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Abstract:

Purpose: Research  suggests  that  material  handling  costs  account  for  20-50%  of  production  costs.
Furthermore, these production cost could be reduced by 10-30% by dynamically changing the layout. We
propose an integer programming model to sustainably solve plant layouts in a financially conservative, yet
environmentally friendly way. 

Design/methodology/approach: We  propose  a  bi-objective  Non-dominated  Sorting  Genetic
Algorithm (NSGA-II) approach to optimizing Dynamic Cellular Manufacturing Systems (DCMS). The
mathematical  model’s  first  objective  function  minimizes  economic  cost,  while  the  second  objective
function minimizes environmental emissions. The NSGA-II solver uses the penalty approach to handle
constraints.  The  solver  is  customized  beyond the  traditional  NSGA-II,  such  that  constraint  violating
solutions are repaired, and unique solutions are prioritized to enhance population diversity and exploration.

Findings: Although a manufacturing plant layout may be optimal for a particular demand period, when
the demand changes that system may not be optimal for the new demand period. Extensive simulation
shows  that  our  bi-objective  model  dominates  the  single  objective  model  from literature.  Adding  an
environmental second objective to DCMS reveals that the most economical solution is often the least
environmentally friendly approach, and vice versa. A convex relationship is observed between the two
objectives. A weighted compromise is required when setting up a sustainable production system.

Research limitations/implications: Only carbon emissions were simulated.  Hazardous liquid waste,
Energy consumption, and water consumption were not considered. 

Practical  implications: Manufactures  and  their  contracted  line  builders  will  need  to  consider
environmental implications when setting up a production line. Decision makers need to be aware that the
most cost conservative approach may lead to significantly higher carbon emissions. 

Social implications: The social pillar of  sustainability was incorporated via a set of  constraints in the
mathematical model of  this study. The solution space showed that the model was not restricted by this
objective. 

Originality/value: The value proposition of  this work is presented in a case study comparison of  our
multi-objective  model  against  a  single  objective  model  from  literature.  The  multi-objective  model
dominates the literature model giving invaluable insights to possible improvements to previous research
work.

Keywords: sustainable  manufacturing,  multi-objective  optimization,  dynamic  cellular  manufacturing  systems,
genetic algorithm (NSGA-II), penalty approach
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1. Introduction

Sustainable Manufacturing (SM) is defined as producing goods through activities that meet present needs without
compromising the ability  of  future generations to do likewise (Yong-Chan & Xirouchakis,  2015).  This aspect
extends to the three pillars of  sustainability which are environmental constraints,  social impacts,  and financial
limitations. An increasing amount of  research is conducted on integrating these three aspects of  sustainability for
improved efficiencies in Manufacturing Systems (MS).  Cellular Manufacturing (CM) is a production technique
where products are manufactured in small, self-contained units known as cells. Cellular Manufacturing Systems
(CMS) are a type of  MS that is organized around the production of  specific product families, or groups of  similar
products (Cerqueus, Paolo, Damien & Xavier, 2020). These systems involve the use of  small, flexible teams of
workers and machines that are dedicated to producing a specific set of  products or components. There are several
types of  CMS, including single-cell systems, where all the activities needed to produce a product are carried out in a
single location, and multi-cell systems, where different cells are dedicated to dissimilar stages of  the production
process (Asokan, Prabhakaran & Kumar, 2001). To be successful, CMS require careful planning and coordination,
as well as well-trained and motivated workers. 

CMS  typically  involve  lean  manufacturing  principles,  which  utilize  techniques  such  as  Just  In  Time  (JIT)
manufacturing, where materials arrive and the production facility just when they are required, and Kanban systems,
which use visual signals to indicate when materials or components need to be replenished. CMS can improve
efficiency and reduce cycle times by eliminating unnecessary processing steps and minimizing the need for material
handling (Cerqueus et al. 2020). They also allow for greater flexibility and responsiveness to changing product
conditions, as fixtures can be reconfigured to produce assorted products in respond to changes in market demand.
Another benefit of  CMS is that they can improve the quality of  products, as teams are able to identify and address
quality  issues  more  quickly.  Accumulating conveyors  and/or  station buffers  are  often used in  CMS to avoid
bottlenecks during breakdowns or routine maintenance operations. Furthermore, CMS help increase accountability,
as team members are responsible for the performance of  their cell. Also, they can improve safety in the workplace
by allowing teams to focus on a specific set of  products, which can reduce the risk of  accidents and injuries
(Lokesh & Promod, 2011).

