@ mniaScience Journal of Industrial Engineering and Management
JIEM, 2026 — 19(1): 58-81 — Online ISSN: 2013-0953 — Print ISSN: 2013-8423
https://doi.org/10.3926/jiem.8710

A Batch Scheduling Model on Unrelated Parallel Machines
with Resource Constraints and Sequence-Dependent Setup Time
to Minimize Total Actual Flow Time

Rinto Yusriski™ {2, Andri Rachmat Kumalasian Nasution"? {2,
Mohammad Mi’radj Isnaini*‘*/, Abdul Hakim Halim®

"Universitas Jenderal Achmad Yani (Indonesia)
*Institut Teknologi Bandung (Indonesia)

“Corresponding anthor: rinto.yusriski@lecture.unjant.ac.id
33421001 @mabasiswa.ith.ac.id, isnaini@ith.ac.id, abakimhalin@ith.ac.id

Received: Jannary 2025
Accepted: November 2025

Abstract:

Purpose: This study develops a batch scheduling model on unrelated parallel machines with resource
constraints and sequence-dependent setup times to minimize total actual flow time. The research is
motivated by challenges in industrial settings where machines have different processing capabilities and
setup times, impacting scheduling efficiency.

Design/methodology/approach: An algorithm is proposed using three steps: (1) sequencing jobs using
the Longest Due Date (LDD) rule, (2) allocating job demands to machines based on capacity, and
(3) solving the batch scheduling problem for each machine using a backward scheduling approach.
Numerical experiments were conducted to evaluate the model against optimal solutions produced by
enumeration algorithms.

Findings: The proposed algorithm achieves an average efficiency of 99.32% compared to the
enumeration algorithm, with minimal deviation (0.4 %). The results validate key propositions for efficient
scheduling, including prioritizing jobs by due dates, allocating demands based on machine capacity, and
sequencing batches by size to minimize delays.

Research Ilimitations/implications: The model assumes static machine conditions and predefined job
parameters, limiting its application in static environments. Future research could extend this approach to
incorporate real-time job arrivals or machine breakdown scenatios.

Practical implications: The algorithm offers a practical tool for industries to optimize batch scheduling
on unrelated parallel machines, enhancing production efficiency and reducing operational costs.

Social implications: By improving production scheduling, the model indirectly supports sustainable
manufacturing practices through optimized resource utilization.

Originality/value: This study provides a novel integration of backward scheduling with tresource
constraints and sequence-dependent setup times, addressing a gap in scheduling research on unrelated
parallel machines.

Keywords: batch scheduling, unrelated parallel machine, total actual flow time, sequence-dependent setup, resource
constraints

-58-

http://www.jiem.org/
mailto:ahakimhalim@itb.ac.id
mailto:isnaini@itb.ac.id
mailto:33421001@mahasiswa.itb.ac.id
mailto:rinto.yusriski@lecture.unjani.ac.id
http://www.omniascience.com/
https://orcid.org/0000-0001-8933-9518
https://orcid.org/0000-0001-5753-3578
https://orcid.org/0000-0002-1935-2335
https://orcid.org/0000-0002-2575-5384

Journal of Industrial Engineering and Management — https://doi.org/10.3926/jiem.8710

710 cite this article:

Yusriski, R., Nasution, A.R.K., Isnaini, M.M., & Halim, A.H. (2026). A batch scheduling model on unrelated
parallel machines with resource constraints and sequence-dependent setup time to minimize total actual flow
time. Journal of Industrial Engineering and Management, 19(1), 58-81. https://doi.org/10.3926/jiem.8710

1. Introduction

Most industrial jobs require scheduling and limited resources to maximize the goal (Baker & Trietsch, 2009;
Georgiadis, Elekidis & Georgiadis, 2019). One of the topics with the most significant amount of research is the
parallel machine (PM) scheduling problem (Alhajjar & Mohammed, 2023; Lee & Jang, 2019; Li, Zhang, Leung &
Yang, 2016; Mokotoff, Jimeno & Gutiérrez, 2001; Senthilkumar, Kannan & Madesh, 2017; Xu & Nagi, 2013). In
this situation, several jobs must be processed on several machines simultaneously, and each machine handles each
task independently, one at a time. There are three categories of parallel machine scheduling problems: identical
parallel machines, uniform machines, and unrelated machines (Cheng & Sin, 1990; Mufioz-Villamizar, Santos,
Montoya-Torres & Alvaréz, 2019). The identical machine category problems show that all machines have the same
capability and speed for processing jobs. The uniform machine category problems assume that each machine has
different capabilities and speeds for processing all jobs. Meanwhile, the unrelated machine category shows that each
machine has different capabilities and speeds when processing each job.

This paper discusses the problem of batch scheduling on unrelated parallel machines with sequence-dependent
setup time (BS-UPMRS) in the JIT environment. The motivation for the research is based on problems at the
weaving machine workstation. Several jobs are scheduled to be processed in parallel on group warp machines. The
warp machine creates grey (the in-process cloth) from weaving booms, which are then refilled with a new one, with
setup times varying depending on the job and the replacement boom. If the replacement weaving boom comes
from the same job, the setup time is the same length as the previous one, but it will be different if the replacement
boom comes from another job. Job processing times vary based on process conditions and machine efficiency. The
company aims to minimize flow time and maintain on-time delivery by returning weaving boom wheels
simultaneously after processing. This research uses the total actual flow time as an objective to determine the
sequence of jobs, calculate the number of machines for each job, and determine the batch scheduling solution in
each machine.

2. Literature Review

The literature often overlooks the study of scheduling for unrelated parallel machine problems (UPM) (Kazemi,
Mahdavi-Mazdeh, Rostami & Heydari, 2021; Mufioz-Diaz, Escudero-Santana & Lorenzo-Espejo, 2024; Olteanu,
Sevaux & Ziaee, 2022). Kazemi et al. (2021) address the integration of production and distribution scheduling in a
non-identical parallel machine environment using improved genetic algorithms (IGA). The objective is to minimize
total job tardiness and delivery costs within a supply chain system by proposing a mixed-integer linear programming
model and efficient metaheuristic approaches for solving large-scale problems. The study demonstrates that the
Improved Genetic Algorithm (IGA) achieves an average deviation of up to 0.29% from the optimal solution for
small-scale problems, compared to 0.47% for the standard Genetic Algorithm (GA). For large-scale problems, the
Relative Percentage Deviation (RPD) averages 1.55% for IGA and 3.83% for GA, highlighting the superior
performance of the proposed IGA in minimizing deviations while addressing complex scheduling scenarios.
Olteanu et al. (2022) found that Simulated Annealing outperformed MILP and the Greedy Constructive Heuristic,
achieving the best results with an average gap of less than 8% and producing near-optimal solutions in over 90% of
cases for large-scale problems. While MILP performed well on smaller instances, it required extensive computation
time, and the Greedy Heuristic, despite its speed, showed significantly higher gaps from the optimal solution, often
exceeding 30%. Mufioz-Diaz et al. (2024) found that Tabu Search outperformed Simulated Annealing and the
Constructive Heuristic, achieving the best results in over 96% of cases. While Simulated Annealing performed well
on smaller problems, its consistency decreased as problem size grew.

-59-

https://doi.org/10.3926/jiem.8710

Journal of Industrial Engineering and Management — https://doi.org/10.3926/jiem.8710

Numerous publications have covered UPM setups in the past decade (Agardi & Nehéz, 2021; Foroutan, Shafipour,
Rezaeian & Khojasteh, 2024; Khanh-Van & Van-Hop, 2021). Agardi and Nehéz (2021) proposed a genetic
algorithm for an efficient solution. The authors found that setup time depends on the machine and job sequence,
leading to decisions on assignment and sequence. Foroutan et al. (2024) discuss the scheduling of unrelated parallel
machines with family setups and soft time windows, aiming to minimize weighted earliness and tardiness while
maximizing the number of Just-in-Time jobs. The study compares four metaheuristic algorithms: Simulated
Annealing, Artificial Immune System, Genetic Algorithm, and Ant Colony Optimization. The results demonstrate
that the Ant Colony Optimization algorithm, combined with a repair strategy and local search, outperforms the
others, achieving an average improvement in objective function values of 2.12% to 8.52% and a relative deviation
of 10.35%. The research by Khanh-Van & Van-Hop (2021) develops the Genetic Algorithm with Initial Sequence
based on the Farliness-Tardiness criterion on Parallel Machines (GAISETP) to address unrelated parallel machine
(UPM) scheduling problems with sequence-dependent setup times and machine capacity constraints. The algorithm
demonstrates supetior performance over previous methods, achieving near-optimal solutions in a case study of
automotive component manufacturing. Specifically, GAISETP achieves an average gap of less than 10% compared
to optimal solutions for small-sized problems and approximately 6.5% for large-sized problems. The performance
of the algorithm is evaluated using criteria such as makespan, total eatliness, and total tardiness, combined into a
single objective function.

Kong, Liu, Pei, Pardalos and Mladenovic (2020); Miao, Zhang and Cao (2011); and Shahvati & Logendra (2017)
have explored batch scheduling on unrelated parallel machines (BS-UPM). Kong et al. (2020) explore parallel-
batching scheduling with nonlinear processing times, focusing on single and unrelated parallel machines,
introducing an optimal algorithm for single-machine settings and a hybrid SFLA-VNS meta-heuristic—combining
Shuffle Frog Leap Algorithm (SFLA) and Variable Neighbourhood Search (VNS)—to effectively address NP-hard
unrelated parallel machine problems. The paper aims to minimize the makespan by optimizing batch formation and
scheduling while accounting for nonlinear job detetioration. Computational experiments demonstrate the
supetiority of SFLA-VNS, achieving better convergence rates and solutions than other algorithms, particularly for
large-scale instances, with improvements of up to 3.8% in average objective values. Miao et al. (2011) explore
bounded parallel-batch scheduling problems for deteriorating jobs on single and multiple machines, where
processing time increases linearly with start time. The paper introduces an optimal algorithm for the single-machine
scenario and an FPTAS for parallel machines with identical release dates, while proving NP-hardness for single
machines with distinct release dates. It contributes algorithms for specific cases, emphasizing their computational
complexity and potential extensions for future research. Shahvari and Logendran (2017) propose a model for batch
scheduling on unrelated-parallel machines, aiming to minimize a bi-criteria objective function that combines total
weighted completion time and total weighted tardiness. The research introduces an enhanced Tabu Search
algorithm with three levels of search (central, outside, and inside) that iteratively refines batch compositions, batch
sequencing, and job sequencing to address the NP-hard nature of the problem effectively. Experimental results
show the proposed method achieves up to 37% improvement in objective function value compared to group
scheduling, and computational efficiency is enhanced by up to 40% through theoretical lemmas to eliminate
ineffective search neighbourhoods. Shahvari, Logendran and Tavana (2022) proposes an efficient model-based
branch-and-price algorithm to address batching and scheduling problems on unrelated-parallel machines, focusing
on minimizing a linear combination of total weighted completion time and total weighted tardiness. The model
integrates a machine learning-based random forest algorithm for determining lower bounds on batch sizes and
reformulates a mixed-integer linear programming model using flow conservation constraints to reduce
computational complexity. The branch-and-price algorithm demonstrated superior performance, achieving optimal
solutions with significant reductions in computational time compared to existing benchmarks, while maintaining
high solution quality across various problem scales.

Researchers in BS-UPM have explored the JIT field (Goli & Keshavarz, 2022; Halim, Miyazaki & Ohta, 1991;
Zarandi & Kayvanfar, 2015). Goli & Keshavarz (2022) examined a sequence-dependent group scheduling problem
on parallel machines within a Just-In-Time (JIT) framework, aiming to minimize total weighted earliness and
tardiness. The study begins by developing a mathematical model suitable for solving small-sized instances of the
problem. Recognizing the problem’s NP-hard nature, the researchers proposed two meta-heuristic algorithms to

-60-

Journal of Industrial Engineering and Management — https://doi.org/10.3926/jiem.8710

find near-optimal solutions: The Biogeography-Based Optimization (BBO) algorithm, introduced as a novel
approach, and the Variable Neighborhood Search (VNS) algorithm, a widely recognized method. To assess the
effectiveness of the proposed model and algorithms, extensive computational experiments were conducted. The
results demonstrated the efficiency of both algorithms in terms of speed and solution quality, with the BBO
algorithm achieving a maximum gap of 1.04% and the VNS algorithm a slightly higher gap of 1.35%. These
findings underscore the potential of BBO and VNS for addressing complex scheduling problems in JIT
environments. Halim et al. (1991) proposed a single-job batch-scheduling algorithm for distributing parts and
solving the batch-scheduling problem on parallel machines. The researchers use the total actual flow time as an
objective, defined as the total time interval of all parts in all batches flowing in the shop from arrival to the due
date. This objective has proven to minimize flow time and on-time delivery simultaneously (KKurniawan, Yusriski,
Isnaini, Anas & Halim, 2021; Kurniawan, Yusriski, Isnaini, Ma’Ruf & Halim, 2024; Maulidya, Suprayogi,
Wangsaputra & Halim, 2020; Yusriski, Sukoyo, Samadhi & Halim, 2015; 2016; 2018; Yusriski, Astuti, Ilham &
Zahedi, 2019; Yusriski, Astuti, Biksono & Wardani, 2021). Zarandi & Kayvanfar (2015) investigated a bi-objective
scheduling problem on identical parallel machines, integrating the Just-In-Time (JIT) philosophy to minimize the
total costs of tardiness, earliness, job processing time adjustments, and makespan. The study introduced an
innovative approach using the “bi-objective parallel net benefit compression-net benefit expansion”
(BPNBC-NBE) heuristic, which allows for flexible compression or expansion of job processing times within
defined limits. To solve this complex problem, the researchers applied two multi-objective meta-heuristic
algorithms, Non-Dominated Sorting Genetic Algorithm II (NSGAII) and Non-Dominated Ranking Genetic
Algorithm (NRGA). The findings revealed that NRGA excelled in achieving better convergence towards the
Pareto-optimal front, while NSGAII demonstrated a wider spread across solutions. This research offers significant
advancements in JIT scheduling by effectively balancing delivery precision with production efficiency, providing
valuable insights for optimizing complex manufacturing systems and industrial processes.

3. Model and Solution Method

This section discusses the problem formulation, describes a mathematical model, and develops a solution method,
including the proposed algorithm.

3.1. Problem Formulation

Multiple jobs with individual due dates are scheduled on a workstation containing unrelated machines. Each job
consists of product units distributed to the machines, the so-called sub-jobs. Since each machine’s capabilities differ,
sub-job sizes can vary, even though they come from the same job. The company can manage the arrival of material
to the shop at the right time and quantity (JIT environment), so to minimize inventory cost, each machine can
process the sub-lot into some batches. The setup time is needed before any machine processes a batch; the length
depends on the machine’s capabilities. The objective is to minimize the total actual flow time, and the decision is to
determine the sequence of jobs, the number of machines allocated to process each job, the number of batches,
batch sizes, and the sequence of the resulting batches on each machine. Since the actual flow time is an objective,
this research adopts the backward scheduling methods. The notation and mathematical model are as follows.

Index

£ : | thejobindex £=1,...,K

m : | the machine index =1, ..., M

i : | the batchindex /=1, ..., N,

Parameter

e : | the demands of job £

de : | the due date of job £

A, the length between the due date of job £ and the completion time of first batch scheduled on machine by
the backwatd scheduling approach

Lo : | the processing time of job £ on machine »

St : | the setup time of the job £ on machine »

-61-

Journal of Industrial Engineering and Management — https://doi.org/10.3926/jiem.8710

Variable
M : | the number of machines (group machine) which is allocated to process a job
K : | the number of jobs
Ay, : | sub-demand, the unit quantity of job £ allocated to machine
N, : | the number of batches of job on a machine
Boa : | the starting time of the batch sequence /” job £ on machine
o : | the size of the batch sequence 7” job £ on machine
Objective
Fe ‘ : ‘ the total actual flow time of all jobs
N)
F® = Fhier Zm=a{Zi27" (21 Apamin + tiiam Quimiy + Stm) = Stam }Quiami O
Subject to:
Z%=1Akm = Ng; k= 11 FKF (2)
Ngm
- Qrmi = Akm; k=1,...,K; 3
i=
Nikim .
A[k]m + Z L (t[k]mQ[k]m[l]) + S[k]m < d[k];l = 1, "'Nkm; k= 1, ...,K; m = 1,..,M; (4)
i=
Bikimp) + tigmQuamay + Bgim=dpey k= 1,..,K; m=1,.., M; 5)

Nkm

Afym= max {O,Z_ . timQuie=11,mii1 + NogmSpgm — (dpe — d[k+1])}:
i=

©)

wherek =1,...,.K;m=1,..,M;
Qkimi = 0, Njym = 1 and Integer;k = 1,..,K; m=1,..,M; i =1, ..., Njgms @)

Equation (1) is the objective function, minimizing the total actual flow time for multi-job unrelated parallel
machines. Constraint (2) and (3) state the material balance. Constraint (2) shows that the total unit of a job allocated
on all paralle]l machine is equal to that demand. Constraint (3) shows the total number of units in all batches of job
scheduled on each machine must be equal to the total unit allocated to that machine. Constraints (4) state that all
batches of jobs are processed on any parallel machines in the length of the scheduling period (between t = 0 and
their individual due date). Constraint (5) states that the first batch of job j scheduled in the unrelated m parallel
machine using a backward scheduling approach must be completed at their individual due date (d) exactly.
Constraints (0) state the length between the due date of the job j and the completion time of first batch scheduled
on machine m. Constraint (7) states that the minimum batch number and the minimum batch sizes are one, and the
element is a natural number.

3.2. Problem Solution

This section will determine the decision variables along with the formula for calculating the minimum total actual
flow time. The Six decisions are proposed: the job’s sequencing, the demand allocation, the resource (machines)
priority, the batch scheduling decisions consist of the decision of the number of batches, the batch sizes, and the
scheduling of resulting batches.

-62-

Journal of Industrial Engineering and Management — https://doi.org/10.3926/jiem.8710

3.2.1. Decision 1: Job’s Sequencing

Multiple jobs are scheduled on parallel unrelated machines with an individual due date. Since this study adopts the
backward scheduling approach, the jobs must be scheduled using the proposition as shown as follows.

Proposition 1. Suppose there are K jobs with their respective due date scheduled on an unrelated parallel machine using the backward
scheduling approach. In that case, the total actual flow time of jobs can be minimized by scheduling the jobs using the Longest Due Date

(LLDD) rule.

Proof. Suppose there are K jobs & =1, ..., K with an individual due date (d\, ..., dx) respectively. The Jobs are scheduled using
two schednle sequences, namely S and Z. , adopting a backward scheduling approach. The S’ is a job sequence using the Longest Due
Date (1.DD) rule, while Z is a sequence using other rules so that the jobs sequence is S # Z. Let’s assume there is a pair of jobs,
namely a and b (a, b € k) with d, = d,, Position a precedes b in S, but vice versa in Z. If the positions of a and b are
interchanged, then the value of F* increases in S and decreases in Z. Applying the pairwise interchange method to all jobs so that Z
= S produces an optimal schedule Z. This proves that the LDD rule produces an optimal solution to minimize the total actual flow
time. M (proven).

3.2.2. Decision 2: Demand Allocation

In the case of parallel machines, decisions on demand allocation are influenced by machines available capacity
where each machine have a unique parameter, including job processing time and machine setup time. It leads to
different machine capacities when the machine processes the jobs. The capacities of the machines are calculated
using the following formula.

_ igmtV BQrm+Sgm) | k

A = s k=1,...,.K,m=1,..,.M
[icjm tikmW tiklm

®)

Ar11i +S1R1i 1 3
whereV = ¥, (M) and W= YM, (—) JIEM
i

3.2.3. Decision 3: Resource (Machines) Priority

The machine priority for allocating the demand jobs can be obtained by following the Proposition as follows.
Proposition 2. If there are M unrelated parallel machines with their processing time and capacities will be assigned to process a_job
during a scheduled period, then selecting the machines priority for allocating the demand jobs obtained by the increasing of machine
ﬂl])df@/, f[1]C[1] <..<= l‘[M]C[M].

Proof. Let it see the Equation (1). Assume there is one job with one batch to be scheduled and so Equation (1) can be write as
Jollows: F* = ¥M _, t,Q%. Partial differential OF * over 0Q,, found ;%n = Yn=12tmQm. If the batch size on the machine equal to
that capacity (Q,, = C,) so min F* can be found when min 2t,C,, since m = 1, ..., M, the priority allocation the demand to machine
obtained by increasing of 1,C,, tnCiy = ... < fuyCpy. ® (proven).

Constrain (2) shows that the demand of jobs can be divided into several sub-demands in each machine. If the
number of batches in each machine equal to 1, the batch sizes is a number of units that allocated to the machine,
the formula for calculating the .4, with the continuous allocation size and integer size are as follows.

The continuous allocation calculated by formula:

A _ N[kjm+V _ (Brm+sirgm) | k=1 Km=1 M
[k]lm tmW thgm S o

)
Where V = ¥M, (M) and w = 3L, (L) yLEM
tlk)i LK)

-63-

Journal of Industrial Engineering and Management — https://doi.org/10.3926/jiem.8710

The integer allocation calculated by formula:

ngmtV Bem+Spgm) | | Wi
tikymW tiklm

=1,...M—-1;
Agm =
n, — ZE,’:’;ll)A[k]m; otherwise;
(10)
k=1,..K;m=1,...M
where [X] is a round half up of X;

[k] is machine sequence which is determined by Proposition 2

How the solutions have been obtained is shown in the Appendix.

3.2.4. Decision 4: Number of Batches

This step discusses how to divide the sub-demand of the job in each machine into several batches (O, 7 =1, ...,
Ny,) and determine that sequence to minimize the total actual flow time. The decision method of this study
adopted the solution of Halim, Miyazaki and Ohta, (1994a), which discussed batch scheduling model on a single
machine common due date. The proposition of the sequence of the batch is as follows.

Proposition 3. Suppose that there are N batches of job j scheduled on single machine with batch sizes (Quny 1 = 1, ..., Ny, respectively.
The optimal backward sequence that minimizes F is obtained from arranging the batches in order of non-increasing batch sizes:

Proof. Looking at the formula as follows: Zf’:"{" (A + tremQumpiy) + Stjim i Equation (1). 1t can be observed that the value
indexc of batches (Qrny) are already in increasing order. Therefore, to minimize F*, the batches should sequence in a non-increasing
order of batch sizes (starting from the batch closest to the due date). m (proven).

This research also uses the formula in Halim et al. (1994a) to calculate the number of batches (INg,, Nomax) and the
batch sizes (Qewpy 7 = 1, ..., Ni,) with several adjustments regarding the problems discussed. The formula for
calculating the number of batches is shown as follows.

Nim = (2= + ——+/Z2 = 2AmSimtim) — 1

Skm Skm

1 ArmSkm 1 1
where Z = EAkmtkm + (—Lk Sk) _ELk - ESkm (11)
oot —Akm
tkm tkm

Ly = dim — Skem — Diem — max{dg41ym, 0}

2A
Nfax =3+ [3+2mtm (12)

Skm

3.2.5. Decision 5: Batch Sizes

The formula for calculating the batch sizes is shown as follows.

The continuous batch sizes calculated by formula:

_ Arm | Skm(Nkm+1) _ Skmi — . —
Quomiy = e 4 SmentD) _ stnl o — gy =1, M (13)

-64-

Journal of Industrial Engineering and Management — https://doi.org/10.3926/jiem.8710

The integer allocation calculated by formula:

2tkm tkm

A (N 1) i :
max{lA”,‘c—:+M—MJ;1}; i=1,..,(Ngm—1);
ka[i] =
Nim— ,
Agm — Zl:{n ! ka[i] 3 1= Nim (14)
k=1.,KKm=1,..,M,

Where |X|is a round down of X;

3.2.6. Decision 6: Scheduling of Resulting Batches

The scheduling of each batch can be determined by calculating its beginning time, which represents the arrival
position of the batch on the production floor. The beginning time of each batch is derived by integrating Constraints
@), (5), and (6). Based on the combination of these three constraints, the following formula is obtained as follows.

i
Biiamp = dg = