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Abstract:

Purpose: Research suggests that material handling costs account for 20-50% of production costs.
Furthermore, these production cost could be reduced by 10-30% by dynamically changing the layout. We
propose an integer programming model to sustainably solve plant layouts in a financially conservative, yet
environmentally friendly way.

Design/methodology/approach: We propose a bi-objective Non-dominated Sorting Genetic
Algorithm (NSGA-II) approach to optimizing Dynamic Cellular Manufacturing Systems (DCMS). The
mathematical model’s first objective function minimizes economic cost, while the second objective
function minimizes environmental emissions. The NSGA-II solver uses the penalty approach to handle
constraints. The solver is customized beyond the traditional NSGA-II, such that constraint violating
solutions are repaired, and unique solutions are prioritized to enhance population diversity and exploration.

Findings: Although a manufacturing plant layout may be optimal for a particular demand period, when
the demand changes that system may not be optimal for the new demand period. Extensive simulation
shows that our bi-objective model dominates the single objective model from literature. Adding an
environmental second objective to DCMS reveals that the most economical solution is often the least
environmentally friendly approach, and vice versa. A convex relationship is observed between the two
objectives. A weighted compromise is required when setting up a sustainable production system.

Research limitations/implications: Only carbon emissions were simulated. Hazardous liquid waste,
Energy consumption, and water consumption were not considered.

Practical implications: Manufactures and their contracted line builders will need to consider
environmental implications when setting up a production line. Decision makers need to be aware that the
most cost conservative approach may lead to significantly higher carbon emissions.

Social implications: The social pillar of sustainability was incorporated via a set of constraints in the
mathematical model of this study. The solution space showed that the model was not restricted by this
objective.

Originality/value: The value proposition of this work is presented in a case study compatison of our
multi-objective model against a single objective model from literature. The multi-objective model
dominates the literatute model giving invaluable insights to possible improvements to previous research
work.

Keywords: sustainable manufacturing, multi-objective optimization, dynamic cellular manufacturing systems,
genetic algorithm (NSGA-II), penalty approach
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1. Introduction

Sustainable Manufacturing (SM) is defined as producing goods through activities that meet present needs without
compromising the ability of future generations to do likewise (Yong-Chan & Xirouchakis, 2015). This aspect
extends to the three pillars of sustainability which are environmental constraints, social impacts, and financial
limitations. An increasing amount of research is conducted on integrating these three aspects of sustainability for
improved efficiencies in Manufacturing Systems (MS). Cellular Manufacturing (CM) is a production technique
where products are manufactured in small, self-contained units known as cells. Cellular Manufacturing Systems
(CMS) are a type of MS that is organized around the production of specific product families, or groups of similar
products (Cerqueus, Paolo, Damien & Xavier, 2020). These systems involve the use of small, flexible teams of
workers and machines that are dedicated to producing a specific set of products or components. There are several
types of CMS, including single-cell systems, where all the activities needed to produce a product are cartied out in a
single location, and multi-cell systems, where different cells are dedicated to dissimilar stages of the production
process (Asokan, Prabhakaran & Kumar, 2001). To be successful, CMS require careful planning and coordination,
as well as well-trained and motivated workers.

CMS typically involve lean manufacturing principles, which utilize techniques such as Just In Time (JIT)
manufacturing, where materials arrive and the production facility just when they are required, and Kanban systems,
which use visual signals to indicate when materials or components need to be replenished. CMS can improve
efficiency and reduce cycle times by eliminating unnecessary processing steps and minimizing the need for material
handling (Cerqueus et al. 2020). They also allow for greater flexibility and responsiveness to changing product
conditions, as fixtures can be reconfigured to produce assorted products in respond to changes in market demand.
Another benefit of CMS is that they can improve the quality of products, as teams are able to identify and address
quality issues more quickly. Accumulating conveyors and/or station buffers are often used in CMS to avoid
bottlenecks during breakdowns or routine maintenance operations. Furthermore, CMS help increase accountability,
as team members are responsible for the performance of their cell. Also, they can improve safety in the workplace
by allowing teams to focus on a specific set of products, which can reduce the risk of accidents and injuries
(Lokesh & Promod, 2011).

