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Abstract:

Purpose: Predictive  Maintenance  (PdM)  aims  to  optimize  maintenance  operations  by  detecting
operational anomalies and potential equipment failures before they lead to costly unplanned downtime.
The  goal  is  to  minimize  reactive  maintenance  and reduce  the  frequency  of  preventive  maintenance
interventions. This paper evaluates PdM strategies using knowledge-based, physics-based, and data-driven
models to propose an integrated approach that enhances prediction accuracy, aligning with Industry 4.0
goals.

Design/methodology/approach: A Systematic Literature Review (SLR) is conducted to examine the
strengths  and  weaknesses  of  knowledge-based,  physics-based,  and  data-driven  models  in  predictive
maintenance. The study assesses existing research, compares methodologies, and identifies opportunities
for integrating these models to improve PdM outcomes.

Findings: The review indicates that no single approach —whether knowledge-based, physics-based, or
data-driven— is sufficient to meet the comprehensive demands of  predictive maintenance. Instead, an
integrated  approach  that  combines  these  three  models  provides  more  accurate  and  cost-effective
maintenance solutions, supporting the automation and efficiency goals of  Industry 4.0.

Research limitations/implications: The study’s findings are limited by the availability of  real-world data
and case  studies.  Future  research  should  focus  on  testing  the  proposed  integrated  model  in  diverse
industrial contexts to validate its effectiveness across different sectors.

Practical  implications: The  proposed  approach  offers  industries  a  more  reliable  framework  for
optimizing maintenance strategies, improving operational efficiency, and reducing costs associated with
equipment failures and excessive preventive measures.

Social implications: By enhancing predictive maintenance, the integrated model supports sustainability
efforts by reducing waste, improving resource utilization, and contributing to the longevity of  machinery
and equipment.

Originality/value: This  research  offers  a  novel  contribution  by  integrating  knowledge-based,
physics-based, and data-driven models into a unified PdM approach. It provides valuable insights for both
academia and industry, especially in the context of  Industry 4.0.
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1. Introduction

In addition to causing a loss of  production,  a malfunction in industrial  equipment can also result in delayed
customer services, safety issues, and environmental concerns. This highlights how important maintenance is to an
organization’s manufacturing processes. Maintaining production facilities’ levels of  availability and dependability,
product quality, etc., depends heavily on maintenance (Van-Tung & Yang, 2009).

With its major effects on prices and dependability, maintenance is an essential industrial activity that significantly
affects the capacity of  an enterprise to compete in terms of  performance, quality, and low cost. Any unscheduled
downtime of  machinery, equipment, or devices would impair or interrupt a business’s primary operations, possibly
leading to severe fines and irreversible damage to the company’s reputation. For example, in 2013, Amazon lost $4
million in sales due to just 49 minutes of  downtime. Data center outages cost businesses $138,000 an hour on
average, according to a Ponemon Institute market analysis. Additionally, it is stated that the expenses associated with
Operation and Maintenance (O&M) for offshore wind turbines range from 20% to 35% of  the entire revenue
generated by the power generated, while the expenses associated with maintenance in the oil and gas business range
from 15% to 70% of  the overall cost of  production. Thus, in order to minimize unplanned outages, increase
overall reliability, and save operating expenses, businesses must create a well-executed and effective maintenance
plan (Ran, Zhou, Lin, Wen, & Deng, 2019). 

Digitalized maintenance activities  in  manufacturing facilities  have been expedited by  Industry 4.0 applications,
particularly  by  the  increasing  volumes  of  heterogeneous  data  generated  throughout  the  production  process
(Mallioris, Aivazidou & Bechtsis, 2024). Technological developments in data analytics and data-driven models are
driving the transition of  industries from traditional preventive maintenance (PM) to predictive maintenance (PdM).
Large volumes of  sensor data are produced by modern production systems, allowing for continuous equipment
monitoring.  PdM employs  real-time data to anticipate problems and optimize maintenance,  cutting costs  and
downtime,  in  contrast  to  PM,  which  depends  on  scheduled  chores.  Data-driven  algorithms  anticipate  the
equipment’s  remaining  useful  life  (RUL)  and  identify  anomalies  by  analyzing  intricate  data  patterns.  Asset
management is revolutionized by this data-driven strategy, which improves operational performance, efficiency, and
dependability (Achouch, Dimitrova, Ziane, Sattarpanah-Karganroudi, Dhouib, Ibrahim et al., 2022).

Accurate predictive maintenance outcomes require the integration of  data-driven models with knowledge- and
physics-based models. Using enormous volumes of  historical data and machine learning techniques, data-driven
models are excellent at finding trends and forecasting failures. On the other hand, scenarios with insufficient data or
those  with  new  failure  modes  may  provide  challenges  for  them.  By  providing  insights  into  the  underlying
mechanisms of  wear and failure, physics-based models —which are based on the fundamental principles of  how
machines and components physically behave— offer predictive potential even in situations where data is scant.
Knowledge-based models can fill in gaps by combining real-world experience and contextual awareness, as they are
derived from expert domain knowledge and established criteria. Predictive maintenance systems can benefit from
the strengths of  each of  these approaches by combining them: knowledge-based models’ contextual relevance,
data-driven  models’  adaptability  and  scalability,  and  physics-based  models’  fundamental  accuracy.  This  will
ultimately result in more robust and reliable predictions.

Despite the growing body of  literature on predictive maintenance, existing reviews often focus narrowly on specific
approaches, such as purely data-driven techniques or prognostics, without offering an integrated perspective that
systematically  compares and synthesizes  the full  range of  methodologies.  Moreover,  few studies highlight the
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critical  need to integrate heterogeneous approaches —data-driven,  physics-based, and knowledge-based— into
unified  frameworks  capable  of  addressing  real-world  industrial  challenges.  This  lack  of  a  comprehensive,
comparative synthesis represents a gap in the literature that this paper aims to address.

Our work makes several contributions to the field. First, we provide a systematic comparison of  knowledge-based,
physics-based, and data-driven models, highlighting their respective strengths, limitations, and complementarities in
predictive maintenance applications. Second, our analysis identifies current implementation challenges and future
research directions that can guide both academic research and industrial practice in developing more effective
predictive  maintenance  solutions.  Third,  we  propose  a  novel  hybrid  architecture  that  integrates  these  three
approaches to enhance prediction accuracy, interpretability, and robustness.

This paper aims to perform a thorough evaluation of  the predictive maintenance literature, the current state of  the
art for models used in prognostics and diagnostics, current research roadblocks, and future research opportunities.
Thanks to quickly  developing technologies  like  Industry 4.0,  predictive  maintenance is  being employed more
frequently, and interest in the topic is only rising. The majority of  current reviews focus on specific subjects, like
prognostics and data-driven models.  This motivates an annual  update of  the reviews due to the hundreds of
publications published on the topic (Achouch et al., 2022). 

The structure of  our work is as follows: In the Methodology section, we explain the approach used to obtain our
study results. The Predictive Maintenance section provides the scientific community with an in-depth exploration
of  predictive maintenance, including its various approaches and strategies. Following that, we begin our Scientific
Literature  Review by  addressing  the  questions  we have  identified  for  this  research.  We then propose  a  new
approach. Finally, we conclude with a discussion and conclusion section.

2. Methodology
The approach used to do the literature review is based on (Lame, 2019) and is a systematic approach with the goal
of  providing an overview of  the body of  work that has already been done on a particular subject. For the sake of
getting a deeper understanding of  the issue under research, systematic literature review aids in carrying out the
literature review process in an organized manner. The definition of  the research questions, the search technique, the
study selection, and the data synthesis are the four essential components of  the protocol for a systematic literature
review. The following are the research questions:

• RQ1: What are predictive maintenance fields of  application and the type of  used approaches?
• RQ2: What are the different models applied in predictive maintenance and their perspective?
• RQ3. What are the data used to apply PdM?
• RQ4: Which type of  approaches are the most optimal to respond to predictive maintenance goals?
• RQ5: What are the current challenges facing predictive maintenance?

These 5 questions are the fruit of  conducting a preliminary scoping review of  PdM literature published between
2018 and 2024 and analyzing conceptual frameworks, we identified recurring themes and methodological gaps. This
analysis guided the formulation of  five structured research questions to explore:

• RQ1: application domains and used approaches, reflecting gaps identified.
• RQ2: variety of  predictive maintenance models (statistical, machine learning, hybrid, digital twin).
• RQ3: types of  input data deployed in PdM.
• RQ4: comparative evaluation of  approach effectiveness (e.g., ML vs. hybrid vs. physics-based).
• RQ5: current challenges PdM is facing.

Important databases like IEEE Xplore, ScienceDirect, Springer, and Google Scholar were searched, the choice of
aforementioned  databases  was  based  on  our  university  access  and  the  selection  of  studies  was  based  on
predetermined  research  topics.  Then,  we  used  these  specific  keyword  strings:  (“Predictive  Maintenance”  OR
“PdM”) AND (“Data-driven Based Models”), (“predictive maintenance” OR “PdM”) AND (“Knowledge-Based
Models”), (“predictive maintenance” OR “PdM”) AND (“Physics-Based Models”), (“predictive maintenance” OR
“PdM”) AND (“Artificial Intelligence”), the main objective was to obtain relevant results in relation to the scope of
our manuscript.
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In our Systematic Literature Review (SLR), we carefully curated research articles published between 2018 and 2024,
applying rigorous selection criteria to ensure relevance and focus. We systematically excluded works that fell outside
our  research  scope,  specifically  eliminating  studies  unrelated  to  Predictive  Maintenance  (PdM),  publications
predating 2018, and papers that did not address the three specific models central to our investigation or provide a
comprehensive review of  PdM.

Regarding inclusion criteria, we have selected all scholarly articles published between 2018 and 2024 that specifically
explore  the  three  primary  Predictive  Maintenance  (PdM)  methodological  approaches:  Data-driven  models,
Knowledge-based models, and Physics-based models, along with comprehensive review articles that provide an in-
depth examination of  the Predictive Maintenance domain and its prevalent analytical strategies.

