kurniawan et al. (2021) with the pre-processing requirements outlined by Zhu,  Katti, Qiu,
Forsmark and Easton (2023) becomes crucial. Further investigation is needed to understand the impact of  varying
learning, deterioration, and pre-processing parameters on batch schedules.
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2. Model Formulation

The situation studied in this paper can be explained as follows. There are n parts (units of  a single product) to be
processed in N batches, where each batch i is to be processed in k machines with a uniform routing. Before these
processes,  pre-processing  is  required  by  the  parts  to  gain  specific  properties,  which  are  conducted  for  a
pre-processing time h and preceded by a pre-process setup time u. The pre-processing is required every time setup
and processing times reach a processible time c  after the last pre-processing. Operation of  batch i at machine m,
denoted by operation Lm,[i], requires a setup time sm and an initial processing time tm. Time-changing effects occur
during the  operations,  i.e.,  the  operator  at  machine  m learns  at  a  learning  rate  lm,  and parts  deteriorate  at  a
deterioration rate δ. Subsequently, all operations must be completed no later than the due date d. 

The objective function of  the model is the total actual flow time F, and the decision variables are (i) the number of
batches N, (ii) the number of  pre-processings V, (iii) batch sizes Q[i], (iv) the schedule of  operation Lm,[i] (Bm,[i]), and
(v) the schedule of  pre-processing p (A[p]). Also, assumptions in this study are, (1) pre-processors and machines are
always available during the scheduling horizon, (2) the pre-processing time  h and pre-process setup time  u are
independent  of  batch  sizes,  and  (3)  the  operators  have  no  prior  learning  experience.  The  capacity  of  the
pre-processor is not considered in this research. Additionally, all parameters and variables used in this model are
deterministic. 

Indices, parameters, variables, and notations used in this paper are shown as follows.

Indices:

p = index of  pre-processings, sequenced backward from the due date (p = 1, …, V),
m = index of  machines (m = 1, …, k),
i = index of  batches, sequenced backward from the due date (i = 1, …, N).

Parameters:

n = number of  parts to be processed,
k = number of  machines,
d = due date, calculated from t = 0,
sm = setup time per batch at machine m, 
tm = part processing time at machine m before learning, forgetting and part deterioration,
h = pre-processing time,
c = processible time,
u = setup time before pre-processing,
δ = part deterioration rate,
ℓm = learning gradient of  the operator at machine m.

Variables:

F = total actual flow time of  all parts,
N = number of  batches,
Q[i] = number of  parts in batch i,
Lm,[i] = operation of  batch i at machine m,
A[p] = starting time of  pre-processing p,
Bm,[i] = starting time of  operation Lm,[i],
Tm,[i] = processing time of  operation Lm,[i].
fm,[i] = forgetting gradient at the beginning of  operation Lm,[i],
αm,[i] = equivalent number of  parts of  retained learning experience at the beginning of  operation Lm,[i], 
βm,[i] = equivalent number of  parts of  accumulated part deterioration at the beginning of  operation Lm,[i], 
Im,[i] = length of  process interruption between operation Lm,[i] and operation Lm,[i+1],
Jm,[i] = length of  process interruption between operation Lm–1,[i] and operation Lm,[i],
Xm,[i] = binary variable that equals to 1 if  pre-processing is scheduled before operation Lm,[i], otherwise equals to 0,
Y[p],m,[i] = binary variable that equals to 1 if  pre-processing p is scheduled before operation Lm,[i], otherwise equals
to 0,
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Gm,[i] = time spent by batch i from the last pre-processing to operation Lm,[i],
V = number of  pre-processings required in the schedule horizon,
t[p] = processing time of  the x-th part as a learning function,
t̂[x] = processing time of  the x-th part as a forgetting function.

Notations:

Pre-processing p = the p-th pre-processing from the due date.

2.1. Pre-processing 

Some  manufacturing  processes  require  parts  to  have  specific  properties,  which  can  be  gained  through
pre-processing. An example of  process and pre-processing in a single-machine batch schedule is shown in Figure 1,
where the batch processes are scheduled backward from the due date, and batch 1 is the closest batch to the due
date. The pre-processing lasts for  h and is scheduled to be completed no later than the beginning of  the batch
processing.  Furthermore,  batches  must  be  processed  within  a  processable time  c  from  the  pre-processing
completion. In Figure 1, pre-processing is scheduled before the process of  each batch at the machine. The actual
flow time of  a batch is the time period from parts arrival, i.e., at the beginning of  pre-processing, to the due date.