Dynamic Cellular Manufacturing Systems (DCMS) are an extension of  CMS that are reconfigured periodically to
suit demand. Whenever the physical layout or process flow of  a CMS is changed from period to period, the
system is referred to as a DCMS. The reconfiguration of  DCMS enhances the effectiveness of  CMS in adapting
to changes and improved efficiency.  As consumer trends lean towards products with a shorter life span and
more customization, a particular layout may not always be feasible when demand changes, hence, the need for
DCMS has never been greater. Maintaining an effective DCMS requires careful consideration of  all the factors
that affect the product. DCMS present more control for manufacturers to plan for production and factory
maintenance. This improved flexibility makes manufacturers more competitive in the market on more than
just  one  objective,  which  is  the  driving  reason  for  implementing  DCMS  (Alimian,  Ghezavati  &
Tavakkoli-Moghaddam, 2020). 

The  need  for  periodic  reconfiguration  of  manufacturing  systems  is  clear  and  replete  throughout  literature,
however, the need for this study is founded in the incorporation of  all three aspects of  sustainability within
reconfiguration planning. Because most researchers focused primarily on the economic factors of  production
during optimization, there exists a gap in literature which includes all three pillars of  sustainability in a single
reconfiguration model. Since manufacturers need assurances that changes to their existing systems are practical
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and not only theoretically based; this study uses industry-based metrics and impact factors to provide confidence
in suggested directions. Although a manufacturing layout may be optimal for a set of  initial conditions, it can
become outdated and contain bottlenecks and/or inefficiencies over time as demands or products change; hence,
reconfiguring DCMS becomes vital. Our study of  reconfiguration planning is aimed at enhancing optimality in
industry.

2. Literature Review
Combining SM, which delivers cost savings, resource conservation, and enhanced efficiency; with DCMS known
for its flexibility,  adaptability,  and customizability,  gives organizations a competitive market edge. Researchers
have noted the significance of  addressing SM and DCMS simultaneously (Zhao & Wu, 2000). Compliance with
the world’s Sustainable Development Goals (SDGs), requires manufacturers to brainstorm ways to adhere to
new and/or stricter sustainability regulations. Goals 8 and 12 from the SDGs focus on promoting decent work
and economic growth, and responsible consumption and production respectively. Sustainability is the union of
its three pillar aspects namely, economic factors, social influences, and environmental constraints as depicted in
Figure 1.

Figure 1. Pillars of  sustainability: Social, Economic, and Environmental

Each  of  these  aspects  uniquely  affects  manufacturing  technologies  and  practices,  leading  to  multi-objective
problems that often require careful planning to find the most optimal routing for a MS. With the globalization of
today’s markets and the evolving workforce due to automation, it becomes increasingly difficult to plan the best
routing without the aid of  optimization techniques and strategies. The use of  data analytics and the adoption of
continuous improvement methods, such as Kanban Boards, Kaizen, Lean Manufacturing, Six Sigma, and other
digital  technologies  is  helpful  in  supporting the adoption of  more sustainable  practices.  These strategies help
manufacturers identify bottlenecks, eliminate waste, and improve efficiency in production processes (Yong-Chan &
Xirouchakis, 2015). 

Research on sustainability oriented DCMS models has evolved from a primary focus on economic efficiency
toward more holistic frameworks that integrate environmental and social objectives (Aljuneidi & Bulgak, 2016).
Early  models  typically  addressed cost  minimization and basic  cell  reconfiguration,  with  limited attention to
sustainability’s three pillars often treating environmental and social aspects as secondary or as constraints rather
than  explicit  objectives  (Niakan,  Baboli,  Moyaux  &  Botta-Genoulaz,  2014). Recent  studies  have  advanced
mathematical  formulations,  employing  mixed-integer  linear  or  nonlinear  programming  to  capture  dynamic
layouts, (Sibanda & Padayachee, 2024) uncertain demand, and hybrid manufacturing processes, while explicitly
modeling energy consumption, emissions, and social impacts such as labor conditions and job opportunities
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(Jafarzadeh, Khalili & Shoja, 2022; Almasarwah, Abdelall, Bhutta & Saraireh, 2025). Optimization approaches
have  shifted  from exact  solvers,  which  struggle  with  computational  complexity  in  large  scale  problems,  to
sophisticated meta-heuristics like NSGA-II and simulated annealing, enabling multi-objective, large dimension
instances with improved efficiency and solution quality (Lamba, Kumar, Mishra & Rajput, 2020). Despite these
advances,  a  critical  gap  remains:  many  models  still  inadequately  address  the  full  integration  of  all  three
sustainability pillars, often prioritizing economic and environmental objectives while relegating social factors to
constraints or proxies. Furthermore, uncertainty, whether in demand, process times, or sustainability parameters,
has only recently begun to be incorporated, using fuzzy logic or robust optimization, but remains underexplored
in  multi-objective  contexts  (Jafarzadeh  et  al,  2022).  Literature  also  highlights  a  lack  of  comprehensive
frameworks that simultaneously optimize for cost, environmental impact, and social responsibility under real-
world uncertainty, especially in closed-loop or hybrid systems (Telegraphi & Bulgak, 2020). This gap justifies the
need  for  rigorous,  multi-objective  models  that  explicitly  and  equitably  treat  all  sustainability  dimensions,
leveraging advanced meta-heuristics and robust optimization to address the complexity and uncertainty inherent
in modern DCMS. This approach aligns with the pressing industrial and societal demand for truly sustainable MS
(Pérez-Gosende, Mula & Díaz-Madroñero, 2020).

The adoption of  more sustainable practices in CMS requires careful planning and coordination, as well as the
establishment of  clear goals and objectives. Furthermore, sustainability can be measured in many ways. Yong-Chan
et.al emphasized the need to include environmental metrics of  energy use and waste management while optimizing
CMS with sustainability considerations. (Khezri, Hichem & Lyes, 2019) studied the sustainability of  CMS, focusing
on liquid waste, and gas emissions. (Khettabi, Lyes & Mohamed, 2021) employed a multi-objective approach using
NSGA-II and NSGA-III to minimize hazardous liquid waste, greenhouse gas emissions, production time, and
costs.  Their  findings  revealed  that  energy  usage  is  influenced  by  production  planning  and  related  system
configurations, accounting for idle times, setup times, part or tool transfers. A comprehensive review of  literature is
given in the work of  (Pérez-Gosende, Mula & Díaz-Madroñero, 2021), however, Table 1 summarizes some recent
studies on sustainability and their focused metrics.

Year Focus Approach

(Khettabi, Lyes & Boutiche, 2022) Hazardous liquid waste, Carbon 
emission

NSGA-II, New NSGA-III

(Khettabi et al., 2021) Carbon emission GA, TOPSIS

(Khezri, Hichem & Lyes, 2021) Energy consumption, Waste AUGECON, NSGA-II, SPEA-II

(Massimi, Amirhossein, Hichem & Lyes, 2020) Energy consumption Mathematical

(Cerqueus et al., 2020) Energy cost Genetic Algorithm

(Khezri et al., 2019) Energy consumption, Waste Augmented ε-constraint

(Liu, Rongfan, Zhanguo, Chengbin & Xiaoyi, 2018) Energy cost  NSGA-II & MOSA

(Huang, Badurdeen & Jawahir, 2018) Energy consumption, Water 
consumption Mathematical

(Jiafeng, Khalgui, Wassim, Frey, Hon, Wu et al., 
2015)

Energy efficiency Reconfigurable timed net condition

(Yong-Chan & Xirouchakis, 2015) Energy consumption Muti-objective optimisation

Table 1. Recent literature on CMS sustainability

As  more  companies  adopt  the  net  zero  standards,  it  becomes  imperative  that  the  environmental  effects  of
manufacturing be included in the objective of  optimization models for MS. This is in the form of  waste reduction,
the introduction of  more renewable energy sources, newer technologies, and reduced greenhouse gas emissions.
The Science Based Targets initiative (SBTi) has established a global standard to provide direction to organizations
on achieving net-zero targets through a guided approach for setting near-term and long-term goals. Its goal is to
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encourage companies to halve their carbon emissions before 2030 and reduce their emissions entirely, to net-zero
standards by 2050. The standard classifies greenhouse gas emissions into three categories namely: Scope1, 2, and 3
emissions. Each category encapsulates production activities differently for the different sectors in industry in an
accepted standardization (Science Based Targets, 2021a). 

Scope 1 emissions are direct emissions originating from sources owned or controlled by an organization, such as
those produced by fossil fuel combustion in company-owned boilers or vehicles. Scope 2 emissions are indirect
emissions resulting from the generation of  purchased energy consumed by the organization, such as electricity,
heat, or steam typically acquired from a utility provider. Scope 3 emissions are also indirect but arise from the
organization’s activities at sources it does not own or control, including emissions from raw material production,
product  transportation,  and  waste  disposal.  Scope  3  emissions  often  represent  the  largest  portion  of  an
organization’s total emissions and can be the most difficult to measure and reduce (Science Based Targets, 2021a).
This study concentrates on optimizing the performance of  CMS by examining carbon emissions from overall
production activity  as a general,  all-inclusive measure of  sustainability.  Production activity  considered includes
emissions from material handling, part processing, machine life cycle, and machine idle. The unit of  measurement
employed is metric tons of  carbon emitted, denoted as kgCO2.

3. Mathematical Model
3.1. Model Notation

We present the model notation as:

Sets:

t – time index, h = 1 … T – total number of  Periods

i – part index, p = 1 … It 

j – index of  operations on parts, j = 1 … Oi – total number of  operations needed for part i

k – machine index, k = 1 … K – total number of  machines

l – cell index, l = 1… L – total number of  cells 

Decision variables:

xjiklt – 1 if  operation j of  part i by machine k is done in cell l during time t, otherwise 0

Nklt – number of  type k machines placed in cell l at time t

K+
klt – number of  type k machines added to cell l at the beginning of  time t

K–
klt – number of  type k machines removed from cell l at the end of  time t

ajik – 1 if  operation j of  part i can be done on machine k; otherwise 0

Parameters:

LB = Cell size lower bound 

UB = Cell size upper bound 

Dit = Demand of  part i during period t

Bi
inter = Intercell batch size for part i

Bi
intra = Intracell batch size for part i

Hk = Available time on machine k (hr)

hjik = time for operation j of  part i on machine k (hr)

αk = Overhead cost of  machine type k

βk = Variable operating cost for each unit time on machine k (R/hr)

γ inter = Batch intercell material handling cost 

γ intra = Batch intracell material handling cost 
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δk = Relocation cost for machine type k 

φinter = Batch intercell carbon emissions (kgCO2)

τk = Carbon emissions from adding and removing machine type m (kgCO2)

μk = Carbon emissions from idle time of  machine type k (kgCO2/hr)

εk = Variable carbon emissions for each operating unit time, on machine type k (kgCO2/hr)

σk = Carbon emissions from relocating machine type k (kgCO2)

q = Workload balancing factor (taken as ± 0.75 for 75 %)
η = maximum number of  different operations an operator can be assigned (taken as 3)

3.2. Model Description

Minimize: 

(1)

(2)

Subject to:

(3)

(4)

(5)
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(6)

(7)

(8)

(9)

The first  objective  function (1)  minimizes  the  environmental  impact  measured in  kgCO2.  It  consists  of  four
components: machine idling emissions, intercell material handling emissions, machine relocation emissions, and
machine lifecycle emissions. The second objective function (2) minimizes the total cost in ZAR, which includes
machine operational costs, overhead/rental costs, intercell material handling costs, machine relocation costs, and
intracell material handling costs.

Constraint (3) balances the workload across cells for social equity. Constraint (4) ensures each part operation is
assigned to a single machine and processed once. Constraint (5) sets lower and upper bounds on the number of
machines per cell.  Constraint (6) guarantees machine capacity limits are not exceeded. Constraint  (7) enforces
accurate machine placement and relocation calculations across demand periods. Constraint (8) limits the number of
part operations assigned to an operator. 

4. Solution Approach
4.1. Scope

With the backdrop of  the SBTi, we propose an extension to a traditional single objective optimization model to
solving a DCMS. We present a bi-objective optimization approach which seeks to minimize the economic cost of
production and reduce the environmental effects of  the system over the planning periods. The environmental
objective will seek to minimize a combination of  scope 1, 2, and 3 emissions of  the system. Scope 1 emissions will
be interpreted as the emissions from the number of  machines in the entire system. Scope 2 emissions will be
interpreted as emissions from the amount of  energy used in material handling and machine utilization. Scope 3
emissions will be interpreted as emissions from the amount of  fuel used in intercell material handling. Furthermore,
we incorporate a social objective as a third objective of  the model in the form of  additional constraints. The
constraints will ensure that the resulting solution is within a predefined range for the operators and is balanced for
the entire staff.

4.2. Solvers

Various approaches have been employed to solve DCMS models in literature, each with its own strengths and
weaknesses depending on problem complexity,  the number of  factors considered, and desired outcomes. Key
benchmarks for these techniques include solution generation speed and quality. As noted by (Defersha & Chen,
2008), and widely recognized in the field, certain techniques are better suited for specific problem sizes. While early
researchers often relied on commercial software based on mathematical programming algorithms, meta-heuristic
techniques have gained increasing popularity due to their adaptability to diverse problem structures.

Other aspects for consideration when selecting a solver are performance metrics, available computational resources,
customization, and cost of  licensing. Researchers evaluate the quality of  solutions produced by solvers in terms of
objective function values, converging time, and determine the solver’s ability to find solutions consistently across
different problem instances and settings, including how well the solver performs as problem size or complexity
increases (Cao & Chen, 2004). 
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4.3. Penalty Function

To evaluate solutions, a non-dominated sorting method combined with a penalty approach was employed. Solutions
were  graded based  on three  primary  criteria:  penalty  value,  rank,  and  crowding  distance.  Additional  solution
attributes considered included uniqueness, dominance count, and domination count. For a given solution Z, where
A,  Aeq,  b, and  beq represent the problem constraints, and  M is a large positive value, the penalty expression for
inequality constraints was calculated as shown in Equation (10). This approach is similar to that used by (Cao &
Chen, 2004):

(10)

the formulation of  the penalty expression for the equality constraints was Equation (11) [24]:

(11)

4.4. Unique Non-Dominated Sorting

To prevent  premature convergence and reduce computational  time,  the  weighting of  objective  functions was
implemented using principles from the NSGA-II approach. The base NSGA-II method was further refined by
sorting the combined population (parent, offspring, and mutant) to select the best unique solutions for the next
generation. This modification enhanced solution exploration and population diversity. The approach initially ranks
solutions based on Pareto fronts. Subsequently, solutions within each front are sorted by their crowding distance, a
measure of  solution distribution. The unique solutions are selected for the next generation. If  unique solutions
were  fewer  that  the  population  size,  duplicate  solutions  from the  top-ranked  solutions  are  added to  fill  the
population. (Zhang, Li & Zhang, 2008).

Dominance  relationships  between  solutions  are  determined  based  on objective  function  values.  For  a  single
minimization objective, solution  Z(x1) dominates solution  Z(x2) if  Z(x1)  objective function value is smaller than
Z(x2). For multiple minimization objectives, A dominates B only if  A is no worse than B in all objectives and strictly
better in at least one objective. When a second minimization objective is introduced, Z(x1, y1) dominates Z(x2, y2) if
(x1 ≤ x2 and y1 ≤ y2) and (x1 < x2 or y1 < y2). The Boolean result was used to identify non-dominated solutions
across populations and assign rank accordingly. The crowding distance, calculated using Equation (12), is a measure
of  the average distance between neighbouring solutions in the objective space. Here N is the font count for each
iterative generation, While the  Pareto front is represented by  F, and  M is the total number of  objectives, the
crowding distance (di) for each solution was calculated using the equation Equation (12):

(12)

4.5. Genetic Algorithm

Evidently, the GA emerges as the optimal solver for the sustainable model due to its distinct strengths over other
solvers in several key aspects. This is owing to its adaptability, population-based exploration, efficient handling of
constraints,  effectiveness  in  multi-objective  optimization,  customization  options,  scalability,  and  parallelization
capabilities. Its ability to address a wide array of  optimization challenges makes GA the optimal choice to achieve
robust and high-quality solutions. GAs are a type of  evolutionary metaheuristic technique that iteratively improves a
population  of  potential  solutions.  Starting  with  a  randomly  generated  initial  population,  GAs  apply  genetic
operators like crossover and mutation to create new generations of  solutions. (Berlato, Montanha & Simon, 2006).
The pseudo code for the developed GA is detailed in Figure 2.