We had to go through multiple procedures in order to collect paper references for our review analysis because the
process of  acquiring findings was not simple. First, 405 items were found. Subsequently,  we proceeded to the
screening stage, eliminating papers that lacked relevance to our subject matter or failed to present noteworthy or
significant scientific findings. Additionally, we divided the remaining articles into review and application categories.
As a result, the final count for our analysis was 68 included publications. All these steps are shown just later in
Figure 1.

Figure 1. Process of  getting articles

3. Predictive Maintenance

Three  terminologies  are  typically  used  in  maintenance  methods  to  trigger  maintenance  actions:  corrective
maintenance, preventive maintenance, and predictive maintenance, with the addition of  prescriptive maintenance
recently. Corrective maintenance initiates maintenance actions following the breakdown of  a component or system.
Preventive maintenance employs time periods such as cycles, kilometers, flights, and so on to determine the best
time to initiate maintenance procedures. According to (Kothamasu, Huangn & VerDuin, 2006) the presence of
defects in preventive maintenance is frequently undetected.  This could result in the expensive replacement of
components that still have life left in them. One way to think of  PdM is as a maintenance approach that tries to
pinpoint the precise moment to start performing actual maintenance. By altering components with a significant
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Remaining Useful Life (RUL), too early treatments could be a waste of  money, while too late interventions could
result  in  disastrous failures.  Predictive maintenance is  an approach that works  in  tandem with corrective and
preventative maintenance. The foundation of  PdM is the application of  specialized methods and instruments to
detect malfunctions in technical systems and estimate the remaining usable life of  those systems. To achieve an
effective maintenance management system, a mix of  the three methodologies is required (Ran et al., 2019). The
different types of  PdM are well categorized in Figure 2.

Figure 2. Different maintenance strategies (Shukla, Nefti-Meziani & Davis, 2022)

Within the context of  Industry 4.0, prognosis pertains to estimating a machine’s remaining useful life (RUL) by
forecasting the predicted state of  degradation of  the machine or its components. Prognostics is viewed as a crucial
service in the field of  maintenance in the modern industry since it makes it possible to schedule actions, both
short- and long-term, based on model projections that  establish the RUL. Within this context,  the literature
discusses many methodologies,  including knowledge-based, physics-based, and data-driven models.  In order to
handle more complicated situations,  knowledge-based and physics-based models are frequently  integrated with
data-driven models, which may make use of  statistical or machine learning techniques (Nunes, Santos & Rocha,
2023).  These  hybrid  approaches  can  occasionally  produce  significant  outcomes.  In  the  literature,  hybrid
model-based predictive maintenance tasks are divided into series and parallel techniques. A hybrid model-based
strategy  combines  physics-based  and  data-driven  prognostics  approaches  in  an  effort  to  capitalize  on  the
advantages from both categories. A physical model is first employed in a series method to establish prior knowledge
about  the  manufacturing  process  under  observation.  Conversely,  data-driven  techniques  capture  unmeasured
process factors by acting like a state estimator. When fresh data becomes available, data-driven approaches are used
as an online parameter estimate methodology to continuously update the model parameters. A parallel strategy
predicts residuals not explained by first principal models by leveraging the powerful computing power of  data-
driven models.  To merge the results  of  physical  model-based and data-driven methodologies,  the majority  of
literature work use a fusion procedure (Cao, Zanni-Merk, Samet, Reich, De-Beuvron, Beckmann et al., 2022).

Figure  3  represents  the  different  approaches  used  to  attain  Predictive  Maintenance  objectives.  The  term
“Industry 4.0” refers to a wide range of  data technology developments in the manufacturing sector, with a
particular emphasis on the Internet of  Things (IoT) and cyber-physical systems. These technologies are being
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utilized to collect  information from a  wide range of  sources,  including  machines,  gadgets,  outside  sensors,
vision-based systems, and even people. Industry 4.0’s smart factories use edge and/or cloud computing systems
to view and analyze the acquired data to monitor physical processes, simulate the real environment, and make
decentralized  choices.  Over  the  IoT,  real-time  communication  and coordination  between the  cyber-physical
systems and humans is possible. Machine and Deep learning are a data-driven techniques which can also be used
to  analyze  the  obtained  data  in  order  to  automatically  detect  process  and  product  fingerprints,  improving
production systems and guaranteeing that made parts meet the specified criteria (Farahani, Khade, Basu & Pilla,
2022).

As anomaly detection methods, data-driven approaches can be divided into two categories: statistical and machine
learning. Numerous statistical models and methods are used to analyze PdM in the literature, including hidden
Markov models (HMM), Wiener process models (WPM), gamma process models, proportional hazards models,
and autoregressive-moving-average (ARMA) models. Among other things, ML approaches include ANN and its
variants, support vector machines (SVM), random forests (RF), xGBoost, and self-organized maps (SOM) (Nunes,
Santos et al., 2023).

The  traditional  machine  learning  methods  have  dimensionality  and  expressiveness  problems.  Deep  learning
methods have been created to extract structured data from data sets utilizing layered machine learning algorithms in
order to address this issue. The industrial sector has profited over the past few decades from deep learning’s rapid
development and expansion. Manufacturing systems now operate more productively, efficiently, and reliably thanks
to these deep learning techniques. Artificial neural networks (ANN) and deep neural networks (DNN) are the most
traditional and often used deep learning models (Cao et al., 2022).

Figure 3. Different Predictive Maintenance Approaches (Cao et al., 2022)

Physics-based methods utilize mathematical models to describe physical processes that directly or indirectly affect
how well equipment works. Physical models are widely utilized to characterize fatigue and fracture propagation in
mechanical  and  structural  components  because  they  have  been  well  studied  in  the  literature.  Similar  to
knowledge-based models,  these techniques are domain-specific and need a thorough grasp of  mathematics in
addition  to  knowledge  of  the  actual  behavior  of  the  parts  of  machinery.  Additionally,  they  are  expensive,
time-consuming, and often deficient for most of  the components (Nunes, Santos et al., 2023).
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In practical engineering applications, it  is typically challenging to generate precise mathematical models of  the
system being observed, which restricts the use of  model-based prognostic techniques. Knowledge-based techniques
are more promising than model-based ones because they don’t need any models. Expert systems and fuzzy logic are
two common examples of  knowledge-based techniques among them (Hao, Jinsong, Ping & Xingshan, 2009).

A hybrid model-based approach combines physics-based and data-driven prognostics methods to take advantage of
the best features of  each group. A hybrid model-based predictive maintenance task can be categorized into series
and parallel techniques in the literature (Cao et al., 2022).

The term “hybrid model” is associated with multi-model approaches. After knowledge-based, data-driven, and
physics-based models, hybrid models are the fourth category of  model types. There are numerous multi-model
approaches, albeit they aren’t usually classified as hybrid. The idea of  a hybrid model evolves as one reads through
the  different  texts.  Following  a  thorough  examination,  it  was  determined  that  hybrid  models  are  a  kind  of
multi-model method in which two or more models are merged to fulfill a single predictive maintenance system
functional  requirement.  To  generate  their  outputs,  the  coupled  models  collaborate  (Jimenez,  Schwartz,
Vingerhoeds, Grabot, & Salaün, 2020).

Predictive maintenance projects are designed using a life cycle that includes five essential elements (Achouch et al.,
2022) The life cycle and workflow of  a predictive maintenance project are shown in Figure 4: 

Step 1: Determine the project’s requirements:

Understanding the business aspects of  the project, its challenges, and the obstacles that need to be overcome is the
first step. This step requires a thorough understanding of  the equipment and system that will be utilized to finish
the project, as well as how they work. This includes choosing sensors, defining the actual quantities to be measured,
and, if  required, installing them. We also need to outline the many kinds of  failures that could happen throughout
this time.

Step 2: Data gathering, comprehension preparing:

The gathering of  data Data can be collected by device sensors and stored in a database. Understanding entails
selecting which data to analyze, assessing the quality of  the data that is available, and connecting it to its meaning.
Preparation includes things like identifying similar data, combining data through mixing datasets,  cleaning and
managing missing values by removing them or inputting them with related data, and managing inaccurate data by
eliminating errors.

Step 3: Modeling the data:

Data modeling is widely acknowledged as the core of  data analysis. The model generates the necessary output using
the data that was generated in the preceding step (data preparation) as input. This step entails selecting the optimal
algorithm for a clustering, regression, or classification problem. To create a model, a number of  approaches are
evaluated and parameterized.

Step 4: Evaluation and implementation:

A system Assessment: Lastly, we need to assess the model’s relevance (does it answer the initial question?) and
correctness (how effectively it functions, i.e., does it accurately reflect the facts). Additionally, we need to make sure
that performance and generalization are well-balanced, which calls for a model that is both impartial and broadly
applicable.

Deploy the model as follows: Finally, the evaluated model is supplied in the format and channel of  choice. In the
predictive maintenance life cycle, this is the final data-related stage.

Step 5: Making a decision:

The decision-making process, in general, aids operators in problem resolution by selecting the optimal course of
action. A step-by-step plan is an excellent method for making meaningful, educated decisions that serve both
short- and long-term objectives.
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The first step is to make a decision. Recognizing the issue is the first step toward making the right decision. Various
intervention scenarios with related repair times and prices of  predictive maintenance are generated in this step,
allowing us to improve future interventions.

Second Step: Actions: After identifying the potential scenarios, we select or combine them in order to discover the
one with the lowest costs and delays. The repair days are determined by the availability of  manpower and spare
parts.

Step 3: Review: Because the predictive maintenance life cycle is recurring, this stage is crucial because it allows us to
examine the efficacy of  our decision.

Figure 4. Predictive Maintenance Workflow (Achouch et al., 2022)

4. Systematic Literature Review Results
The first step of  our work as earlier mentioned was based on several articles starting from 2018 to 2024. This
time frame was selected for this Systematic Literature Review to ensure the inclusion of  recent and relevant
studies that  reflect  the  latest  advancements  in predictive  maintenance,  particularly  the integration of  hybrid
approaches combining data-driven, physics-based, and knowledge-based models. This period captures the surge
in Industry 4.0 adoption and provides a focused analysis of  modern, high-impact research aligned with current
industrial  and  scientific  practices.  Articles  found  based  on  our  SLR  review  are  articles  treating  Predictive
maintenance  topic,  whereas  other  ones  represent  a  specific  application  of  Predictive  Maintenance  in
Industry 4.0.