Figure 1. A single-machine backward batch schedule with pre-processing

An example of  process and pre-processing in a flow shop is shown in Figure 2, where three batches are scheduled
in a three-machine flow shop with a pre-processor. A pre-processing is required when the total processing time of
operations, calculated backward, has exceeded c. In Figure 2, the total processing time of  operations L1,[1], L2,[1] and
L3,[1] does  not  exceed  c,  leading  to  only  one  pre-processing  scheduled  for  batch  1  (before  operation  L1,[1]).
Meanwhile, the total processing time of  operations L1,[2], L2,[2] and L3,[2] exceed c, but the total processing time of
operations L2,[2] and L3,[2] does not exceed c. So, one pre-processing is scheduled before operation L2,[2] and another
one before operation L1,[2]. In addition, any two of  operations L1,[3], L2,[3], and L3,[3] combined has a total processing
time that is longer than c, so one pre-processing is scheduled before each operation at machines 1, 2, and 3. Bold
arrows show the physical flow of  each batch in the system (Figure 2).

 

Figure 2. A flow shop batch schedule with pre-processing
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The decision to determine whether a  pre-processing scheduled before operation  Lm,[i] is  denoted by a binary
variable  Xm,[i], which equals one and zero if  scheduled and not scheduled, respectively. Operations at machine 1
must  be  preceded  by  pre-processing.  Meanwhile,  the  operations  at  other  machines  must  be  preceded  by
pre-processing when Gm,[i] exceeds c. Variable Gm,[i] accumulates the processing time of  a batch at machines m and
m–1,  starting  backward  from machine  k,  and  the  accumulation  is  restarted  when  a  pre-processing  has  been
scheduled for a specific operation. The determination of  a pre-processing for operation Lm,[i] is shown in Equation
(1) to (3).

(1)

(2)

(3)

The  required  number  of  pre-processings  in  the  scheduling  horizon  is  denoted  by  V,  where  pre-processing
p(p = 1, …,  V) are scheduled backward. The determination whether the pre-processing before operation  Lm,[i]

scheduled at the p-th pre-processing is denoted by binary variables Y[p],m,[i]. The relationship between V, Xm,[i] and
Y[p],m,[i] are shown in Equation (4) and (5).

(4)

(5)

The schedule of  pre-processing p and the schedule of  operation Lm,[i] are denoted by A[p] and Bm,[i], respectively.
Variables Bm,[i] are determined backward from machine k to machine 1. At machine m, Bm,[i] are computed backward
from batch 1 to batch N. At machines m (m < k), Bm,[i] is scheduled based on Bm+1,[i] while simultaneously evaluating
the existence of  pre-processing before operation Lm+1,[i]. Additionally, A[p] is determined based on the schedule of
operation  Lm,[i] it precedes, and also based on  A[p-1] for  p > 1. The calculations of  A[p] and  Bm,[i] are shown in
Equation (6) to (11). 

(6)

(7)

(8)

(9)
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(10)

(11)

2.2. Time-changing Effects

According to Strusevich and Rustogi (2017), there are two types of  time-changing effects, i.e., deterioration and
learning, causing the processing time to increase and to decrease, respectively.  Part deterioration is the decline of
part condition that occurs because materials change over time. This occurs at any time after pre-processing (Demir
& Previtali, 2017), causing a longer processing time when the process begins at a later time (Cheng, Kang & Ng,
2004). A linear deterioration, i.e., the increase of  part processing time at a constant proportion  δ of  the initial
processing time, was assumed in this research (Mor & Mosheiov, 2021), leading to deterioration function D(x) in
Equation (12),

(12)

where t = initial processing time (before deterioration), x = part sequence, and δ = deterioration rate of  0 or more
(a higher δ means a faster deterioration, δ = 0 means no deterioration). 

Simultaneously with part deterioration, a learning effect occurs when an operator repeatedly performs a specific
production process,  resulting in a decreasing processing time as the number of  repetitions increases (Jaber &
Bonney,  1996).  According  to  Wright  (1936),  this  effect  occurs  following  learning  function  L(x)  shown  in
Equation (13),

(13)

where t = processing time before learning, x = part sequence, and ℓ = a learning gradient of  0 or more (a higher ℓ
means faster learning, ℓ = 0 means no learning). 

The simultaneous occurrence of  operator learning and part deterioration also causes the processing time to behave
as L(x) with deterioration, L(x)(1 + δx), or D(x) with learning, D(x)x–ℓ. Both formulas led to function t[x] as shown
in Equation (14).

(14)

Based on Equation (14), the fluctuation of  processing time is shown in Figure 3. The processing time of  the x-th
part decreased from t and reached a minimum value at the xmin-th part. After this, the processing time subsequently
increased and reached  t at the  r-th part. Before  xmin, learning was more dominant to the processing time than
deterioration, while after xmin, deterioration was more dominant. Propositions 1 and 2 postulated the value of  xmin

and r. 