Dynamic Cellular Manufacturing Systems (DCMS) are an extension of CMS that are reconfigured periodically to
suit demand. Whenever the physical layout or process flow of a CMS is changed from period to petriod, the
system is referred to as a DCMS. The reconfiguration of DCMS enhances the effectiveness of CMS in adapting
to changes and improved efficiency. As consumer trends lean towards products with a shorter life span and
more customization, a particular layout may not always be feasible when demand changes, hence, the need for
DCMS has never been greater. Maintaining an effective DCMS requires careful consideration of all the factors
that affect the product. DCMS present more control for manufacturers to plan for production and factory
maintenance. This improved flexibility makes manufacturers more competitive in the market on more than
just one objective, which is the driving reason for implementing DCMS (Alimian, Ghezavati &
Tavakkoli-Moghaddam, 2020).

The need for periodic reconfiguration of manufacturing systems is clear and replete throughout literature,
however, the need for this study is founded in the incorporation of all three aspects of sustainability within
reconfiguration planning, Because most researchers focused primarily on the economic factors of production
during optimization, there exists a gap in literature which includes all three pillars of sustainability in a single
reconfiguration model. Since manufacturers need assurances that changes to their existing systems are practical
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and not only theoretically based; this study uses industry-based metrics and impact factors to provide confidence
in suggested directions. Although a manufacturing layout may be optimal for a set of initial conditions, it can
become outdated and contain bottlenecks and/or inefficiencies over time as demands or products change; hence,
reconfiguring DCMS becomes vital. Our study of reconfiguration planning is aimed at enhancing optimality in
industry.

2. Literature Review

Combining SM, which delivers cost savings, resource conservation, and enhanced efficiency; with DCMS known
for its flexibility, adaptability, and customizability, gives organizations a competitive market edge. Researchers
have noted the significance of addressing SM and DCMS simultaneously (Zhao & Wu, 2000). Compliance with
the world’s Sustainable Development Goals (SDGs), requires manufacturers to brainstorm ways to adhere to
new and/or stricter sustainability regulations. Goals 8 and 12 from the SDGs focus on promoting decent work
and economic growth, and responsible consumption and production respectively. Sustainability is the union of
its three pillar aspects namely, economic factors, social influences, and environmental constraints as depicted in
Figure 1.

Bearable Viable

SUSTAINABLE

Equitable

Figure 1. Pillars of sustainability: Social, Economic, and Environmental

Each of these aspects uniquely affects manufacturing technologies and practices, leading to multi-objective
problems that often require careful planning to find the most optimal routing for a MS. With the globalization of
today’s markets and the evolving workforce due to automation, it becomes increasingly difficult to plan the best
routing without the aid of optimization techniques and strategies. The use of data analytics and the adoption of
continuous improvement methods, such as Kanban Boards, Kaizen, Lean Manufacturing, Six Sigma, and other
digital technologies is helpful in supporting the adoption of more sustainable practices. These strategies help
manufacturers identify bottlenecks, eliminate waste, and improve efficiency in production processes (Yong-Chan &
Xirouchakis, 2015).

Research on sustainability oriented DCMS models has evolved from a primary focus on economic efficiency
toward more holistic frameworks that integrate environmental and social objectives (Aljuneidi & Bulgak, 2016).
Early models typically addressed cost minimization and basic cell reconfiguration, with limited attention to
sustainability’s three pillars often treating environmental and social aspects as secondary or as constraints rather
than explicit objectives (Niakan, Baboli, Moyaux & Botta-Genoulaz, 2014). Recent studies have advanced
mathematical formulations, employing mixed-integer linear or nonlinear programming to capture dynamic
layouts, (Sibanda & Padayachee, 2024) uncertain demand, and hybrid manufacturing processes, while explicitly
modeling energy consumption, emissions, and social impacts such as labor conditions and job opportunities
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(Jafarzadeh, Khalili & Shoja, 2022; Almasarwah, Abdelall, Bhutta & Saraireh, 2025). Optimization approaches
have shifted from exact solvers, which struggle with computational complexity in large scale problems, to
sophisticated meta-heuristics like NSGA-II and simulated annealing, enabling multi-objective, large dimension
instances with improved efficiency and solution quality (Lamba, Kumar, Mishra & Rajput, 2020). Despite these
advances, a critical gap remains: many models still inadequately address the full integration of all three
sustainability pillars, often prioritizing economic and environmental objectives while relegating social factors to
constraints or proxies. Furthermore, uncertainty, whether in demand, process times, or sustainability parameters,
has only recently begun to be incorporated, using fuzzy logic or robust optimization, but remains underexplored
in multi-objective contexts (Jafarzadeh et al, 2022). Literature also highlights a lack of comprehensive
frameworks that simultaneously optimize for cost, environmental impact, and social responsibility under real-
world uncertainty, especially in closed-loop or hybrid systems (Telegraphi & Bulgak, 2020). This gap justifies the
need for rigorous, multi-objective models that explicitly and equitably treat all sustainability dimensions,
leveraging advanced meta-heuristics and robust optimization to address the complexity and uncertainty inherent
in modern DCMS. This approach aligns with the pressing industrial and societal demand for truly sustainable MS
(Pérez-Gosende, Mula & Diaz-Madrofiero, 2020).