Figure 5 reveals a clear upward trajectory in research publications related to the topic, demonstrating significant
growth from a single publication in 2018 to 14 publications by 2023, with continued strong presence in 2024.
This seven-fold increase over the period suggests rapidly growing academic interest in the field. ELSEVIER
emerges as the dominant publication platform, showing consistent growth and accounting for approximately
60% of  all publications by 2022-2024. Google Scholar maintains a steady secondary presence with consistent
contribution of  3-4 publications annually since 2019. The data indicates a potential research acceleration point in
2022, where publication numbers nearly doubled from the previous year. This inflection point could signal a
critical mass of  interest being reached or possibly reflects responses to industry developments during this period.
The relatively minor contributions from IEEE and Springer suggest the research may be more aligned with
disciplines  typically  published in ELSEVIER journals  rather than those  in  engineering or computer  science
domains. This publication pattern analysis provides valuable context for understanding how research attention
has evolved, potentially correlating with practical implementation or industry adoption of  the concepts being
studied.
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Figure 5. Number of  Articles per year and databases based on our filter

While conducting our research we encountered some interesting review articles treating PdM whereas the other
articles put a focus on a specific application related to one of  PdM approaches, Table 1 gives an overview of  all
review articles mentioned in our review.

Article Database Description

Jimenez et al. (2020) Elsevier

This systematic survey aims to present current trends in diagnosis and 
prognosis, with particular attention to multi-paradigm approaches, and to
summarize current challenges and research opportunities. research 
related to predictive maintenance.

Nunes, Santos et al. (2023) Elsevier

The primary challenges facing the creation of  generalized data control 
systems for PdM are the existence of  spurious or erroneous sensor data 
in an actual industrial setting and the requirement for fast data collection,
transmission, and processing.

Van-Dinter, Tekinerdogan & 
Catal (2022) Elsevier

In order to open the door for more research, this study gathers and 
synthesizes works that concentrate on predictive maintenance employing 
digital twins.

Es-Sakali, Cherkaoui, 
Mghazli & Naimi (2022) Elsevier

The most common method for predicting future HVAC system failures 
is presented in this article along with an explanation of  the benefits and 
limitations of  the current algorithms for HVAC predictive maintenance 
application. This is accomplished through a thorough literature review of
the topics.

Çınar, Abdussalam-Nuhu, 
Zeeshan, Korhan, Asmael & 
Safaei (2020)

Google Scholar

This paper attempts to provide a comprehensive review of  the recent 
advancements of  ML techniques widely applied to PdM for smart 
manufacturing in I4.0 by classifying the research according to the ML 
algorithms, ML category, machinery and equipment used, device used in 
data acquisition, classification of  data, size and type, and highlighting the 
major contributions of  the researchers.

Ran et al. (2019) IEEE
They provide a thorough assessment of  DL-based approaches while 
doing a brief  review of  knowledge-based and traditional ML-based 
approaches used in various industrial systems or components.
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Article Database Description

Zonta, da-Costa, da-Rosa-
Righi, de-Lima, da-Trindade 
& Li (2020)

Elsevier

This survey examines the current challenges and limitations in predictive 
maintenance and proposes a new taxonomy to classify this area of  
research in accordance with Industry 4.0 specifications. They concluded 
that computer science, particularly the areas of  distributed computing 
and artificial intelligence, is becoming more prevalent in an area where 
engineering used to be the primary area of  competence in order to 
properly meet Industry 4.0.

Wen, Rahman, Xu & Tseng 
(2022) Elsevier

To aid researchers and practitioners in developing a thorough 
understanding of  the field, this review’s main goals are to categorize the 
body of  existing literature and report on the most recent research 
developments and directions. The basic methodologies for data-driven 
approaches to predictive maintenance are initially summarized in this 
study. The paper then performs a thorough analysis into the many 
domains in which machine prognostics is used. To wrap up this work, a 
review of  the difficulties, possibilities, and potential directions of  
predictive maintenance is provided.

Carvalho, Soares, Vita, 
Francisco, Basto & Alcalá 
(2019) 

Elsevier

The purpose of  this work is to give a thorough literature review of  ML 
approaches used to PdM, highlighting those that are being researched in 
this area and the effectiveness of  the most advanced ML methods at the 
moment. This review, which is focused on two scientific databases, offers
an important background on machine learning techniques, their key 
findings, obstacles, and prospects. It also promotes future research 
projects in the PdM sector.

Pech, Vrchota & Bednář 
(2021) Google Scholar

The authors proposed Intelligent and Predictive Maintenance (SIPM) 
based on full-text assessments of  relevant papers. The paper’s primary 
contribution is a summary and overview of  recent advancements in 
intelligent sensors, which are utilized in smart factories to do preventive 
maintenance.

Durbhaka (2021) Google Scholar

This article will discuss wind turbine prognostics and diagnostics, 
machine learning approaches, determining interdependency within 
subsystems, and accessible digital solutions for suitable data handling in 
predictive maintenance plans.

Arena, Collotta, Luca, 
Ruggieri & Termine (2021)

Google Scholar

This study provides an organized assessment of  the literature on 
statistical inference techniques, AI methods, and stochastic methods for 
predictive maintenance in the automobile industry. It summarizes these 
methods, highlights their key findings, discusses obstacles and 
possibilities, and encourages more studies on vehicle predictive 
maintenance.

Mallioris et al. (2024) Elsevier

In order to offer tailored insights from academic and operational 
perspectives, the primary goal of  this research is to thoroughly examine 
sophisticated predictive maintenance applications in a number of  
industrial sectors. A comparative decision support map is one of  the 
results. To categorize predictive maintenance solutions by industrial 
sector, the research makes use of  sophisticated software tools, applied 
algorithms, input characteristics, expected variables, assessment metrics, 
and standard methodology.

Andrianandrianina-Johanesa, 
Equeter & Mahmoudi (2024) Google Scholar

This study examines current advancements in AI-driven predictive 
maintenance (PdM), emphasizing reliability, essential elements, and 
emerging patterns. It addresses the integration of  AI in practical 
applications, human-robot interaction, ethical concerns, testing and 
validation, and state-of-the-art approaches, difficulties, and prospects. 
Prospective fields of  study encompass digital twins, the metaverse, 
blockchain, trustworthy AI, generative AI, collaborative robotics, and the
Industrial Internet of  Things (IIoT).
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Article Database Description

Arafat, Hossain & Alam 
(2024) Elsevier

This work proposes future research directions for improving predictive 
maintenance in microgrid operations, focusing on machine learning 
approaches for real-time fault detection, component health monitoring, 
and sustainability, while also reviewing current techniques and identifying
challenges.

Hector & Panjanathan (2024) Google Scholar

This study examines statistical inference methodologies, stochastic 
methods, and AI techniques for predictive maintenance in the 
automobile industry, addressing their outcomes, obstacles, and prospects,
and recommending further research in vehicle predictive maintenance.

Ucar, Karakose & Kırımça 
(2024) Google Scholar

This paper explores AI-based Predictive Maintenance (PdM) techniques, 
challenges, and opportunities, focusing on real-world applications, 
human-robot interaction, ethical issues, and policy testing. It suggests 
potential areas for future research, including digital twins, metaverse, 
generative AI, and IIoT.

Hurtado, Salvati, Semola, 
Bosio & Lomonaco (2023) Elsevier

Deep learning has revolutionized engineering, especially in Predictive 
Maintenance (PdM). Continual Learning (CL) helps models adapt to 
changing environments. However, real-world application remains 
challenging. This work reviews CL’s current state, discusses challenges, 
and proposes future directions for improvement.

Azari, Flammini, Santini & 
Caporuscio (2023) IEEE

The review defines transfer learning in predictive maintenance, discusses 
current advances, challenges, open-source datasets, and future directions 
from theoretical and practical perspectives

Tran, Sharma, & Nguyen 
(2023)

Google Scholar

This review article examines the application of  digital twin technology in
internal combustion engines (IC) to enhance real-time monitoring, 
diagnostics, and predictive modeling. This article examines how digital 
twins can improve innovation, creation, and efficiency, leading to 
increased reliability, lower downtime, and reduced emissions through 
case studies and innovations.

Table 1. Articles Review related to Predictive Maintenance Topic

While numerous review articles have explored Predictive Maintenance (PdM), as detailed in Table 1, most of  them
concentrate on a single dimension of  the field whether it be data-driven techniques such as machine learning and
deep learning (Çınar et al., 2020; Ran et al., 2019), domain-specific applications like HVAC or automotive (Es-Sakali
et al., 2022; Arena et al., 2021), or emerging technologies like digital twins and continual learning (Van-Dinter et al.,
2022; Hurtado et al., 2023). While these works offer valuable insights, there remains a notable gap in reviews that
compare and integrate multiple paradigms of  PdM. Our article addresses this gap by proposing novel hybrid
architecture that brings together knowledge-based models,  physics-based models,  and data-driven models.  This
multi-perspective approach not only reflects the complexity of  real-world industrial environments but also enables
more  robust,  explainable,  and  context-aware  predictive  maintenance  solutions.  By  bridging  these  traditionally
distinct approaches, our work contributes a unique and integrative perspective that is currently lacking in literature.

Moreover, our article places strong emphasis on the integration of  knowledge-based, physics-based, and data-driven
models within a unified predictive maintenance framework. In addition to proposing hybrid architecture, we conduct a
targeted review of  how each of  these three approaches has been applied individually and in combination across
various PdM applications in the literature. This dual focus on both integration and application provides valuable
insights into the strengths, limitations, and complementarities of  each model type, serving as a practical reference for
researchers and practitioners aiming to implement more comprehensive and intelligent maintenance strategies.

4.1. RQ1: What Are Predictive Maintenance Fields of  Application and the Type of  Approaches Used?

Now let’s move on to have a look at the different applications of  Predictive maintenance starting from 2019. Table
2 will give an overview that will permit future researchers to bear in mind all applications PdM try to solve in the
context of  Industry 4.0.
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Article Title
Type of
Article Database Field of  Application

Type of  Models used in
article

Rosati, Romeo, Cecchini, 
Tonetto, Viti, Mancini et al. 
(2023)

Journal Springer Industry 4.0
Knowledge Based Models &
Data-Driven Based Models

Cao et al. (2022) Journal Elsevier Smart Manufacturing Knowledge-Based Models

Werner, Zimmermann & Lentes 
(2019)

Conference Elsevier Production Machines Physics Based Models

Aivaliotis, Arkouli, Georgoulias 
& Makris (2021) Journal Elsevier Industrial robots Physics Based Models

Aivaliotis, Georgoulias, Arkouli 
& Makris (2019)

Conference Elsevier Industrial robot Physics Based Models

Zhong, Xia, Zhu & Duan, 
(2023) Journal Google Scholar Manufacturing Industry Physics Based Models

Kunzer, Berges & Dubrawski 
(2022)

Journal Google Scholar Manufacturing Industry Physics Based Models and 
Data-Driven Based Models

Aivaliotis, Georgoulias & 
Chryssolouris (2019) Journal Google Scholar Manufacturing Industry Physics Based Models

Pagano (2023) Journal Elsevier Manufacturing Industry Data-Driven Based Models

Wang, Liu, Liu, Ling & Zhang 
(2023)

Journal Elsevier Industrial Robots Data-Driven Based Models 
& Knowledge-Based Models

Farahani et al. (2022) Journal Elsevier Manufacturing Industry Data-Driven Based Models

Florian, Sgarbossa & Zennaro 
(2021) Journal Elsevier Manufacturing Industry Data-Driven Based Models

Torim, Liiv, Ounoughi & Yahia 
(2022)

Journal Google Scholar Manufacturing Industry Data-Driven Based Models 
& Knowledge-Based Models

Massaro, Selicato & Galiano 
(2020) Journal Google Scholar Monitoring of  Bus Fleet Data-Driven Based Models

Lee, Wu, Yun, Kim, Jun & 
Sutherland (2019)

Journal Elsevier Manufacturing Industry Data-Driven Based Models

Nunes, Rocha, Santos & 
Antunes (2023) Conference Elsevier Injection molds Data-Driven Based Models

Lambán, Morella, Royo & 
Sánchez (2022)

Journal Elsevier Industry 4.0 Data-Driven Based Models

Abidi, Mohammed & Alkhalefah
(2022) Journal Google Scholar Manufacturing Industry Data-Driven Based Models

Liu, Zhu, Tang, Nie, Zhou, 
Wang et al. (2022)

Journal Elsevier Manufacturing Industry Data-Driven Based Models

Leohold, Engbers & Freitag 
(2021) Conference Elsevier Manufacturing Industry Data-Driven Based Models

Von-Birgelen, Buratti, Mager & 
Niggemann (2018)

Conference Elsevier Manufacturing Industry Data-Driven Based Models

Abbas, Chasparis & Kelleher 
(2024) Journal Elsevier Manufacturing Industry Data-Driven Based Models

Lee & Mitici (2023) Journal Elsevier Aircraft Maintenance Data-Driven Based Models

Rodriguez, Marti-Puig, Caiafa, 
Serra-Serra, Cusidó & 
Solé-Casals (2023)

Journal Google Scholar Wind turbines Data-Driven Based Models
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Article Title
Type of
Article Database Field of  Application

Type of  Models used in
article

Mandala (2020) Journal Google Scholar Automotive Industry Data-Driven Based Models

Yıldız & Soylu (2023) Journal Elsevier Manufacturing Industry Physics Based Models & 
Data-Driven Based Models

De-Luca, Ferraro, Galli, Gallo, 
Moscato & Sperli (2023) Journal Google Scholar Industry 4.0 Data-Driven Based Models

Zhuang, Xu & Wang (2023) Journal Elsevier Aircraft Maintenance Data-Driven Based Models

Arena, Florian, Sgarbossa, 
Sølvsberg & Zennaro (2024)

Journal Elsevier Industry 4.0 Data-Driven Based Models

Brahimi, Hadroug, Iratni, 
Hafaifa & Colak (2024) Journal Elsevier Gas turbines Data-Driven Based Models

Qureshi, Umar & Nawaz (2024) Journal Google Scholar Solar Farms Data-Driven Based Models

Wang, Zhu & Zhao (2024) Journal Elsevier Aircraft Maintenance Data-Driven Based Models

Giannoulidis, Gounaris, Naskos, 
Nikolaidis & Caljouw (2024)

Journal Google Scholar Manufacturing Industry Data-Driven Based Models

Elkateb, Métwalli, Shendy & 
Abu-Elanien (2024) Journal Elsevier Textile industry Data-Driven Based Models

Meriem, Nora & Samir (2023) Conference Elsevier Industry 4.0 Hybrid Approaches

Kamariotis, Tatsis, Chatzi, 
Goebel & Straub (2024)

Journal Elsevier Aircraft Maintenance Data-Driven Based Models

Kavasidis, Lallas, Gerogiannis, 
Charitou & Karageorgos (2023) Conference Elsevier Pharmaceutical 

Manufacturing Data-Driven Based Models

Shoorkand, Nourelfath & Hajji 
(2024)

Journal Elsevier Manufacturing Industry Data-Driven Based Models

Table 2. Predictive Maintenance Applications in Literature

Table 2 presents an overview of  the various fields in which Predictive Maintenance has been applied since 2018.
While the initial version of  this table served a purely descriptive purpose, we now provide a structured grouping
and an analytical discussion to enhance its value.

To better understand the landscape of  PdM applications, we grouped the articles into the following categories:

• Manufacturing Industry: Most dominant field with over 20 articles, including Farahani et al. (2022), Liu et
al. (2022), and Shoorkand et al. (2024). This reflects high PdM relevance due to complex machinery and
production lines.

• Industrial  Robots:  Covered  in  Aivaliotis  et  al.  (2021)  and  Wang  et  al.  (2023),  where  precision  and
automation make predictive strategies essential.

• Aircraft Maintenance: Seen in Lee & Mitici (2023), Zhuang et al. (2023), Kamariotis et al. (2024), and Wang
et al. (2024), indicating a growing focus on safety-critical applications.

• Industry 4.0: Includes Rosati et al. (2023), Lambán et al. (2022), and Arena et al. (2024). These works focus
on PdM in highly digitized environments with IoT, big data, and automation.

• Other Specific Domains: Gas turbines (Brahimi et al., 2024), Solar farms (Qureshi et al., 2024), Textile
industry  (Elkateb  et  al.,  2024),  Automotive  industry  (Mandala,  2020),  Pharmaceutical  manufacturing
(Kavasidis et al., 2023), Public transport fleet monitoring (Massaro et al., 2020).

This diversity shows that PdM is increasingly being adopted in both traditional industrial settings and more domain-
specific applications.
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We categorized the articles based on the modeling approach:

Approach Type Number of  Articles Representative References

Data-Driven Models 26 Farahani et al. (2022), Abbas et al. (2024), Lee et al. (2019)

Physics-Based Models 5 Aivaliotis, Georgoulias, Arkouli et al. (2019), Zhong et al. 
(2023), Werner et al. (2019)

Knowledge-Based Models 1 Cao et al. (2022)

Hybrid Models (Two approaches) 5 Meriem et al. (2023)

Hybrid Approaches 1 Meriem et al. (2023)

Table 3. Types of  Models Used in PdM Research and Notable References

Based on Table 3 it is evident that Data-Driven Models dominate the landscape. This trend aligns with the growing
availability of  sensor data, IoT systems, and machine learning tools. 

Physics-Based  Models  are  used  in  more  structured  and  mechanical  domains  where  physical  laws  are  well
understood (e.g., robotics, production systems).

Knowledge-Based  Models  appear  less  frequently,  but  are  often  used  in  combination  with  data-driven  or
physics-based models to leverage domain expertise.

Only one article explicitly proposed a hybrid architecture, though more such combinations are expected in the
future as systems become more complex.

Summary and Interpretation:

• Dominant  Field:  Manufacturing  remains  the  core  domain  for  PdM research,  reflecting  its  economic
importance and operational complexity.

• Dominant Approach: Data-driven models are most frequently used, enabled by the explosion of  industrial
data.

• Emerging  Trend:  There  is  increasing  interest  in  hybridizing  approaches  to  overcome  limitations  of
individual model types.

• Gap Identified: Few articles leverage fully integrated hybrid models (Data, Physics, Expert knowledge),
indicating a promising research direction.

4.2. RQ2: What Are the Different Models Applied in Predictive Maintenance and their Perspective?

Predictive Maintenance calls for a variety of  models and approaches to anticipate equipment breakdowns and
enhance maintenance practices. This section highlights the range of  approaches that have been used, focusing on
their results and considering possible future directions in order to assess their potential for fostering innovation in
PdM.

To address RQ2, we conducted a comprehensive literature review and presented a detailed summary Table 4 that
captures a  wide spectrum of  predictive maintenance (PdM) approaches.  These approaches  were assessed and
grouped into four primary categories, each representing a distinct modeling paradigm:

Regarding Data-Driven Models,  this group comprises traditional machine learning and deep learning methods
widely adopted in PdM:

• Machine Learning (ML):  Algorithms such as  Random Forest  (RF),  Support  Vector  Machines  (SVM),
K-Nearest Neighbors (KNN), Gradient Boosting, and Decision Trees are used for failure classification,
Remaining Useful  Life (RUL) prediction,  and anomaly detection.  These models often rely  on labeled
sensor data and feature engineering.
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• Deep  Learning  (DL):  More  recent  studies  leverage  Convolutional  Neural  Networks  (CNN),  Long
Short-Term Memory (LSTM), Bi-LSTM, and Autoencoders to handle high-dimensional time-series data
and learn patterns automatically.

Article
Approach

Used Results Future work

Rosati et al. 
(2023)

Random Forest 
(RF)

By putting a real-world industrial use case that 
involves sophisticated processing and 
measuring equipment as its primary focus, this 
paper seeks to introduce and test a Decision 
Support System (DSS) for handling PdM tasks.
Data gathering, feature extraction, predictive 
modeling, cloud storage, and data analysis are 
the main building blocks of  the proposed DSS.

The authors plan to implement 
automated incremental learning, 
utilizing cloud-stored data to improve 
machine learning performance across 
various systems and processes.

Cao et al. 
(2022)

Chronicle 
Mining
Rule Based 

The study introduces KSPMI, a system for 
automating predictive maintenance in Industry 
4.0 that uses a combination of  statistical and 
symbolic AI. Machine learning and chronicle 
mining produce deterioration models, whereas 
domain ontologies and logic rules execute 
ontological reasoning. KSPMI detects 
irregularities and predicts future occurrences 
using SWRL rules and ontologies, which have 
been evaluated on synthetic and real-world 
data.

KSPMI’s traditional ontological 
reasoning for failure prediction is 
insufficient for immediate decision-
making in manufacturing. Stream 
reasoning, combining Semantic Web 
and CEP technologies, will replace it.

Werner et al. 
(2019)

Data-driven 
Models 
Digital Twin 

This research proposes a predictive 
maintenance plan based on historical and 
simulated data. A structured process map 
assists firms in incorporating predictive 
maintenance. The digital twin concept is 
proposed to interact with measured, estimated,
and simulated data, hence improving data-
driven prediction models for better Remaining 
Useful Life (RUL) estimations.

Future work based on this study 
should involve data modeling and 
physics-based simulation. 
Mathematical models and data 
transfer interfaces need verification 
using real-world examples. Current 
integrated software solutions are not 
yet optimal for hybrid modeling 
methodologies.

Aivaliotis et al. 
(2021)

Digital Twin
Degradation 
Curve 
integration

In this paper, a strategy for incorporating 
degradation curves into physics-based models 
for proactive maintenance was provided. A 
case study for the prediction of  a robot’s RUL 
used the four steps in this approach with 
success.

Future projects include modeling gear 
friction and backlash, investigating 
complex deterioration curves, and 
revisiting the Coulomb-viscous 
friction model. The authors also 
intend to create accelerated tests to 
verify their approach and collect actual
data for validation.

Aivaliotis, 
Georgoulias, 
Arkouli et al. 
(2019)

Digital Twin

The study proposes a framework for 
sophisticated physics-based modeling to help 
with digital twin (DT) maintenance 
applications. The methodology is focused on 
enabling Digital Twin and developing digital 
models. To evaluate this method for predictive 
maintenance applications, a digital model of  an
industrial robot was created.

The authors hope to include the 
suggested approach into a predictive 
maintenance framework, which will 
analyze machine health, schedule 
repair, and validate the procedure 
across several machines in production 
settings. They also want to improve 
model accuracy, properly tweak 
parameters, and enable real-time data 
interchange for web applications.
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Article
Approach

Used Results Future work

Zhong et al. 
(2023)

Digital Twin
CNN 
(Conventional 
Neural 
Network)
LSTM (Long 
Short-Term 
Memory)

The research emphasizes the relevance of  
digital twins in predictive maintenance, 
contrasting them with conventional methods. 
It examines PdMDT adoption in various 
industries and recent advances. It also presents 
a manufacturing sector framework that 
includes equipment maintenance and an 
industrial robot example, as well as 
considerations for limits and opportunities.

Digital twin models for maintenance 
and life prediction face challenges due 
to lack of  a standardized platform for 
building physical models. Establishing 
a broad foundation for PdMDT 
development is crucial for overcoming
this challenge.

Kunzer et al. 
(2022) Digital Twin

This article investigates the word “digital twin”
by looking at its origins and original context in 
several fields. It proposes a concept of  a 
minimum feasible digital twin framework and 
provides a brief  overview of  digital twin 
applications across industries. It focuses on 
digital twin architecture for predictive 
maintenance and its expansion, which include 
machine learning and physics-based modeling.

Challenges of  Digital Twin 
Implementation: 
Sensor Issues: Addressing offline 
sensors, missing or poor-quality data, 
and assuring sensor system reliability. 
Adoption in the Workplace: 
Investigating the integration of  Digital
Twin frameworks into existing 
workplace processes and systems. 
Safety Protocols: Ensuring that safety 
protocols are followed within digital 
twin environments.

Aivaliotis, 
Georgoulias & 
Chryssolouris 
(2019)

Digital Twin
Physics-Based 
Modelling

The paper presents a method for forecasting 
the remaining useful life (RUL) of  mechanical 
equipment in industrial resources using 
Prognostics and Health Management 
methodologies and the Digital Twin idea, 
enabling non-intrusive monitoring without 
traditional predictive maintenance procedures.

The authors plan to integrate their 
proposed methodology into a 
predictive maintenance framework, 
focusing on equipment health 
assessment and maintenance 
scheduling. They aim to improve RUL
computation accuracy through 
machine component modeling, real-
time tests, and degradation models.

Pagano (2023)
LSTM 
Bayesian 
inference

The study presents a predictive maintenance 
strategy for an industrial facility that uses Long
Short-Term Memory (LSTM) neural networks 
and Bayesian inference, evaluating the 
compatibility of  time-evolving industrial data 
with LSTM output.

The study applies a predictive 
maintenance technique to various time-
evolving systems but has limitations 
due to potential sensitivity issues and 
data noise causing substantial posterior 
probability fluctuations.

Wang et al. 
(2023)

LSTM
Knowledge 
Graphs (KG)

This work used data and knowledge to create a
predictive maintenance (PdM) technique for 
industrial robots (IRs). An LSTM-based model
identified future running states using previous 
and present data. The k-nearest neighbor 
method connected state features to possible 
faults for predicting. PdM strategies are 
developed using knowledge graphs (KGs) that 
have been updated with predictions. The 
method was tested with welding robots in an 
automotive welding workshop.

The proposed PdM technique and 
model can help improve smarter 
machines and IoT-enabled industrial 
systems. Future studies on complex 
intelligent manufacturing systems 
(IMS) should improve data-driven and
knowledge-based techniques by 
adding transfer learning and few-shot 
learning to increase productivity. In 
addition, research should enhance 
knowledge graph reasoning and 
ontology knowledge.
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Article
Approach

Used Results Future work

Farahani et al. 
(2022)

The principal 
component 
analysis (PCA)

This paper proposes a predictive maintenance 
framework for injection molding using cloud 
and edge computing. A case study 
demonstrates its effectiveness in detecting 
cooling problems by monitoring process 
parameters not directly related to mold 
temperature.

Future work includes integrating 
vision-based measurement systems 
with data sources for precise predictive 
maintenance, establishing real-time 
communication between shop-floor 
employees and business information 
systems, and exploring proactive and 
reliability-centered maintenance 
strategies for root cause identification.

Florian et al. 
(2021)

Machine 
Learning

This study presents a mathematical model that 
considers investment costs and measures 
machine learning performance using defects 
detection likelihood. It includes an error matrix
and a cost-based strategy, optimizing decision 
thresholds and guiding predictive maintenance 
deployment.

To test the proposed framework’s 
robustness for the following CBM 
approaches: RUL estimation, multi-
fault diagnosis, and condition 
indicator estimation.

Torim et al. 
(2022)

Python stumpy 
Matrix Profile 
library
rule-based

The study proposes a smart monitoring system 
for equipment maintenance, combining 
predictive maintenance with anomaly detection to
prevent damage and ensure adaptable solutions.

This work needs to be applied in a real
case in manufacturing industry in 
order to test its performance.

Massaro et al. 
(2020)

K-means 
algorithm
Multilayer 
perceptron 
artificial neural 
network (MLP-
ANN)

The article discusses the development of  a 
compact ECU for monitoring a bus fleet, 
utilizing SAE J1939 and ODB-II standards. It 
uses an artificial intelligence engine to predict 
maintenance based on driver behavior and 
tests the model on a dataset.

The work could be more investigated 
by applying more approaches.

Lee et al. (2019)

SVM 
ANNs 
RNN 
CNN

In this article, AI-based predictive maintenance
algorithms are presented and applied to 
monitor two important elements of  machine 
tool systems cutting tool and spindle motor. 
Data-driven modeling will be described and 
used to study tool wear and bearing failure.

To attain high accuracy, the study 
could include more algorithms and 
conduct comparisons to decide which 
is the most accurate and efficient. This
strategy would strengthen the findings
and provide useful insights into the 
performance of  various algorithms in 
the context of  the study’s aims. 

Nunes, Rocha 
et al. (2023)

Fault Tree 
Analysis

The study uses GFT methodology for 
predictive maintenance of  injection molds at 
OLI, a plastic component manufacturer. It 
incorporates a cost-saving training method and
isolation forest anomaly detection technique.

GFT model, unlike machine learning, 
uses actual data distributions for failure 
probability calculation. It’s 
computationally inexpensive but may 
increase complexity with more variables.

Lambán et al. 
(2022)

CPS 
implementation

The research explores the use of  4.0 
technologies to tackle predictive maintenance 
challenges, specifically focusing on real-time 
data processing and maintenance indicators, 
utilizing a machine tool for accurate machine 
status information.

This work implemented KPIs using a 
machine tool for research, but future 
work could involve real cases and 
consider additional Cybernetic CPS 
and new indicators to broaden KPIs.
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Article
Approach

Used Results Future work

Abidi et al. 
(2022)

Support Vector 
Machine (SVM)
Jaya algorithm
Sea Lion 
Optimization 
(SLnO)
Recurrent 
Neural Network
(RNN)
KNN 
(K-Nearest 
Neighbors 
Algorithm)NN

This paper presents a PdM planning model 
using five stages: data cleaning, data 
normalization, optimal feature selection, 
decision-making for the prediction network, 
and prediction. The model uses a mix of  Jaya 
algorithms and Sea Lion Optimization to 
eliminate redundant data, a support vector 
machine (SVM) to pinpoint the network for 
prediction, and a Recurrent Neural Network 
(RNN) to make predictions. The model 
accurately forecasts future component state for
maintenance planning.

The model presented in this work 
requires further generalization for 
various industrial cases, which could 
greatly benefit scientific literature.

Liu et al. (2022)
CNN-LSTM
Augmented 
reality

The research proposes a multi-service 
architecture for intelligent predictive 
maintenance for machine tools, using 
Convolutional Neural Network and Long Short-
Term Memory for defect prediction. Deep 
reinforcement learning is used for production 
control and scheduling repair workers. 
Augmented reality is used for guidance and 
remote expert service for unforeseen failures. 
Comparative tests with real-world case studies 
show the technique is efficient and workable.

The proposed approach is suitable for
larger IoT-enabled manufacturing 
platforms, accommodating diverse 
machines like robots and AGVs. To 
improve maintenance efficiency, 
multi-agent reinforcement learning 
techniques should be considered, with
future features adding flexibility to the
state space.

Leohold et al. 
(2021)

Data-driven 
Based Models
Physics-based 
models

The paper proposes a general forecast 
approach for maintenance system design, 
simplifying method changes and enhancing 
efficiency. It provides an explanation of  
topology and models for forecasting 
maintenance tasks.

The study suggests adding more 
advanced model selection methods 
to the system that doesn’t need a lot
of  expert knowledge and accurate 
rating metrics. This would give 
users more control over the 
processes.

Von-Birgelen, 
et al. (2018)

Self-organizing 
map (SOM)

This study showed an unsupervised method 
based on SOM for finding and localizing 
anomalies in CPPS data as well as using it for 
condition tracking and preventive maintenance.

Future research focuses on 
evaluating a system’s remaining 
useful life using regression analysis 
and Holt Winters forecasting, as 
these models are deemed unsuitable
for estimating the system’s useful 
life.

Arena et al. 
(2024)

Various 
Machine 
Learning 
algorithms

The objective is to present a set of  guidelines 
and ideas for figuring out which machine 
learning techniques are most likely to yield 
useful outcomes for certain tasks or data sets.

Comprehensive ML vision should 
consider human roles, societal 
interactions, and technology 
integration, with defining 
requirements for ML procedures 
being a crucial aspect.

Wang et al. 
(2024)

CNN 
Bi-LSTM

We suggest a deep learning ensemble approach
as part of  a dynamic predictive maintenance 
strategy to forecast the remaining usable life 
(RUL) of  a system. Using CNN and a Bi-
LSTM together, this technique accurately 
predicts RUL. In addition to order, stock, and 
maintenance decisions, the strategy takes 
uncertain system mission cycles into account. 
The results of  our experiments with the 
NASA turbofan engine dataset demonstrate 
the superiority of  our approach over current 
ones.

Future research will develop 
dynamic predictive maintenance 
strategies for different turbofan 
engine mission cycles. We will 
explore decision-maker preferences 
regarding maintenance cost and 
reliability trade-offs. Additionally, 
we aim to enhance Remaining 
Useful Life (RUL) predictions by 
using heuristic algorithms to 
optimize network hyperparameters
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Article
Approach

Used Results Future work

Kamariotis et 
al. (2024)

LSTM

The study proposes a metric to evaluate 
prognostic algorithms’ impact on Predictive 
Maintenance decisions, estimating long-term 
maintenance costs, and evaluating their 
performance with PdM policies, using a 
simulated turbofan engine.

Future research focuses on training 
prognostic algorithms to learn PdM
policies using monitoring data, 
requiring extensive training data to 
calibrate these policies to cost 
models and deterioration processes.

Shoorkand et 
al. (2024)

CNN 
LSTM

The paper discusses the integration of  tactical 
production planning and predictive 
maintenance using a rolling horizon approach. 
It introduces a hybrid deep learning method 
combining CNN and LSTM to improve 
Remaining Useful Life prediction accuracy. 
The approach reduces total production and 
maintenance costs through imperfect 
maintenance.

The study focused on a single 
machine, but future research should
investigate multiple machines and 
develop more accurate dynamic 
learning methods for system health 
conditions.

Elkateb et al. 
(2024)

IoT
Machine 
Learning

The study introduces a predictive maintenance 
system using AdaBoost for knitting machines, 
achieving 92% accuracy in classifying six types 
of  stops through pre-processed data from IoT 
devices

This study could significantly 
impact on the textile industry by 
increasing manufacturer revenue, 
extending machine life, and 
improving product quality, with 
further work to address errors and 
various machinery types.

Meriem et al. 
(2023)

Hybrid 
Approaches

This paper discusses the challenges in 
implementing predictive maintenance (PdM) in
Industry 4.0, focusing on machine learning, 
knowledge representation, and semantic 
reasoning applications.

The literature review identifies three 
primary PdM challenges: defining 
PdM objectives, ensuring system 
architectures satisfy industry 
standards and easily interact with 
developing methodologies, and 
customizing fault diagnostic and 
prognosis approaches to particular 
issues.

Giannoulidis et 
al. (2024)

Deep Learning 

The study explores evaluation methods for 
predictive maintenance, addressing 
misconceptions and limitations, and proposes 
an extension of  range-based anomaly detection
for PdM purposes. It also explores pre-
processing, distance metrics, domain expertise, 
and deep learning.

Future challenges include using 
historical data for KPIs to 
dynamically modify setups, 
influencing maintenance scheduling 
with sparse or continuous alarm data,
and improving predictive 
maintenance plans by combining 
multiple strategies.

Qureshi et al 
(2024)

Logistic 
Regression
Decision Trees
Support Vector 
Machines

The study discusses the use of  machine 
learning in predictive maintenance (PdM) for 
solar farms, highlighting its importance in 
enhancing infrastructure reliability and 
performance. It discusses key components, 
challenges, and ML algorithms used for real-
world deployment.

The study on predictive maintenance
in solar farms has limitations due to a
single dataset and focus on 
equipment reliability. Future research 
should explore advanced machine 
learning techniques.

Brahimi et al. 
(2024)

ANFIS
LSTM

The study introduces an intelligent monitoring 
system for MS5002C gas turbines, using 
ANFIS and LSTM algorithms for real-time 
anomaly detection and predictive maintenance,
enhancing turbine longevity and performance 
optimization.

The authors emphasize the need for 
further research to expand the 
applicability of  the proposed 
framework beyond MS5002C gas 
turbines, emphasize the importance 
of  rigorous evaluation, and explore 
alternative AI algorithms.
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Used Results Future work

Zhuang et al. 
(2023)

Bayesian neural 
network

The proposed integrated predictive 
maintenance framework combines prognostics
and maintenance decision-making for complex
industrial systems. It uses a Bayesian deep 
learning model to generate a predictive RUL 
distribution, updating maintenance and spare-
part ordering decisions dynamically. The 
framework’s effectiveness was validated using 
the C-MAPSS turbofan engine dataset.

The proposed prognostics-driven 
dynamic PdM framework can be 
applied to condition-monitored 
complex systems across various 
industries, requiring adaptations like 
industry-specific constraints and 
using some realistic data like Deep 
Reinforcement and Active Learning

De-Luca et al. 
(2023)

Deep attention-
based model

The authors propose a DL approach for PdM 
task, utilizing a multi-head attention 
mechanism for high RUL estimation and low 
memory model storage requirements, allowing 
direct implementation on equipment hardware.

Future research should focus on the 
attention mechanism in PdM 
applications and explore the model’s 
learning process using explainable 
artificial intelligence (XAI) 
technologies for explanation.

Yıldız & Soylu 
(2023)

Weibull Analysis
Machine 
Learning 
Algorithms

The study uses a machine learning algorithm to
predict failure types, analyzing its performance 
under various scenarios and parameter settings,
revealing its marginal utility and providing 
planners with multiple choices.

Future research could apply this 
approach to various maintenance 
problems, incorporate selective 
maintenance strategies, and use 
machine learning to predict decision-
maker actions based on multiple 
examples.

Mandala (2020)

XGBoost
Random Forest
Isolation Forest
Local Outlier 
Factor
Elliptic envelop

The paper explores strategies for the 
automotive industry using AI systems for 
maintenance and supply chain optimization, 
highlighting their potential and the importance 
of  these solutions, predicting their imminent 
necessity in the industry.

The first step to discover in 
predictive maintenance involves 
expanding optimization models for 
dynamic and stochastic formulations,
covering inventory control and 
scheduling. The second approach to 
be attacked integrates AI with 
operations research for real-world 
effects. Empirical validation via 
industry case studies is needed for 
market penetration.

Rodriguez et al.
(2023) K-means

Wind turbine failures can be identified or 
predicted by machine learning; however, this 
is made more difficult by problems with 
labeled data, such as ambiguous fault 
associations and label imbalance. We 
investigate K-means clustering and boxplot 
representations for six tests in order to 
address these problems. By identifying 
anomalies and abnormal behaviors in wind 
turbines, these techniques help experts 
enhance predictive maintenance.

This study limited its scope by using a 
single clustering technique, which 
could be enhanced with feed-forward 
neural networks, self-organizing maps,
or fuzzy C-means algorithm, and only 
tested a few feature types.

Lee & Mitici 
(2023)

Deep 
Reinforcement 
Learning

The proposed framework integrates data-
driven probabilistic RUL prognostics into 
predictive maintenance planning, reducing total
maintenance costs by 29.3%, preventing 95.6%
unscheduled maintenance, and limiting wasted 
engine life to 12.81 cycles, using sensor data 
collection and Deep Reinforcement Learning.

As a future work authors intend to 
extend the suggested DRL technique 
for multiple component predictive 
maintenance in subsequent works. 
Furthermore, they take into account 
more practical inputs and limitations 
related to aircraft maintenance, such 
as hangar space limitations, spare 
component logistics, and dynamic 
flight circumstances.
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Shoorkand et 
al. (2024)

Deep 
Transformer 
models

The study introduces ManuTrans, a deep 
learning model for tracking raw sensor data in 
pharmaceutical production lines, assessing 
state, and forecasting failures. It uses deep 
transformer models for pattern extraction, 
classification, and regression, and shows 
promising results on real datasets.

Further research is required to 
incorporate automated techniques like
XAI approaches into the model 
authors developed and to locate the 
predicted function failure precisely, 
which would provide even more 
benefits for preserving production 
lines.

Table 4. Different approaches used for each application

Future  Directions  from Literature:  Several  authors  suggest  extending  these  models  by  incorporating  transfer
learning,  reinforcement  learning,  and  self-supervised  learning  to  reduce  dependence  on  labeled  data.  Others
propose real-time implementation on edge devices for latency-sensitive applications.

Physics-Based  Models,  these  models  are  built  upon  fundamental  physical  principles  describing  machine
degradation,  such as fatigue,  thermal dynamics,  and wear mechanisms.  Some works embed these models into
Digital Twin (DT) architectures to simulate real-world behavior.

Future Directions from the Literature: a common limitation is the need for domain expertise and precise system
knowledge.  As  such,  many  studies  recommend  developing  hybrid  physics-informed  ML  models  that  blend
first-principles with learning to improve adaptability and scalability. Others emphasize integrating these models into
cloud-based DT platforms for simulation and predictive testing.

Hybrid Approaches, Hybrid models combine data-driven learning with physics-based reasoning or rule-based logic.
These models strive to achieve high accuracy while retaining physical interpretability, which is especially crucial in
industrial contexts.

Future Directions from the Literature: many authors foresee the rise of  federated hybrid models, where different
components (ML, simulation, and expert knowledge) interact in real time. Others advocate for embedding hybrid
models into autonomous maintenance frameworks for proactive decision-making and self-healing systems.

As of  Knowledge-Based and Semantic Models, this category includes approaches based on expert systems, ontologies,
semantic reasoning, and rule-based frameworks like SWRL or Fault Tree Analysis. These models support explainability
and human-centered reasoning, facilitating PdM in complex systems or knowledge-scarce environments.

Future  Directions  from  the  Literature:  numerous  papers  highlight  the  importance  of  developing  dynamic
rule-based  systems  that  evolve  with  data  and  context.  The  integration  of  these  models  with  semantic  IoT
infrastructures, digital threads, and context-aware agents is also proposed to improve industrial interoperability and
real-time fault diagnosis.

Across all categories, literature suggests a strong move toward:

• Real-time, Edge, and Cloud Integration: Shifting models from static analysis to real-time predictive services
via edge computing and cloud platforms.

• Explainable and Transparent AI: Especially in regulated industries, there is a growing need for explainable
PdM systems to support trust and validation.

• Human-Machine  Collaboration:  Models  should  enable  human-in-the-loop  mechanisms  to  combine
automated insights with expert validation.

• Generalization  and  Transferability:  A  number  of  works  advocate  for  models  that  generalize  across
different machines, systems, and industrial sectors, with domain adaptation techniques playing a key role.
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4.3. RQ3: What Are the Data Used to Apply PdM?

Predictive maintenance (PdM) data differs depending on the particular environment and study goals. For instance,
data from sensors on welding robots in a new energy automobile welding facility is used in (Wang et al., 2023). A
Li-ion battery database and an aircraft engine database were used in (Abidi et al., 2022). In order to gather machine
data, the study in (Werner et al., 2019) used Internet of  Things sensing technology, especially the Message Queuing
Telemetry Transport (MQTT) protocol.  The data from sensors mounted on an actual  robot was used by the
authors of  (Aivaliotis et al., 2021). PdM data collection is usually carried out by specialist systems, such OSA-CBM
(Jimenez, Schwartz, Vingerhoeds, Grabot & Salaün, 2020), that follow certain guidelines and standards. Data was
taken straight out of  Vehicle On-Board Diagnostics in (Massaro et al., 2020).

4.4. RQ4: Which Type of  Approaches Are the Most Optimal to Respond to Predictive Maintenance Goals?

This question is specifically addressed in (Jimenez et al., 2020) which reviews the advantages of  combining different
types  of  models.  The  multi-model  approach  that  integrates  knowledge-based,  data-driven,  and  physics-based
models offers a powerful strategy for predictive maintenance by leveraging the strengths of  each model type.
Knowledge-based  models  can  incorporate  expert  insights  to  enhance  the  results  of  data-driven  models  in
diagnostic  and  prognostic  tasks,  while  also  improving  the  accuracy  of  physics-based  models.  Although  the
integration of  knowledge-based and physics-based models is less explored in scientific literature, this combination
can yield significant benefits, as demonstrated in studies like (Swanson, 2001) which merge fuzzy knowledge-based
systems with physics-based models for mechanical parts. Data-driven models are increasingly popular due to their
compatibility with physics-based models for deterioration modeling, making this approach the most commonly
used in recent research, as categorized in (Wang, Li, Gao, Zhang, 2022). The comprehensive integration of  all three
model types —knowledge-based,  data-driven,  and physics-based— captures the complexity  of  each individual
model while also addressing the challenges of  system design and result integration, highlighting a promising yet
underexplored area for future research.

4.5. RQ5: What Are the Current Challenges Facing Predictive Maintenance?

In the area of  anomaly identification, which is part of  PdM with prognostics models, there are a lot of  things that
could go wrong. This is a big problem. These can be mistakes in the transmission, problems with the machine,
stops in therapy, changes in working conditions, sensor problems caused by hard weather, and more. There is also a
lot  of  theory  behind  statistical  methods,  but  they  use  known distributions  for  parameters,  such  as  Weibull,
exponential, and others, instead of  real distributions. This means that the results may only give a rough idea of  how
things  really  work.  Moreover,  models  of  fatigue  or  fracture  failure  that  have  been  established  for  certain
components  but  whose methodology  is  not  applicable  to  other  industrial  assets  are  frequently  the  basis  for
statistical  processes.  On  the  other  hand,  machine  learning  techniques  may  represent  incredibly  diverse  and
non-linear  models;  but,  in  order  to  train  the  models,  they  need  enormous  quantities  of  data  and  powerful
computers. Data-driven systems, for all their advantages, need a lot of  data, and because there isn’t enough data to
predict the less common types of  failure, they usually overlook them (Nunes, Rocha et al., 2023).

When there is a lack of  actual data on the usual and aberrant behavior of  the equipment, and when there is no
operating experience with new technologies. Owing to this situation, companies can start second-guessing their choice
to spend money on PdM solutions (Compare, Baraldi & Zio, 2019). The publication (Achouch et al., 2022) separates
Pdm Challenges into four primary categories (Figure 6): limits in the deployment of  industrial predictive maintenance
models, limitations in data sources, financial and organizational constraints, and machine repair activity limits:

• Financial and Organizational Limits: In order to set up predictive maintenance companies should be willing
to harness huge resources and costs, some companies avoid that depending on its vision and strategy.

• Data Source Limits:  When the required confidence in the data is  not maintained,  for example,  when
sensors,  controllers,  or other data sources deliver erroneous or inaccurate measurements,  the business
employing  predictive  maintenance  techniques  may encounter  difficulties.  This  may lead to inaccurate
forecasts, overlooked maintenance needs, and erroneous alerts. The fact that sensors now have a tendency
to  function  offline  and  not  contribute  to  online  data  is  another  obstacle  for  sensor  technology.
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Furthermore, sensors are vulnerable to noise, instrument deterioration, downtime, and sensor failure. In
order to forecast the real world and avoid skewing the outcomes, it is crucial to clean the data before using
the predictive maintenance algorithm.

• Machine  Repair  Activity  Limits:  Maintenance schedules  can be  planned by  estimating  a  component’s
remaining life, however real component maintenance still has difficulties because of  the dependance to
human interaction and low self-maintenance. Moreover, the deterioration and prediction model, along with
all the data required to make predictive maintenance choices, would be dispersed and accessible at the
component level,  as contrast to a central  system managing one or more assets.  Then, machinery can
schedule its own maintenance. Nonetheless, industrial machines do not currently possess this degree of
self-awareness or self-maintenance.

• The use of  industrial predictive maintenance models is limited by the following: The development of
intelligent  failure  prediction  models  usually  involves  three  difficult  steps:  updating,  monitoring,  and
integration. Because it is usually managed by an information technology (IT) team that is distinct from the
research and development team that developed the predictive maintenance models, model integration is
challenging in the industry. Building an IT infrastructure to support the data pipelines can take a lot of
time, and project planning usually ignores this. Part of  the monitoring method is making sure that the
model is up to date. Adding a feedback loop to the model adds new data that can be used to teach the
model new things. The results are less reliable because the forecast models have to be trained over and over
again.  Actually,  there  is  no  guarantee  that  the  data  being  used  is  correct  or  up-to-date  during
manufacturing. This means that mistakes can be made and estimates end up being wrong. Lastly, it is very
important to keep machine learning models from falling into the problem of  mental drift when updating
them. The company needs to make changes to the data, the model, and the code all at the same time in
order to update the prediction models. This cycle of  making predictive maintenance models better is a lot
more complicated than regular software changes for businesses.

Figure 6. Challenges of  Predictive Maintenance

5. Proposed Approach
This  article  proposes  a  novel  hybrid  predictive  maintenance  (PdM)  architecture  that  systematically  combines
data-driven  physics-based,  and  knowledge-based  approaches  to  improve  the  accuracy,  interpretability,  and
robustness of  failure predictions. This architecture is structured into three distinct but interconnected phases, each
contributing a complementary perspective to the prediction and decision-making process. The design aligns with
the call for hybrid and explainable models in PdM, as highlighted by Jimenez et al. (2020), Cao et al. (2022), and
Van-Dinter et al. (2022).
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5.1. Phase 1: Data-Driven Model for Initial Prediction

The architecture begins with a data-driven model based on machine learning (ML) or deep learning (DL), which
performs the initial failure prediction. Input features may include for example temperature, torque, rotational speed,
tool wear, and other operational parameters derived from sensor data. This component draws on proven strategies
described in the literature, such as convolutional neural networks (CNNs) for anomaly detection (Çınar et al., 2020)
or gradient boosting algorithms (Wen et al.,  2022) for failure classification. These models learn patterns from
historical datasets and provide a probabilistic prediction regarding the machine’s health status.

However, as data-driven approaches are typically black-box models and may not generalize well across operating
conditions, their predictions are passed on to the next module for validation.

5.2. Phase 2: Physics-Based Model for Validation and Consistency Checking

To overcome the limitations of  purely statistical models, the second phase incorporates physics-based modeling to
validate whether the predicted failure pattern is physically plausible. This model is designed based on engineering
principles and degradation laws. In our case,  the physics-based component uses relationships between torque,
rotational speed, temperature differences, and tool wear to simulate mechanical behavior under real-world operating
conditions.

This approach is consistent with the vision presented by Van-Dinter et al. (2022), who emphasize the value of
physics-based modeling within digital twin systems for maintenance. Similarly, Kothamasu et al. (2006) underscore
the role of  analytical models in enabling better generalization and interpretability, especially in complex industrial
settings. The objective here is not to replace the data-driven model, but to ensure that its prediction aligns with
known physical constraints, thereby reducing false alarms or implausible alerts.

5.3. Phase 3: Knowledge-Based Model for Contextual Reasoning

The final phase introduces a knowledge-based system, which applies domain-specific rules to contextualize and
interpret the validated predictions. This layer incorporates expert knowledge, maintenance history, and logical rules
in the form of  IF–THEN statements, decision trees, or fuzzy logic systems. Knowledge-based systems help bridge
the gap between prediction and action, ensuring that recommendations are aligned with operational realities.

For  example,  Cao et  al.  (2022)  propose  the  Knowledge-Based Smart  Predictive  Maintenance Implementation
(KSPMI), which integrates domain knowledge with predictive analytics to guide maintenance decisions. Likewise,
Nunes,  Rocha et al. (2023) demonstrate the utility of  expert systems in formalizing reasoning processes that are
difficult to capture through ML models alone. The knowledge-based layer ensures that predictions and physics-
based outputs are considered within the broader context of  system behavior, usage constraints, and business rules.

5.4. Integration and Novelty of  the Proposed Architecture

The strength of  this hybrid architecture lies in the sequential integration of  three modeling paradigms:

Aspect Data-Driven Physics-Based Knowledge-Based

Role Failure prediction Validation & interpretability Decision contextualization

Input Historical sensor data Physical parameters & laws Expert knowledge, rules

Output Probability of  failure Physical consistency check Final decision/recommendation

Table 5. Aspects of  each type of  PdM models

While previous studies have combined two approaches (e.g., data-driven with knowledge-based or physics-based),
our proposed model integrates all three in a modular, layered structure. This ensures greater robustness, accuracy,
and explainability, aligning with recommendations from Jimenez et al. (2020) and Van-Dinter et al. (2022), who call
for more comprehensive hybrid frameworks in PdM.
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5.5. Positioning as a Theoretical Contribution

This contribution is primarily theoretical, serving as a structured framework for future implementation. Unlike
previous works that apply hybrid models to specific use cases, our goal is to present a generalizable architecture that
combines the best aspects of  current PdM strategies. As emphasized by Kothamasu et al. (2006), true prognostic
systems require a synthesis of  multiple data sources and reasoning layers. By formalizing this integration, our
architecture offers a new path forward for the design of  more reliable and intelligent maintenance systems.

Figure 7. Predictive Maintenance Architecture

6. Discussion
The several Predictive Maintenance (PdM) models and techniques were investigated in this systematic literature
review (SLR), which also emphasized the range of  uses for PdM in academic literature. According to the analysis, a
lot  of  applications have a tendency to combine two techniques or make use of  many algorithms within one
approach (Jimenez et al., 2020). Applications that combine all three strategies are uncommon, though. We provide
an architecture that takes advantage of  the outputs from every method and compares them to yield a precise failure
time prediction based on the findings of  our SLR.

The majority of  applications pertain to smart manufacturing settings, suggesting a strong connection between
industrial areas and maintenance. Manufacturers are driven to implement advanced maintenance technologies in
order to overcome the constraints of  reactive or preventative maintenance,  as asset shutdowns result in large
expenditures (Molęda, Małysiak-Mrozek, Ding, Sunderam & Mrozek, 2023).

PdM algorithms are mostly derived from knowledge-based models, physics-based models, and artificial intelligence.
The volume and availability of  data, type of  industry, and context all influence the choice of  algorithms.

It is imperative that researchers concentrate on fusing knowledge- and physics-based models with AI techniques.
Regrettably,  the  current  approach frequently  overlooks  the  integration  of  other  models  in  favor  of  applying
machine learning and deep learning algorithms (Jimenez et al., 2020). Outcomes that are less accurate may arise
from this oversight. We can improve the precision and dependability of  Predictive Maintenance (PdM) predictions
by highlighting a more comprehensive strategy that combines AI, physics-based, and knowledge-based models. By
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utilizing  the  advantages  of  each  model  type,  this  all-encompassing  approach  guarantees  that  we  can  make
maintenance decisions that are more accurate and practical in the long run.

The reluctance to fully integrate knowledge-based, physics-based, and data-driven approaches reveals a significant
theoretical gap in the field of  Predictive Maintenance (PdM). This hesitation likely stems from several underlying
factors: the siloed nature of  expertise across these domains, the computational complexity of  unified models, and
the organizational  challenges of  cross-disciplinary collaboration (Lee,  Azamfar & Singh,  2020). Our proposed
architecture  (Figure  7)  addresses  these  limitations  by  creating  a  synergistic  framework  where  each  approach
compensates for the others’ weaknesses. The comparative analysis between Results A, B, and C demonstrates how
this integration transcends the traditional  trade-offs between model interpretability  and predictive power. This
integration has profound theoretical implications for advancing PdM beyond its current state challenging the field
to move from algorithm-centric approaches toward holistic system thinking. As Zonta et al. (2020) argue, successful
PdM implementation requires not just technical integration but also organizational and knowledge management
strategies that bridge disciplinary boundaries. The resistance to integration observed in current literature suggests
that the PdM field may be experiencing a paradigm shift, where established methodological boundaries are being
reconsidered in favor of  more comprehensive  frameworks that  can better  address the multifaceted nature of
industrial maintenance challenges in the Industry 4.0 era.

7. Conclusion
We conclude our SLR by putting up a strategy that will enable the full utilization of  the three widely employed PdM
techniques.

We studied predictive maintenance in-depth and discussed every kind of  strategy that may be applied in a predictive
maintenance setting in this work. Our paper aimed to address five concerns and is based on SLR as a scientific
research approach. First, in order to give future readers a thorough understanding of  this topic, our research has
introduced a number of  terminologies linked to PdM. Additionally, our PdM study has produced a number of
intriguing reviews that address the subject.  Moreover,  a number of  applications have been studied with their
methods and by application domain, for every paper, we attempted to extrapolate the necessary future work to
emphasize  the amelioration axis  that  researchers should target.  It  was also crucial  to list  the difficulties PdM
encountered so that they might be discussed and kept in mind while using any strategy.

Our systematic review of  68 articles published between 2018 and 2024 reveals several significant findings. First, we
identified a clear dominance of  data-driven approaches (26 articles) over physics-based models (5 articles) and
knowledge-based models (1 article), with only 5 articles attempting to combine two approaches and just 1 article
proposing a comprehensive hybrid framework. This distribution highlights a critical gap in the literature: despite the
theoretical  advantages  of  integrated  approaches,  most  research  remains  siloed  within  individual  modeling
paradigms [Doc 1]. Second, our analysis demonstrates that manufacturing remains the primary application domain
for PdM, followed by emerging applications in aircraft maintenance, industrial robotics, and specialized sectors such
as pharmaceutical manufacturing and renewable energy. This indicates both the maturity of  PdM in traditional
industrial settings and its expanding relevance across diverse domains.

The primary contribution of  this work is our novel hybrid architecture that systematically integrates knowledge-
based, physics-based, and data-driven models within a cohesive predictive maintenance framework. Unlike previous
approaches that typically leverage only one modeling paradigm or loosely combine two, our architecture creates a
structured pipeline where each model type contributes complementary insights while compensating for others’
limitations. This integration enhances not only prediction accuracy but also interpretability and robustness —critical
factors  in  industrial  deployment  contexts.  Additionally,  our  comprehensive  mapping  of  PdM  applications,
approaches, and challenges provides researchers and practitioners with a valuable reference for understanding the
current state of  the field and identifying promising research directions.

Our study has several limitations that should be acknowledged. First, despite our rigorous methodology, the review
was constrained to articles published between 2018 and 2024, potentially  missing relevant earlier foundational
works.  Second,  our  proposed  hybrid  architecture,  while  theoretically  sound,  remains  conceptual  and  requires
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empirical  validation  across  diverse  industrial  settings  to  demonstrate  its  practical  efficacy  and implementation
challenges.  Third,  our  analysis  of  data  sources  (RQ3)  was  limited  by  the  inconsistent  reporting  of  data
characteristics across the reviewed literature, making it difficult to draw comprehensive conclusions about optimal
data requirements for different PdM approaches. Fourth, the predominance of  manufacturing applications in our
review may limit the generalizability of  our findings to other domains with different operational characteristics and
failure modes. Finally, while we identified integration challenges between modeling paradigms, our work does not
fully  resolve  technical  issues  such  as  uncertainty  propagation,  temporal  alignment  between  models,  and
computational efficiency in real-time industrial deployments.

Future research should focus on several promising directions. First, empirical validation of  hybrid architectures like
the one we propose is essential, particularly through case studies that quantify the performance improvements over
single-model  approaches  across  different  industrial  contexts.  Second,  researchers  should  explore  adaptive
integration mechanisms that dynamically adjust the weight given to each model type based on contextual factors
such as data availability,  failure criticality,  and operational conditions. Third, more attention should be directed
toward knowledge-based models  and their  integration with data-driven and physics based approaches,  as  this
combination remains underexplored despite its potential to address data scarcity issues in many industrial settings.
Fourth, standardized frameworks for evaluating PdM performance are needed, as our review revealed inconsistent
metrics and evaluation approaches across studies. Finally, research on explainable AI for PdM deserves greater
emphasis to enhance trust and adoption in safety-critical applications, particularly as regulatory requirements for AI
transparency increase across industries.

By addressing these research directions, the field can move beyond the current fragmented approach to PdM
modeling and toward more holistic,  robust,  and industrially  viable  solutions  that  fully  realize  the  promise  of
predictive maintenance in the industry 4.0 era.

Nomenclature and Symbols
PdM Predictive Maintenance
AI Artificial Intelligence
ANFIS Adaptive Neuro-Fuzzy Inference Systems
SLR Systematic Literature Review
CPS Cyber Physical System
PBM Physics Based Models
KBM Knowledge Based Models 
DT Digital Twin
IoT Internet of  Things
SWRL Semantic Web Rule Language
ML Machine Learning
PHM Prognostics and Health Management
RUL Remaining Useful Life
GFT Generalized Fault Trees
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