Figure 3. Fluctuation of  processing time along parts in a batch
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Proposition 1. Function t[x] = t(1 + δx)x–ℓ reaches a minimum value at the xmin-th part, where .

Proof. Function t[x] = t(1 + δx)x–ℓ reaches a minimum when t'[x] = tδx–ℓ – tℓx–1–ℓ(1 + δx) = 0, or tδx–ℓ = tℓ x–1–ℓ(1 + δx),

leading to , as notated in this proposition.

Proposition 2. After reaching the minimum value, function t[x] = t(1 + δx)x–ℓ increases and reaches t at the r-th
part, where r is the bigger root of  polynomial rℓ – δr = 1.

Proof. The situation in this proposition is given by t[x] = t(1 + δx)x–ℓ = t, which is rewritten as r–ℓ (1 + δx) = 1.
After some algebraic operations, rℓ – δr = 1 is obtained and subsequently solved. The bigger root is taken as r since
the smaller root is frequently negative. 

Part  deterioration  and learning-forgetting  were  also  explained  using  the  batch  schedule  in  Figure  2.  Starting
immediately after the completion of  pre-processing 1, parts in batch 1 deteriorated continuously from operation L1,

[1] to  L2,[1] and  L3,[1]. Meanwhile, part deterioration in batch 2 began directly after pre-processing 4, to occur at
operation  L1,[2]. This restarted after pre-processing 2, to occur subsequently at operation  L2,[2] and continue to
operation  L3,[2]. In addition, part deterioration in batch 3 started immediately after pre-processing 6, 5, and 3 to
occur at each subsequent operation. Meanwhile, an operator at each machine started learning at the beginning of
batch 3 and experienced forgetting during process  interruptions between two consecutive  batches.  Forgetting
started directly when the learning effect stopped and occurred during setups and machine idle times (Kurniawan et
al., 2020).

Based on Jaber and Bonney (1996), Figure 4 shows a more detailed analysis of  the processing time fluctuation in
batch production at a machine. Suppose that the processing time before part deterioration and operator learning
was t, and suppose that the process of  batch i was started when the operator obtained α[i] unit-equivalent of  the
learning experience (α[i+1] = 0 at A). Learning and deterioration occurred simultaneously along the AC curve for Tm,

[i+1], following the function in Equation (14). When the process was interrupted during the interval I, a forgetting
effect occurred along CE curve, based on a forgetting function in Equation (15), which imaginarily began at B.
Suppose that  Q[i+1] parts  were  processed during  Tm,[i+1],  and that  R parts  could be  processed if  the  process
continued during the interval I while learning continued to occur along CD curve based on the learning function in
Equation (13).

Figure 4. Learning and forgetting effects during two sequential batches

(15)

At C,  t̂[x] =  t[x], or  t(1  + δ(α[i+1] + Q[i+1]))(α[i+1] + Q[i+1])–ℓ = t̂(α[i+1] + Q[i+1])f, which was then used to find  t̂, an
imaginary processing time at B where t̂[x] started, i.e.:
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(16)

Substituting Equation (16) to Equation (15), Equation (17) was obtained.

(17)

To find  I,  i.e.,  the time required to produce  R parts  (if  interruption did not occur),  the learning function in
Equation (13) was integrated along the interruption interval.

(18)

After some algebraic operations on Equation (18) to find α[i+1] + Q[i+1] + R, Equation (19) was obtained.

(19)

After forgetting during CE, the operator learning experience obtained during AC was reduced from α[i+1] + Q[i+1]

unit-equivalent of  to α[i] unit-equivalent. The value of  α[i] was found by equating t̂[x] at E (i.e., t̂[α[i+1] + Q[i+1]) + R])
with  t[x] ending  at  E,  i.e.,  tα[i]

–ℓ = t(1  +  δ(α[i+1] + Q[i+1]))(α[i+1] + Q[i+1])–(ℓ+f)(α[i+1] + Q[i+1]  +  R)f,  leading  to
Equation (20).

(20)

After substituting Equation (19) to Equation (20) and some algebraic operations, Equation (21) was obtained.

(21)

According to Figure 4, the value of  I was given by I = Bm,[i] – Bm,[i+1] –  Tm,[i+1]. Equation (21) was applied when the
operator experienced a partial forgetting after batch i+1 (TE < t). When the operator experienced a total forgetting,
then TE = t and α[i] = 0, and Equation (21) was rewritten to Equation (22).

(22)

The forgetting gradient f was computed at the beginning of  total forgetting (when t̂[x] = t ). This situation was given
by  t(1  +  δ(α[i+1] + Q[i+1]))(α[i+1] + Q[i+1])–(ℓ+f)(α[i+1] + Q[i+1]  +  R)f = t,  which was used to  find  f as  shown in
Equation (23).

(23)

In flow shops, variables α[i] and f had additional indices to become αm,[i] and fm,[i], respectively.

Similar to learning, the unit-equivalent was also used to quantify accumulated part deterioration at a time point.
Suppose that batch i was pre-processed and further processed at machine m and m+1, as shown in Figure 5. When
batch i completed pre-processing, β = 0 at A. Suppose that β equals βm,[i], βm,[i] + Q,[i] and βm,[i] + Q,[i] + Um,[i] at B, C
and D, respectively, where βm,[i], Q[i] and Um,[i] were unit-equivalent of  accumulated part deterioration. Along AB, the
interval between pre-processing completion and process commencement, parts deteriorated from zero to βm,[i]. The
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length of  interval AB equals the  integration of  function  D(x) in Equation (12)  from zero to  βm,[i]  as shown in
Equation (24).

Figure 5. Part deterioration in sequential operations

(24)

Substituting both sides of  Equation (24), we obtained Equation (25).

(25)

After some algebraic operations, Equation (25) was rewritten as in Equation (26), a quadratic function of  βm,[i],
which was solved to find βm,[i] as shown in Equation (27).

(26)

(27)

Similar to AB, the length of  interval CD, or Bm+1,[i] – Bm,[i] – Tm,[i], equals the integration of  function D(x) in Equation
(12) from βm,[i] + Q,[i] to βm,[i] + Q,[i] + Um,[i], as shown in Equation (28).

(28)

(29)

which was used to obtain βm,[i] + Q,[i] + Um,[i], the accumulated deterioration at D, as shown in Equation (30).

(30)
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The accumulated deterioration at D, or  βm,[i] + Q,[i] + Um,[i], was converted to Bm+1,[i]  by multiplying it with tm/tm+1.
Therefore, Bm+1,[i] = tm/tm+1(Bm,[i] + Q,[i] + Um,[i]), or,

(31)

Different from AB and CD, the length of  interval BC (Tm,[i]) equals the integration of  t[x] in Equation (14) with its
deterioration  and learning  bounds.  Since  deterioration  and learning  occurred  with  different  bounds,  the  part
sequences in Equation (14) were separated into x and y for deterioration and learning, respectively. Therefore, t[x]

was rewritten into t[x,y] = t(1 + δx)y–ℓ, and integrated t[x,y]
 
along with its deterioration and learning bounds as shown

in Equation (32), leading to Equation (33).

(32)

(33)

2.3. Conceptual Framework

The relationships between parameters c, u, h, δ and ℓ with decision variables N, Q[i], and F were hypothesized in a
model conceptual framework (Figure  6). Pre-process setup time and pre-processing time were hypothesized to
behave like setup time and processing time, for instance, having a positive and negative relationship with total actual
flow  time  and  the  number  of  batches,  respectively  (Mekler,  1993).  However,  the  opposite  properties  with
pre-processing time were predicted as  processable time limits the length of  processing, such as a negative and
positive relationship with total actual flow time and the number of  batches, respectively. Furthermore, a higher
deterioration rate was supposed to have the same effects with pre-processing time since it led to a longer operation.
According to Propositions 3 and 4 in Kurniawan et al. (2020), the learning rate was hypothesized to have a negative
relationship with total actual flow time and the number of  batches. Finally,  more batches reduced the size of
batches and vice versa.

Figure 6. Conceptual framework of  the model
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2.4. The Proposed Model

Sections 2.2 and 2.3 explained the basic concept of  pre-processing, part deterioration, and operator learning, as well
as their application in batch scheduling. These led to the flow shop batch scheduling model with pre-processing,
part deterioration, and operator learning-forgetting to minimize total actual flow time as formulated in Model 1.

Model 1

(34)

subject to

(35)

(36)

(37)

(38)

(39)

(40)

(41)

(42)

(43)

(44)

(45)

(46)
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(47)

(48)

(49)

(50)

(51)

(52)

(53)

(54)

(55)

The objective function (34) was minimizing total actual flow time of  all parts, i.e., the total time spent by all parts in
the shop floor, from the batch arrival for pre-processing to the due date. The schedule of  operation Lm,[i] and the
schedule of  pre-processing p were determined in constraints (35) to (38) and in constraints (39) to (41), respectively.
Furthermore, constraints (35) and (36) computed the schedule of  operation Lm,[i] for m = k and m < k, respectively.
Meanwhile,  constraints  (37)  and  (38)  determined  the  schedule  of  operation  Lm,[i] for  i >  1  and  m  < k.
Constraint (39) scheduled pre-processing p based on operation Lm,[i] following it, while constraint (40) ensured that
pre-processing  p (p >  1)  did  not  overlap  with  pre-processing  p–1.  In  addition,  constraint  (41)  scheduled
pre-processing V not to be earlier than time zero. 