The adoption of more sustainable practices in CMS requires careful planning and coordination, as well as the
establishment of clear goals and objectives. Furthermore, sustainability can be measured in many ways. Yong-Chan
et.al emphasized the need to include environmental metrics of energy use and waste management while optimizing
CMS with sustainability considerations. (Khezti, Hichem & Lyes, 2019) studied the sustainability of CMS, focusing
on liquid waste, and gas emissions. (Khettabi, Lyes & Mohamed, 2021) employed a multi-objective approach using
NSGA-II and NSGA-III to minimize hazardous liquid waste, greenhouse gas emissions, production time, and
costs. Their findings revealed that energy usage is influenced by production planning and related system
configurations, accounting for idle times, setup times, part or tool transfers. A comprehensive review of literature is
given in the work of (Pérez-Gosende, Mula & Diaz-Madrofero, 2021), however, Table 1 summarizes some recent
studies on sustainability and their focused metrics.

Year Focus Approach

Hazardous liquid waste, Carbon

(Khettabi, Lyes & Boutiche, 2022) NSGA-II, New NSGA-III

emission
(Khettabi et al., 2021) Carbon emission GA, TOPSIS
(Khezri, Hichem & Lyes, 2021) Energy consumption, Waste AUGECON, NSGA-II, SPEA-IT
(Massimi, Amirhossein, Hichem & Lyes, 2020) Energy consumption Mathematical
(Cerqueus et al., 2020) Energy cost Genetic Algorithm
(Khezti et al., 2019) Energy consumption, Waste Augmented e-constraint
(Liu, Rongfan, Zhanguo, Chengbin & Xiaoyi, 2018) | Energy cost NSGA-II & MOSA

Energy consumption, Water

(Huang, Badurdeen & Jawahir, 2018) . Mathematical

consumption
g(l)z;fse)ng, Khalgui, Wassim, Frey, Hon, Wu etal, Energy efficiency Reconfigurable timed net condition
(Yong-Chan & Xirouchakis, 2015) Energy consumption Muti-objective optimisation

Table 1. Recent literature on CMS sustainability

As more companies adopt the net zero standards, it becomes imperative that the environmental effects of
manufacturing be included in the objective of optimization models for MS. This is in the form of waste reduction,
the introduction of more renewable energy sources, newer technologies, and reduced greenhouse gas emissions.
The Science Based Targets initiative (SBT1) has established a global standard to provide direction to organizations
on achieving net-zero targets through a guided approach for setting near-term and long-term goals. Its goal is to
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encourage companies to halve their carbon emissions before 2030 and reduce their emissions entirely, to net-zero
standards by 2050. The standard classifies greenhouse gas emissions into three categories namely: Scopel, 2, and 3
emissions. Each category encapsulates production activities differently for the different sectors in industry in an
accepted standardization (Science Based Targets, 2021a).

Scope 1 emissions are direct emissions originating from sources owned or controlled by an organization, such as
those produced by fossil fuel combustion in company-owned boilers or vehicles. Scope 2 emissions are indirect
emissions resulting from the generation of purchased energy consumed by the organization, such as electricity,
heat, or steam typically acquired from a utility provider. Scope 3 emissions are also indirect but arise from the
organization’s activities at sources it does not own or control, including emissions from raw material production,
product transportation, and waste disposal. Scope 3 emissions often represent the largest portion of an
organization’s total emissions and can be the most difficult to measure and reduce (Science Based Targets, 2021a).
This study concentrates on optimizing the performance of CMS by examining carbon emissions from overall
production activity as a general, all-inclusive measure of sustainability. Production activity considered includes
emissions from material handling, part processing, machine life cycle, and machine idle. The unit of measurement
employed is metric tons of carbon emitted, denoted as kgCOo.