4.6. Repair Function

Repair functions, also known as constraint handling techniques, or repair mechanisms, are essential components in
GAs for addressing constraint violations during the evolution process. When a solution generated by the GA
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violates problem constraints, it can either be automatically discarded, or a repair function is applied to modify the
solution such that it satisfies the constraints while preserving its quality as much as possible. Effective constraint
handling mechanisms are crucial for ensuring the GA’s robustness and ability to handle real-world optimization
problems with complex constraints. Experimentation and tuning of  repair functions are often necessary to find the
most suitable approach for a given problem domain. Penalty-based repair functions penalize solutions based on the
degree of  constraint  violation.  In this  approach,  the objective function is  augmented with penalty terms that
penalize violations of  constraints. The GA then optimizes the penalized objective function, indirectly encouraging
solutions to satisfy the constraints. Repair by resampling involves randomly resampling or generating new values for
violated variables to bring the solution back into feasibility.  This approach requires careful balancing between
exploration  and exploitation to avoid excessive  randomness  while  exploring  the  solution  space  (Amjad,  Butt,
Anjum, Chaudhry, Faping & Khan, 2020). 

Figure 2. GA pseudo code

A hybrid  repair  function  was  developed  to  rectify  solutions  that  violated  any  constraint  during  initialization,
crossover, or mutation. This function combines aspects of  resampling and penalty-based approaches. The repair
process  commences  by  addressing  primary  variable  violations  of  constraint  (6).  Subsequently,  machines  are
assigned to cells in accordance with constraint (7). Unallocated machines are removed, and demand periods are
combined  to  determine  machine  relocation  variables.  Repaired  solutions  are  then  evaluated  against  cell  size
constraints (8). The penalty approach effectively maintains most constraints, however, cell upper bound constraints
proved challenging to repair without significantly increasing computational effort. Therefore, solutions that still
violated constraints after the initial repair were discarded. To address cell lower bound violations, a minimal number
of  random machines were added to the cell. This repair process is shown in Figure 3.
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Figure 3. Repair function pseudo code

5. Case Study
5.1. Problem Description

Traditionally,  optimization efforts have focused predominantly  on minimizing economic costs,  overlooking the
crucial aspects of  environmental sustainability, and social responsibility. Few studies have explored the integration
of  environmental objectives within optimization models, while others have also considered a social objective or
limitation  in  other  models,  however,  a  significant  research  gap  exists  where  all  three  aspects  are  considered
simultaneously. In response to this gap, our study introduces a dual objective model that integrates economic cost
minimization with environmental emissions reduction, and social constraints on the workforce. By comparing the
performance  of  this  novel  approach  against  the  single  objective  model  from  (Safaei,  Saidi-Mehrabad,
Tavakkoli-Moghaddam & Sassani,  2007) we aim to elucidate the benefits of  incorporating environmental,  and
social considerations into optimization models. The data for this problem is given in Table 2 to 4.

Op

PARTS

P1 P2 P3 P4 P5 P6 P7 P8

J1 [0.68]M2
[0.55]M5

[0.67]M2
[0.79]M5

[0.13]M4
[0.36]M6

[0.55]M2
[0.82]M3

[0.71]M2
[0.17]M5

[0.72]M2
[0.81]M6

[0.44]M2
[0.76]M5

[0.84]M4
[0.20]M5

J2 [0.61]M2
[0.63]M3

[0.23]M2
[0.48]M3

[0.19]M2
[0.89]M5

[0.58]M2
[0.78]M6

[0.49]M4
[0.45]M6

[0.57]M1
[0.48]M6

[0.97]M3
[0.47]M4

[0.17]M2
[0.86]M4

J3 [0.88]M3
[0.63]M4

[0.24]M2
[0.57]M3

[0.58]M4
[0.96]M5

[0.76]M1
[0.26]M5

[0.65]M5
[0.59]M6

[0.47]M2
[0.12]M5

[0.28]M2
[0.86]M5

[0.54]M1
[0.15]M3

Bp
inter

Bp
intra

5
25

5
25

4
20

7
35

4
20

8
40

8
40

6
30

γ inter = R 25 (ZAR) γ intra = R 5 (ZAR) φinter = 45 kgCO2 μm = 0.958 kgCO2/hr

Table 2. Case study part production data
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Nmch

Machine

Tm

Available
Time (hr)

αm

Overhead
Cost (ZAR)

βm

Operation
Cost (ZAR)

δm

Relocation
Cost (ZAR)

τm

Sourcing
Emissions
(kgCO2)

σm

Relocation
Emissions
(kgCO2)

M1 700 1200 6 600 6200 3100

M2 700 1400 3 700 5320 2660

M3 700 1500 7 750 4960 1500

M4 700 1400 4 700 5320 2660

M5 700 1200 2 600 6200 3100

M6 700 1600 8 800 4650 2325

Table 3. Part production data

Part Period 1 Period 2 Period 3

P1 200 500 600

P2 0 450 0

P3 0 0 600

P4 650 500 0

P5 350 0 750

P6 600 500 350

P7 550 200 300

P8 600 450 350

Table 4. Part demand data

5.2. Optimization Results

The case study was solved on MATLAB R2021a running on a computer with a 2.70 GHz 7th generation Intel i7
processor, with 2 cores, and 8 GB RAM. The algorithm ran for a thousand generations for exhaustive exploration. 

Through a rigorous simulation, the study demonstrates the superiority of  the dual objective model over its single
objective counterpart. The findings reveal that the dual objective model not only achieves superior economic cost
savings, but also significantly reduces environmental emissions, thus presenting a more sustainable and efficient
solution.  Figure 4 shows the difference between the solution from literature and the solution generated by the
sustainable model. Evidently, the dual objective solution dominates the single objective solution. Furthermore, the
mental pressure on the staff  is reduced as well. The study presents a compelling argument for the adoption of  dual
objective optimization models in DCMS. By concurrently addressing economic cost minimization, environmental
emissions  reduction,  and  improved social  responsibility,  the  dual  objective  model  offers  a  more  holistic  and
sustainable approach to system optimization. These findings not only contribute to the theoretical understanding of
DCMS but also provide practical insights for industry practitioners seeking to enhance operational efficiency while
mitigating environmental  impact.  Table 5 to 7 detail  the  generated solution which can be contrasted to that
presented by (Safaei et.al., 2007).

5.3. Sensitivity Analysis

The performance of  a GA can be influenced by various input parameter settings including crossover rate, mutation
rate,  mutation  operator,  crossover  operator,  parent  selection  techniques,  population  trimming  strategies,  and
termination  criteria.  Furthermore,  there  could  be  interactions  between  these  parameters  in  the  optimization
process. Hence, a sensitivity analysis was conducted by changing a single of  the parameters from the original
solution and running the  GA for 1000 generations  as was  done in  the original  solution.  Table  8 details  the
parameters which were changed and shows the results. 
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Figure 4. Graph of  sustainable model vs literature model

Cell
Number

Machine
Number

PARTS
Demand
PeriodP1 P4 P5 P6 P7 P8

1

M3 2,3 3

1

M5 3 1

M6 2,3 2

2
(2)M2 1,2 1 3

M5 1 3 1

3 (2)M4 2 1,2

Table 5. Sustainable model period 1 planning

Cell
Number

Machine
Number

PARTS
Demand
PeriodP1 P2 P4 P6 P7 P8

2

(2)M2 1,2 1,2,3

2

M5 3 3 1

M6 1,2

3

M2 1,2 3

M3 2 3

(2)M4 3 1,2

Table 6. Sustainable model period 2 planning

Cell
Number

Machine
Number

PARTS
Demand
PeriodP1 P3 P5 P6 P7 P8

2
(2)M5 2,3 1 3 1

3

(2)M6 2,3 1,2

3

(2) M2 1,2 1,3 2

M3 3

M4 3 1 2

Table 7. Sustainable model period 3 planning
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Parameter No. of  solutions
Machine

Utilization %
Min Production

Time Min Obj1 Val Min Obj2 Val

Original 128 61 ~ 70 689 342518 105210

Crossover rate = 0.6 128 60 ~72 689 342518 105210

Crossover rate = 1 128 60 ~72.2 689 342518 105210

Mu = 0.01 187 63 ~ 74.2 672 306495 81215

Mu = 0.025 200 60.7 ~ 69.8 673 309974 96322

Mu = 0.075 53 66.9 ~ 73.8 664 318422 118573

Mu = 0.1 89 59.5 ~ 68.7 673 319915 123929

Generations = 500 147 60 ~ 70 689 343074 127369

Population Size 150 19 68.2 ~ 75.3 673 322068 110356

Population Size 250 35 66 ~ 73.7 694 307609 104390

Cell Size LB = 2 200 64 ~73.9 672 310588 96082

Table 8. Sensitivity analysis on problem 3

A final sorting of  all generated solutions was conducted at the conclusion of  the GA sensitivity study. There were
1058 unique solutions altogether, from which 211 were in the first Pareto front after sorting. Within that front, the
best solution was selected based on production time and machine utilization characteristics. The solution with the
highest machine utilization had the lowest production time. This solution was the most financially conservative
solution from the lot suggesting a strong relationship between machine utilization and the financial objective.

To scrutinize any biases in the solution pattern, varying changes were made to the problem parameters, collecting
the results after each iteration. The changes were focused on machine available time, material handling emissions,
and material handling cost, because these parameters affect the values of  both objective functions. Figure 5 shows
the results from each iteration with the legend showing each altered variable. The combined solution from the GA
sensitivity was then plotted to show the variance of  each iteration from the original solution. 

Figure 5. MILP sensitivity analysis

It is noted that the concave shape of  the resulting Pareto is consistent across the different iterations. This insight is
the most significant finding as it confirms the relationship between the two objective functions over the different
parameter settings. The clustering of  the plots around the same region shows the similarity of  the model’s behavior,
and that the solution space is not restricted by the constraints, which is where the social objective is contained.
Another significant insight to be gained from the analysis is that the most influential parameters are the available
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time on the machines, and the material handling parameters. Changing the intercell part batch emissions has little
deviation from the original solution. Holistically, the analysis shows how changes in parameters would affect the
solution, giving decision makers insight should any parameters be undefined in the system they are attempting to
optimize. With this study they may predict the behavior and influence of  each term in their system.

6. Discussion
Noting that the case study from literature focused solely on minimizing the economical impact of  production, a
computational  efficiency  comparison  of  the  studies  would  be  biased.  However,  extending  the  problem  by
introducing an environmental objective creates a new perspective that adds further insights to the posed solution.
Firstly, the added dimension revealed the existence of  solutions that are not only more economically preferable, but
also of  a significantly reduced environmental footprint as shown in Figure 4. Secondly, the extension shows that
previous optimisation attempts were stuck in a local  minima.  The consideration of  the environmental impact
guided the GA to escape local minima and find dominant configurations in the solution search space. The common
shape  of  each  resultant  Pareto plot  shown  in  Figure  5 is  a  strong  indicator  of  the  relationship  between
environmental impact and the cost of  production. The concave relationship shows that there is a trade-off  along
the Pareto plot. As environmental impact decreases, the economic implications increase; the opposite can be said
when environmental impact increases. This insight is strongly supported by the sensitivity  analysis  as multiple
iterations revealed similar shaped Pareto plots. 

The  practical  implications  of  this  study  suggest  that  manufacturers  need  to  consider  not  only  the  cost  of
production, but also the environmental footprint of  planned activity, including the social impact on the workforce.
Objectively, there are limitations to this paper’s methodological approach, the GA solver being one. From the
sensitivity study different solution plots were generated from changing model parameters. Hence, it is noted that
not all parameter combinations were explored. It would be ideal to compare results from other metaheuristic, and
non-metaheuristic solvers for reference. Another limitation of  this study is data bias from the singularity of  the case
study. We acknowledge that other insights that have not been captured herewith may be found in larger models
with different model assumptions. 

7. Conclusion

The paper proposes incorporating all three pillars of  sustainability when solving CMS. Emission factors were used
to simulate the environmental contributions of  key processes, with emissions reckoned in metric tons of  carbon
dioxide (kg CO2). A minimization mathematical model of  a multi-objective nature was developed. A bi-objective
NSGA-II was implemented as the solver approach. The penalty approach was used to enforce model constraints. A
custom repair function was added to the solver to recover solutions that violated constraints. The NSGA-II was
modified to prioritize unique solutions before allowing duplicate solutions when trimming the population. A case
study from literature was presented. Results from the optimization supported the hypothesis that environmentally
friendly options share a concave relationship with their financially conservative counterparts. A sensitivity analysis
showed that the results were not solver biased, and identified which parameters directly influenced the final solution
population. The research showed that there exists a tradeoff  between the different aspects of  sustainability, and
manufacturers need to implement a multi-objective model, such as the one presented, to cater for all three pillars.
Future developments to the work presented include layout planning, intracell workload balancing, and production
scheduling. Practical implications for industry include the incorporation of  renewable energy sources for material
handling services, and the reduction of  carbon emissions by reducing machine idle. 
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