Based on Section 2.1, mathematical models for pre-processing were applied in constraints (42) to (46). Constraint
(42) explained the relationship between Xm,[i] and Y[p],m,[i], i.e., if  a pre-processing was scheduled before operation Lm,

[i], the pre-processing must be scheduled to exactly one pre-processing p. Constraint (43) defined the number of
pre-processings along the scheduling horizon. Constraint (44) explained that operations at machine 1 must be
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preceded by pre-processing, while pre-processing determination for operations at other machines were based on
the cumulative processing time defined in constraint (46).

Meanwhile, mathematical models for part deterioration and operator learning developed in Section 4 were used in
constraints (47) to (53). Constraint (47) defined the processing time of  operation Lm,[i] used in constraint (35) to (38),
while  constraint  (48) limited the processing time of  operation  Lm,[i] not  to exceed  c.  Constraints  (49) and (50)
determined  the  accumulated  unit-equivalent  of  learning  experience  and  part  deterioration  at  the  beginning  of
operation Lm,[i], respectively, while constraint (51) computed the forgetting gradient used in constraint (49). The length
of  interruption for learning and deterioration were computed in constraints (52) and (53), respectively. Additionally,
constraint (54) stated that the number of  parts in all batches must equal the total number of  parts, and constraint (55)
stated that batch sizes must be positive and that the number of  batches must be from one to the number of  parts.

The existence of  processable time  c limiting operation’s processing time may lead to the absence of  a feasible
solution at low numbers of  batches due to the long processing time. Based on parameters, the existence of  a
feasible solution can be determined at N = 1, as postulated in Proposition 3. If  N > 1, the existence of  a feasible
solution will not be able to be identified from the parameters.

Proposition 3: When  for all m, there is no feasible solution for the problem when N = 1.

Proof: Consider the operation’s processing time defined in constraint (47). If  N = 1, then Q,[1] = n, αm,[1] = 0 and
βm,[1] = 0. Substituting these to constraint (47) we obtain:

.

Therefore, when , there is no feasible solution to the problem, as stated in this proposition.

The required number of  pre-processings during the scheduling horizon ranges from  N to  Nk.  Scheduling  N
pre-processings means that only operations at machine 1 are preceded by pre-processing, while scheduling  Nk
pre-processings means that all operations are preceded by pre-processing. To minimize the objective function, the
model schedules as few pre-processings as possible, as stated in Proposition 4.

Proposition 4: If  a problem has a solution F at N and V (N ≤ V ≤ Nk), and its solution at N and V’ (V’ > V
and N ≤ V’ ≤ Nk) is F’, then F’ ≥ F. 

Proof: Suppose that there is a schedule as shown in Figure 7, with the solution F = QaFa + QbFb. In the schedule,
operation Lp,[a] is preceded by pre-processing r, while operation Lp,[b] is preceded by pre-processing s. Suppose also
that the pre-processing time is  h. If  we schedule additional pre-processing before operation Lq,[a], operation Lp,[a]

will  shift  left,  which will  cause pre-processing  r to shift  left,  causing  Fa to  increase.  Similarly,  if  we schedule
additional pre-processing before operation Lq,[b], operation Lp,[b] will shift left, which will cause pre-processing s to
shift left, causing Fb to increase. If  two additional pre-processings are scheduled before operation Lq,[a] and Lq,[b], Fa

and Fb will increase further. It is clear that any additional pre-processing will increase Fa or Fb or both, meaning that
F will also increase.

Figure 7. An example of  schedule for Proposition 4
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3. Solution Method

The problem formulated in Model 1 was classified as a mixed integer non linear programming (MINLP), and was
unsolvable when N or V is unknown. We needed to relax N and V from decision variables to parameters, so the
problem can be solved in O(bc.2[n/ε]–1) time, where ε is the desired accuracy of  Q[i] value (ε  {1, 0.1, 0.001, ...})
(Kurniawan et al., 2022). The problem formulated in Model 1 is NP-hard since it can be reduced to a flow shop
batch  scheduling  problem without  operator  assignment  and  without  learning  and forgetting  effects  which  is
classified as NP-hard in Mortezaei and Zulkifli (2013). 

It was necessary to try all possible N and V values (1 ≤ N ≤ n and N ≤ V ≤ Nk), and find the best objective
function value to find the optimal solution for the problem. However, it was timely-inefficient as the computation
time increased rapidly with N. Therefore, a solution procedure adapted from Kurniawan et al. (2020) was applied to
solve Model 1. Using Proposition 3, several  N values were analyzed, starting from N = 2 if  Proposition 3 was
satisfied or from N = 1 otherwise. Then,  N was increased one by one until  F stopped improving. Starting from
V = N, Proposition 4 was also applied at each N by not increasing V after a feasible solution was available at the
current V. The last improving F was set  as the optimal solution. The complete solution method for Model 1 is
explained in Algorithm 1 and shown in Figure 8. 

Algorithm 1

Step 1. Set parameters n, k, sm, tm, ℓm, δ, h, c, u and d. Go to Step 2.

Step 2. If  Proposition 3 is fulfilled, set N = 2. Otherwise, set N = 1. Go to Step 3.

Step 3. Set V = N, go to Step 4.

Step 4. Solve Model 1, find F, the best solution for the current N and V. Go to Step 5.

Step 5. If  a feasible solution exists for the problem, go to Step 6. Otherwise, go to Step 7.

Step 6. If  F < F* or F* has not been set, set F as F*, go to Step 8. Otherwise, go to Step 9.

Step 7. If  V = Nk, go to Step 8. Otherwise, set V = V + 1, return to Step 4.

Step 8. If  N = n, go to Step 9. Otherwise, set N = N + 1, return to Step 3.

Step 9. If  F* has a value, set F* as the optimal solution. Otherwise, no feasible solution is available for the problem. 

Figure 8. A solution method for solving Model 1
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Step 4 in Algorithm 1 was performed using Lingo, as it is a comprehensive optimization tool, capable to solve linear
or non-linear models efficiently (Goodarzi, Ziaei & Hosseinipour, 2014). 

4. Numerical Experiences
Model 1 and Algorithm 1 were applied in 5 experimental scenarios, utilizing 16 datasets with varying parameter
values. Each scenario aimed to perform a simultaneous sensitivity analysis during the experiment. This involved
changing one parameter at a time while keeping all others constant, and observing the effects on decision variables.
The parameters varied across the five scenarios: c,  h,  u, δ, and ℓm (note that ℓ is a vector containing ℓm). All other
parameters remained consistent across all datasets: k = 3, n = 10, s = (22 20 27), and t = (3 5 4). Additionally, a high
due date of  d = 10,000 was chosen to prevent data infeasibility at low N values, as makespan values tended to be
high at low N due to the absence of  operation overlap. 

Table 1 and 2 show the value of  parameters and the optimal solution in the datasets, respectively. 

Scenario 1: changing c

Dataset 1
ℓ = (0.33 0.31 0.36); u = 2;
δ = 0.01; h = 20; c = 100; 

Dataset 2
ℓ = (0.33 0.31 0.36); u = 2;
δ = 0.01; h = 20; c = 70; 

Dataset 3
ℓ = (0.33 0.31 0.36); u = 2;
δ = 0.01; h = 20; c = 50; 

Dataset 4
ℓ = (0.33 0.31 0.36); u = 2;
δ = 0.01; h = 20; c = 40; 

Scenario 2: changing h

Dataset 1
ℓ = (0.33 0.31 0.36); u = 2;
δ = 0.01; h = 20; c = 100; 

Dataset 5
ℓ = (0.33 0.31 0.36); u = 2;
δ = 0.01; h = 30; c = 100; 

Dataset 6
ℓ = (0.33 0.31 0.36); u = 2;
δ = 0.01; h = 40; c = 100; 

Dataset 7
ℓ = (0.33 0.31 0.36); u = 2;
δ = 0.01; h = 50; c = 100; 

Scenario 3: changing u

Dataset 1
ℓ = (0.33 0.31 0.36); u = 2;
δ = 0.01; h = 20; c = 100; 

Dataset 8
ℓ = (0.33 0.31 0.36); u = 6;
δ = 0.01; h = 20; c = 100; 

Dataset 9
ℓ = (0.33 0.31 0.36); u = 10;
δ = 0.01; h = 20; c = 100; 

Dataset 10
ℓ = (0.33 0.31 0.36); u = 15;
δ = 0.01; h = 20; c = 100; 

Scenario 4: changing δ

Dataset 11
ℓ = (0.33 0.31 0.36); u = 2;
δ = 0; h = 20; c = 100; 

Dataset 12
ℓ = (0.33 0.31 0.36); u = 2;
δ = 0.005; h = 20; c = 100; 

Dataset 1
ℓ = (0.33 0.31 0.36); u = 2;
δ = 0.010; h = 20; c = 100; 

Dataset 13
ℓ = (0.33 0.31 0.36); u = 2;
δ = 0.015; h = 20; c = 100; 

Scenario 5: changing ℓm

Dataset 1
ℓ = (0.33 0.31 0.36); u = 2;
δ = 0.010; h = 20; c = 100; 

Dataset 14
ℓ = (0.24 0.22 0.24); u = 2;
δ = 0.010; h = 20; c = 100; 

Dataset 15
ℓ = (0.11 0.13 0.18); u = 2;
δ = 0.010; h = 20; c = 100; 

Dataset 16
ℓ = (0 0 3); u = 2;
δ = 0.010; h = 20; c = 100; 

Table 1. Parameters of  datasets 

Based on Table 2,  several results  were observed.  First,  the number of  batches decreased with an increase in
pre-processing time, pre-process setup time, deterioration rate or learning rate. However, the number of  batches
increased when the  processable time increased.  Second,  total  actual  flow time increased with the increase  of
pre-processing time, pre-process setup time or deterioration rate. Conversely, total actual flow time decreased when
the  processable time or learning rate increased. These two results were consistent with  Proposition 1 and 2 in
Kurniawan et al. (2020), which stated that the faster operators learn, the lower the optimal number of  batches and
the lower the total actual flow time. However, the situation in these propositions did not appear consistently in
Table 2 since Kurniawan et al. (2020) did not consider part deterioration in their model. 

Third, the model resulted in small batches, with 5 to 7 batches, sized 1 to 3 in the optimal solutions. This was
because the model prevented the processing time from increasing after the xmin-th part as indicated in Figure 3 by
forming small batches. Fourth, in all optimal solutions, pre-processings were only scheduled before operations at
machine  1.  This  finding  was  consistent  with  Proposition  4,  which  indicated  that  scheduling  additional
pre-processing when a feasible  solution already existed at  a  specific  number of  pre-processings increased the
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objective function value. In addition, batch sizes in Table 2  did not consistently follow shortest processing time
(SPT) nor longest processing time (LPT) rules. This was because SPT and LPT usually appear in single-machine
systems, not in flow shops. All findings in Table 2 confirmed the conceptual framework hypothesized in Figure 6. 

Scenario
Data
Set

Parameter
changed

Decision variables

N V Q[i] (i = 1, …, N)

Xm,[i]

Fm=1 m=2 m=3

1

1 c = 100 6 6 1.97; 1.90; 1.82; 1.71; 1.56; 1.03 111111 000000 000000 1297.4

2 c = 70 6 6 2.01; 1.96; 1.89; 1.80; 1.23; 1.10 111111 000000 000000 1372.3

3 c = 50 6 6 2.01; 1.96; 1.89; 1.80; 1.23; 1.10 111111 000000 000000 1372.3

4 c = 40 5 5 2.14; 2.12; 2.10; 2.06; 1.57 11111 00000 00000 1352.1

2

1 h = 20 6 6 1.97; 1.90; 1.82; 1.71; 1.56; 1.03 111111 000000 000000 1297.4

5 h = 30 5 5 2.14; 2.12; 2.10; 2.06; 1.57 11111 00000 00000 1452.1

6 h = 40 5 5 1.82; 2.02; 2.14; 2.21; 1.81 11111 00000 00000 1573.8

7 h = 50 5 5 1.65; 2.19; 2.49; 2.64; 1.03 11111 00000 00000 1771.0

3

1 u = 2 6 6 1.97; 1.90; 1.82; 1.71; 1.56; 1.03 111111 000000 000000 1297.4

8 u = 6 5 5 2.14; 2.12; 2.10; 2.06; 1.57 11111 00000 00000 1352.1

9 u = 10 5 5 2.14; 2.12; 2.10; 2.06; 1.57 11111 00000 00000 1352.1

10 u = 15 5 5 2.14; 2.12; 2.10; 2.06; 1.57 11111 00000 00000 1352.1

4

11 δ = 0.000 6 6 1.93; 1.88; 1.81; 1.72; 1.60; 1.07 111111 000000 000000 1291.3

12 δ = 0.005 6 6 1.95; 1.89; 1.82; 1.72; 1.58; 1.05 111111 000000 000000 1294.4

1 δ = 0.010 6 6 1.97; 1.90; 1.82; 1.71; 1.56; 1.03 111111 000000 000000 1297.4

13 δ = 0.015 5 5 2.16; 2.14; 2.11; 2.05; 1.54 11111 00000 00000 1356.5

5

16 ℓ = (0.00 0.00 0.03) 7 7 1.73; 1.67; 1.59; 1.49; 1.34;
1.17; 1.00

1111111 0000000 0000000 1397.3

15 ℓ = (0.11 0.13 0.18) 7 7 1.77; 1.70; 1.60; 1.46; 1.28;
1.09; 1.11 1111111 0000000 0000000 1351.0

14 ℓ = (0.24 0.22 0.24) 7 7 1.81; 1.73; 1.62; 1.46; 1.26;
1.06; 1.05

1111111 0000000 0000000 1330.9

1 ℓ = (0.33 0.31 0.36) 6 6 1.97; 1.90; 1.82; 1.71; 1.56; 1.03 111111 000000 000000 1297.4

Table 2. The optimal solution for each datasets

To better understand the proposed model and algorithm, the implementation of  Algorithm 1 to Dataset 5 is shown
in Figure 9, where Box A shows the value of  the objective function F at various N and V values. After evaluating
some N values, starting from N = 1, the model started to have a feasible solution at N = 2 and V = 4. There was
no feasible solution when N = 1 because constraint (48), Tm,[i] ≤ c

 
(m, i), was not satisfied at all V values. From

N = 2, the objective function improved (decreased) until N = 5, and subsequently increased at N = 6. At this point,
the calculation was stopped, and the objective function value at N = 5 was set as the optimal solution. 

To explain the absence of  a feasible solution of  Dataset 5 at  N = 1, constraint (48) was temporarily relaxed at
N = 1, and the values of  Tm,[i] (while constraint (48) relaxed) at V = 3 (the maximum V at N = 1) were shown in
Box B of  Figure 9 (since processable time c limited accumulated processing time after one pre-processing, a feasible
solution existed most likely at the maximum V of  each N). Box B showed that all Tm,[i] values at N = 1 exceed c,
therefore, breaching constraint (48). 
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Figure 9. Detailed solution of  Dataset 5

Box C (Figure 9) shows the fluctuation of  processing time within each operation Lm,[i] at the optimal solution of
Dataset 5. It is shown that, first, in all operations, the processing times decreased, such as from 3.000 to 2.625 in
operation L1,[6]. This explained the reason the model formed small batches, i.e., to prevent the processing time from
increasing after the  xmin-th part, as shown in  Figure  3. Second, the phenomenon of  operator forgetting during
process interruption was observable in the increasing processing time, such as from 3.560 to 4.000 (total forgetting)
and from 2.819 to 3.997 (partial forgetting) at machine 3. Meanwhile, parts continued to deteriorate during batch
transfers from a machine to the next. The accumulated deterioration influenced the processing time of  the first part
of  operations at machines 2 and 3. 

Figure  10 shows the resulting Gantt-chart for Dataset 2, where small batches resulted in short processes in the
schedule. These operations were quite short, as the setups were longer than the processes. 

Figure 10. Gantt-chart for the optimal solution of  Dataset 2

Since the heuristic procedure used in this paper stopped at the first  N where  F did not improve, and further
improvement of  F was still possible at higher N values, the resulting solution was not guaranteed to be globally
optimal. However, the procedure was argued to be a good choice to save computation time while achieving a
reasonably good solution. We also argue that our experiment (as shown in Tables 1 and 2) was sufficient to explore
the effect of  each parameter on decision variables, as additional datasets would not bring different results.
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Findings in this study have two managerial implications. First, as postulated in  Nembhard and Uzumeri (2000),
production managers should assign fast learning operators to shorter batches and avoid assigning them highly
various tasks. Second, due to the increasing  F when δ increases, fast learning operators are better to handle  fast
deteriorating parts. Nevertheless, slow leaning operators might be better in handling highly customized tasks. 

This  study’s  findings have two key managerial  implications.  First,  supporting Nembhard and Uzumeri  (2000),
production managers should assign fast-learning operators to shorter batches and avoid highly varied tasks. Second,
due to the positive correlation between F and δ, fast-learning operators are better suited for tasks involving rapidly
deteriorating parts. However, slow-learning operators may be more effective in handling highly customized tasks.
Matching operators’ learning speed to task characteristics enhances production efficiency,  product quality,  cost
savings, and empowers managers with data-driven decisions for a more effective workforce.

5. Concluding Remarks
This research developed a batch scheduling model for flow shops with pre-processing, operator learning-forgetting,
and part deterioration, aiming to minimize the total actual flow time. An algorithm was subsequently developed to
solve the model. This algorithm operates by analyzing different numbers of  batches, starting with one or two based
on parameter values. The number of  batches is then incrementally increased until the objective function value
plateaus. At each number of  batches, the minimum number of  pre-processings that leads to a feasible solution is
determined. The results demonstrate that faster operator learning leads to both a lower number of  batches and a
lower total actual flow time. Conversely, faster part deterioration results in a higher number of  batches and a higher
total actual flow time. Additionally,  the model identifies the least  number of  pre-processings necessary in the
optimal solution. Building upon this work, future studies should consider extending the model to multi-due date
and multi-item systems where pre-processing times and capacities vary, investigate advanced algorithms for more
complex scenarios, and validate the model in real-world settings while accounting for uncertainty and dynamic
environments.
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