3. Mathematical Model
3.1. Model Notation

We present the model notation as:

Sets:

t—time index, h = 1 ... T — total number of Periods

i—partindex,p=1... I,

j—index of operations on parts, / = 1 ... O, — total number of operations needed for part 7
& — machine index, £ = 1 ... K— total number of machines

/—cellindex, /= 1... [L— total number of cells

Decision variables:

xer— 1 1f operation j of part 7 by machine 4 is done in cell /during time # otherwise 0
Ny — number of type & machines placed in cell /at time ¢

K%, — number of type & machines added to cell /at the beginning of time ¢

K 4 — number of type £ machines removed from cell /at the end of time #

ai — 1 if operation j of part 7 can be done on machine £; otherwise 0

Parameters:

LB = Cell size lower bound

UB = Cell size upper bound

D;, = Demand of part / during period #

B/ = Intercell batch size for part 7

B/ = Intracell batch size for part

H, = Available time on machine £ (hr)

hix = time for operation ;j of part / on machine £ (hr)
oe = Overhead cost of machine type £

[ = Vatiable operating cost for each unit time on machine & (R/hr)

V
v

inter —

Batch intercell material handling cost

intra —

Batch intracell material handling cost
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0 = Relocation cost for machine type £

@™ = Batch intercell carbon emissions (kgCO»)

7. = Carbon emissions from adding and removing machine type 7 (kgCO»)

4 = Carbon emissions from idle time of machine type & (kgCO,/hr)

& = Variable carbon emissions for each operating unit time, on machine type £ (kgCO,/hr)
g, = Carbon emissions from relocating machine type £ (kgCO5)

g = Workload balancing factor (taken as * 0.75 for 75 %)
7 = maximum number of different operations an operator can be assigned (taken as 3)

3.2. Model Description

Minimize:

o oP-1 L B K K
it
EIIIDIPN | P TS R 0
t=1i=1 j=1 I=1"-1 k=1 k=1
T L K LI & &
+ZZ T |Nices 1) — Nicie| +§Zzzak(K+klr+K_kl:)
t=11=1 k=1 t=1k=11=1
T L I Op K
Zy = ZZ Z Z Br DittipmXjixit
t=11=1i=1j=1k=1
T K L
+D, D D Mk
t=1k=11=1
1 T I opP-1 L N K K
it
3000 E3 ) T
t=1i=1 j=1 Il=1"1 k=1 k=1
" T K L @)
+3 Z Z Z S (K* e + K™ k)
t=1k=11=1
I op-1 L K
*t3 z z pintra | yintre Z|x(j+1)iklt — Xjikit
t=1i=1 j=1 I=1""1 k=1
K K
- Z X@j+1)ilt — Z Xjilt )
k=1 k=1
Subject to:
K I oP L K I OP
q
IS )Y S .
k=1i=1j=1 =1 k=1i=1j=1
L K
ajikxﬁklt =1 Vj, i 5 t (4)
I=1 k=1
K
LB < ZNku < UB Vit ®)
k=1
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The first objective function (1) minimizes the environmental impact measured in kgCO,. It consists of four
components: machine idling emissions, intercell material handling emissions, machine relocation emissions, and
machine lifecycle emissions. The second objective function (2) minimizes the total cost in ZAR, which includes
machine operational costs, overhead/rental costs, intercell material handling costs, machine relocation costs, and
intracell material handling costs.

Constraint (3) balances the workload across cells for social equity. Constraint (4) ensures each part operation is
assigned to a single machine and processed once. Constraint (5) sets lower and upper bounds on the number of
machines per cell. Constraint (6) guarantees machine capacity limits are not exceeded. Constraint (7) enforces
accurate machine placement and relocation calculations across demand petiods. Constraint (8) limits the number of
part operations assigned to an operator.

4. Solution Approach
4.1. Scope

With the backdrop of the SBTi, we propose an extension to a traditional single objective optimization model to
solving a DCMS. We present a bi-objective optimization approach which seeks to minimize the economic cost of
production and reduce the environmental effects of the system over the planning periods. The environmental
objective will seek to minimize a combination of scope 1, 2, and 3 emissions of the system. Scope 1 emissions will
be interpreted as the emissions from the number of machines in the entire system. Scope 2 emissions will be
interpreted as emissions from the amount of energy used in material handling and machine utilization. Scope 3
emissions will be interpreted as emissions from the amount of fuel used in intercell material handling. Furthermore,
we incorporate a social objective as a third objective of the model in the form of additional constraints. The
constraints will ensure that the resulting solution is within a predefined range for the operators and is balanced for
the entire staff.

4.2. Solvers

Various approaches have been employed to solve DCMS models in literature, each with its own strengths and
weaknesses depending on problem complexity, the number of factors considered, and desired outcomes. Key
benchmarks for these techniques include solution generation speed and quality. As noted by (Defersha & Chen,
2008), and widely recognized in the field, certain techniques are better suited for specific problem sizes. While eatly
researchers often relied on commercial software based on mathematical programming algorithms, meta-heuristic
techniques have gained increasing popularity due to their adaptability to diverse problem structures.

Other aspects for consideration when selecting a solver are performance metrics, available computational resources,
customization, and cost of licensing. Researchers evaluate the quality of solutions produced by solvers in terms of
objective function values, converging time, and determine the solver’s ability to find solutions consistently across
different problem instances and settings, including how well the solver performs as problem size or complexity
increases (Cao & Chen, 2004).
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4.3. Penalty Function

To evaluate solutions, a non-dominated sorting method combined with a penalty approach was employed. Solutions
were graded based on three primary criteria: penalty value, rank, and crowding distance. Additional solution
attributes considered included uniqueness, dominance count, and domination count. For a given solution Z, where
A, Ay b, and b, represent the problem constraints, and M is a large positive value, the penalty expression for
inequality constraints was calculated as shown in Equation (10). This approach is similar to that used by (Cao &
Chen, 2004):

P,(Z) = M *max [0,[ A — b]]? (10)
the formulation of the penalty expression for the equality constraints was Equation (11) [24]:

P,(Z) =M = sum{[sum[Aeq —beq]]z} (11)

4.4. Unique Non-Dominated Sorting

To prevent premature convergence and reduce computational time, the weighting of objective functions was
implemented using principles from the NSGA-II approach. The base NSGA-II method was further refined by
sorting the combined population (parent, offspring, and mutant) to select the best unique solutions for the next
generation. This modification enhanced solution exploration and population diversity. The approach initially ranks
solutions based on Pareto fronts. Subsequently, solutions within each front are sorted by their crowding distance, a
measure of solution distribution. The unique solutions are selected for the next generation. If unique solutions
were fewer that the population size, duplicate solutions from the top-ranked solutions are added to fill the
population. (Zhang, Li & Zhang, 2008).

Dominance relationships between solutions are determined based on objective function values. For a single
minimization objective, solution Z(x;) dominates solution Z(x;) if Z(xi) objective function value is smaller than
Z(>). For multiple minimization objectives, A dominates B only if A is no worse than B in all objectives and strictly
better in at least one objective. When a second minimization objective is introduced, Z(x, y1) dominates Z(xx, y,) if
(1 = x and 1 = yp) and (1 < x, or 31 < ). The Boolean result was used to identify non-dominated solutions
across populations and assign rank accordingly. The crowding distance, calculated using Equation (12), is a measure
of the average distance between neighbouring solutions in the objective space. Here N is the font count for each
iterative generation, While the Pareto front is represented by I and M is the total number of objectives, the
crowding distance () for each solution was calculated using the equation Equation (12):

N M . .
= Z Z BEZ)E+D) - FEZIGE-D

max min
Fn - Fn

12)

n=1m=1

4.5. Genetic Algorithm

Evidently, the GA emerges as the optimal solver for the sustainable model due to its distinct strengths over other
solvers in several key aspects. This is owing to its adaptability, population-based exploration, efficient handling of
constraints, effectiveness in multi-objective optimization, customization options, scalability, and parallelization
capabilities. Its ability to address a wide array of optimization challenges makes GA the optimal choice to achieve
robust and high-quality solutions. GAs are a type of evolutionary metaheuristic technique that iteratively improves a
population of potential solutions. Starting with a randomly generated initial population, GAs apply genetic
operators like crossover and mutation to create new generations of solutions. (Berlato, Montanha & Simon, 2000).
The pseudo code for the developed GA is detailed in Figure 2.

4.6. Repair Function

Repair functions, also known as constraint handling techniques, or repair mechanisms, are essential components in
GAs for addressing constraint violations during the evolution process. When a solution generated by the GA
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violates problem constraints, it can either be automatically discarded, or a repair function is applied to modify the
solution such that it satisfies the constraints while preserving its quality as much as possible. Effective constraint
handling mechanisms are crucial for ensuring the GA’s robustness and ability to handle real-world optimization
problems with complex constraints. Experimentation and tuning of repair functions are often necessary to find the
most suitable approach for a given problem domain. Penalty-based repair functions penalize solutions based on the
degree of constraint violation. In this approach, the objective function is augmented with penalty terms that
penalize violations of constraints. The GA then optimizes the penalized objective function, indirectly encouraging
solutions to satisfy the constraints. Repair by resampling involves randomly resampling or generating new values for
violated variables to bring the solution back into feasibility. This approach requires careful balancing between

exploration and exploitation to avoid excessive randomness while exploring the solution space (Amjad, Butt,
Anjum, Chaudhry, Faping & Khan, 2020).

Initialization Stage

Get Problem
Data
Generate

Build Model
Constraints
Generate Post
Prepare Evaluate Optimization report
Functions

!
¢

Population Initialization Evolution Loop

Create Random
Binary String

Termination
Criteria Met?,

Repair Function

Unique Sort &
Trim Population

Evaluate New
Population

Repair Function

Mutate Offspring

Crossover Parents

Population
Initialized?

Toumnament Selection
for Mating Pool

Figure 2. GA pseudo code

A hybrid repair function was developed to rectify solutions that violated any constraint during initialization,
crossover, or mutation. This function combines aspects of resampling and penalty-based approaches. The repair
process commences by addressing primary variable violations of constraint (6). Subsequently, machines are
assigned to cells in accordance with constraint (7). Unallocated machines are removed, and demand periods are
combined to determine machine relocation variables. Repaired solutions are then evaluated against cell size
constraints (8). The penalty approach effectively maintains most constraints, however, cell upper bound constraints
proved challenging to repair without significantly increasing computational effort. Therefore, solutions that still
violated constraints after the initial repair were discarded. To address cell lower bound violations, a minimal number
of random machines were added to the cell. This repair process is shown in Figure 3.
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Start Repair Process

Repair Primary
Variables

Place Machines in
Appropriate Cells

Determine Machine
Relocation Variables

Check Cell Size
Constraints

Cell Size
Satisfied?

First Repair
Attempt?

Add Random
Machines

Solution
Repaired

Discard Solution

End Repair
Process

Figure 3. Repair function pseudo code

5. Case Study
5.1. Problem Description

Traditionally, optimization efforts have focused predominantly on minimizing economic costs, overlooking the

crucial aspects of environmental sustainability, and social responsibility. Few studies have explored the integration

of environmental objectives within optimization models, while others have also considered a social objective or

limitation in other models, however, a significant research gap exists where all three aspects are considered

simultaneously. In response to this gap, our study introduces a dual objective model that integrates economic cost

minimization with environmental emissions reduction, and social constraints on the workforce. By comparing the

performance of this novel approach against the single objective model from (Safaei, Saidi-Mehrabad,
Tavakkoli-Moghaddam & Sassani, 2007) we aim to elucidate the benefits of incorporating environmental, and
social considerations into optimization models. The data for this problem is given in Table 2 to 4.

' 0.68M2 | [0.67]M2 | [013]M4 | [0.55]M2 | [07UM2 | [0.72M2 | [0.44]M2 | [0.84]M4

J [055M5 | [079M5 | [036]M6 | [0.82M3 | [0.17]M5 | [0.81]M6 | [0.76M5 | [0.20]M5

) 061M2 | [023M2 | [019]M2 | [0.58]M2 | [049M4 | [0.57]M1 | [0.97]M3 | [0.17]M2

J [0.63M3 | [048]M3 | [0.89]M5 | [0.78]M6 | [045M6 | [0.48]M6 | [0AT]M4 | [0.86]M4

; [0.88M3 | [024M2 | [0.58]M4 | [0.76]M1 | [0.65M5 | [047]M2 | [0.28]M2 | [0.54]M1

J [0.63M4 | [057M3 | [0.96]M5 | [026]M5 | [0.59M6 | [0.12]M5 | [0.86]M5 | [0.15]M3
Bpinler 5 5 4 7 4 8 8 6
B, 25 25 20 35 20 40 40 30

yinter =R 25 (ZAR) Vz‘rzrm =R5 (Zz4R) gﬂirn‘er =45 kgCOZ oy = 0.958 kgCOZ/hr

Table 2. Case study part production data

-10-
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T, [ [ Om SouZ‘::ing ReloZ:ltion
Available Overhead Operation Relocation Emissions Emissions
Time (hr) Cost (ZAR) Cost (ZAR) Cost (ZAR) (kgCO,)
M1 700 1200 6 600 6200 3100
M2 700 1400 3 700 5320 2660
M3 700 1500 7 750 4960 1500
M4 700 1400 4 700 5320 2660
M5 700 1200 2 600 6200 3100
Mo 700 1600 8 800 4650 2325

Table 3. Part production data

Part Period 1 Period 2 Period 3
P1 200 500 600
P2 0 450 0
P3 0 0 600
P4 650 500 0
P5 350 0 750
P6 600 500 350
P7 550 200 300
P8 600 450 350

Table 4. Part demand data

5.2. Optimization Results

The case study was solved on MATLAB R2021a running on a computer with a 2.70 GHz 7th generation Intel i7
processor, with 2 cores, and 8 GB RAM. The algorithm ran for a thousand generations for exhaustive exploration.

Through a rigorous simulation, the study demonstrates the superiority of the dual objective model over its single
objective counterpart. The findings reveal that the dual objective model not only achieves superior economic cost
savings, but also significantly reduces environmental emissions, thus presenting a more sustainable and efficient
solution. Figure 4 shows the difference between the solution from literature and the solution generated by the
sustainable model. Evidently, the dual objective solution dominates the single objective solution. Furthermore, the
mental pressutre on the staff is reduced as well. The study presents a compelling argument for the adoption of dual
objective optimization models in DCMS. By concurrently addressing economic cost minimization, environmental
emissions reduction, and improved social responsibility, the dual objective model offers a more holistic and
sustainable approach to system optimization. These findings not only contribute to the theoretical understanding of
DCMS but also provide practical insights for industry practitioners secking to enhance operational efficiency while
mitigating environmental impact. Table 5 to 7 detail the generated solution which can be contrasted to that
presented by (Safaei et.al., 2007).

5.3. Sensitivity Analysis

The performance of a GA can be influenced by vatious input parameter settings including crossover rate, mutation
rate, mutation operator, crossover operator, parent selection techniques, population trimming strategies, and
termination criteria. Furthermore, there could be interactions between these parameters in the optimization
process. Hence, a sensitivity analysis was conducted by changing a single of the parameters from the original
solution and running the GA for 1000 generations as was done in the original solution. Table 8 details the
parameters which were changed and shows the results.
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Figure 4. Graph of sustainable model vs literature model
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Table 5. Sustainable model period 1 planning
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Table 6. Sustainable model period 2 planning
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Table 7. Sustainable model period 3 planning
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Machine Min Production
Parameter No. of solutions  Utilization % Time Min Objl Val Min Obj2 Val
Original 128 61 ~70 689 342518 105210
Crossover rate = 0.6 128 60 ~72 689 342518 105210
Crossover rate = 1 128 60 ~72.2 689 342518 105210
Mu = 0.01 187 63~ 742 672 306495 81215
Mu = 0.025 200 60.7 ~ 69.8 673 309974 96322
Mu = 0.075 53 66.9 ~73.8 664 318422 118573
Mu = 0.1 89 59.5 ~ 68.7 673 319915 123929
Generations = 500 147 60 ~ 70 689 343074 127369
Population Size 150 19 68.2~ 753 673 322068 110356
Population Size 250 35 66 ~ 73.7 694 307609 104390
Cell Size LB =2 200 64 ~73.9 672 310588 96082

Table 8. Sensitivity analysis on problem 3

A final sorting of all generated solutions was conducted at the conclusion of the GA sensitivity study. There were
1058 unique solutions altogether, from which 211 were in the first Pareto front after sorting. Within that front, the
best solution was selected based on production time and machine utilization characteristics. The solution with the
highest machine utilization had the lowest production time. This solution was the most financially conservative
solution from the lot suggesting a strong relationship between machine utilization and the financial objective.

To scrutinize any biases in the solution pattern, varying changes were made to the problem parameters, collecting
the results after each iteration. The changes were focused on machine available time, material handling emissions,
and material handling cost, because these parameters affect the values of both objective functions. Figure 5 shows
the results from each iteration with the legend showing each altered variable. The combined solution from the GA
sensitivity was then plotted to show the variance of each iteration from the original solution.

P 10° MILP Sensitivity Analysis

——Tm+5%
——Tm-5%
—— Phi Inter+4%
—— Phi Inter-4%
—— Phi Inter+11%
Phi Inter-11%
Bp Inter+2.5%
Bp Inter-2.5%
Bp Intra+2.5%
Bp Intra-2.5%
Bp Inter+8%
—— Bp Inter-8%
——Bp Intra+40%

35F

251

——Bp Intra-40%
| — Original Solution

Environmental Impact [KgCO2]

, . . . . \ .
3 31 32 33 3.4 35 3.6
Financial Impact [R] x10°

Figure 5. MILP sensitivity analysis

It is noted that the concave shape of the resulting Pareto is consistent across the different iterations. This insight is
the most significant finding as it confirms the relationship between the two objective functions over the different
parameter settings. The clustering of the plots around the same region shows the similarity of the model’s behavior,
and that the solution space is not restricted by the constraints, which is where the social objective is contained.
Another significant insight to be gained from the analysis is that the most influential parameters are the available
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time on the machines, and the material handling parameters. Changing the intercell part batch emissions has little
deviation from the original solution. Holistically, the analysis shows how changes in parameters would affect the
solution, giving decision makers insight should any parameters be undefined in the system they are attempting to
optimize. With this study they may predict the behavior and influence of each term in their system.

6. Discussion

Noting that the case study from literature focused solely on minimizing the economical impact of production, a
computational efficiency comparison of the studies would be biased. However, extending the problem by
introducing an environmental objective creates a new perspective that adds further insights to the posed solution.
Firstly, the added dimension revealed the existence of solutions that are not only more economically preferable, but
also of a significantly reduced environmental footprint as shown in Figure 4. Secondly, the extension shows that
previous optimisation attempts wetre stuck in a local minima. The consideration of the environmental impact
guided the GA to escape local minima and find dominant configurations in the solution search space. The common
shape of each resultant Pareto plot shown in Figure 5 is a strong indicator of the relationship between
environmental impact and the cost of production. The concave relationship shows that there is a trade-off along
the Pareto plot. As environmental impact decreases, the economic implications increase; the opposite can be said
when environmental impact increases. This insight is strongly supported by the sensitivity analysis as multiple
iterations revealed similar shaped Pareto plots.

The practical implications of this study suggest that manufacturers need to consider not only the cost of
production, but also the environmental footprint of planned activity, including the social impact on the workforce.
Objectively, there are limitations to this paper’s methodological approach, the GA solver being one. From the
sensitivity study different solution plots were generated from changing model parameters. Hence, it is noted that
not all parameter combinations were explored. It would be ideal to compare results from other metaheuristic, and
non-metaheuristic solvers for reference. Another limitation of this study is data bias from the singularity of the case
study. We acknowledge that other insights that have not been captured herewith may be found in larger models
with different model assumptions.

7. Conclusion

The paper proposes incorporating all three pillars of sustainability when solving CMS. Emission factors were used
to simulate the environmental contributions of key processes, with emissions reckoned in metric tons of carbon
dioxide (kg CO;). A minimization mathematical model of a multi-objective nature was developed. A bi-objective
NSGA-II was implemented as the solver approach. The penalty approach was used to enforce model constraints. A
custom repair function was added to the solver to recover solutions that violated constraints. The NSGA-II was
modified to prioritize unique solutions before allowing duplicate solutions when trimming the population. A case
study from literature was presented. Results from the optimization supported the hypothesis that environmentally
friendly options share a concave relationship with their financially conservative counterparts. A sensitivity analysis
showed that the results were not solver biased, and identified which parameters directly influenced the final solution
population. The research showed that there exists a tradeoff between the different aspects of sustainability, and
manufacturers need to implement a multi-objective model, such as the one presented, to cater for all three pillars.
Future developments to the work presented include layout planning, intracell workload balancing, and production
scheduling. Practical implications for industry include the incorporation of renewable energy soutrces for material
handling services, and the reduction of carbon emissions by reducing machine idle.
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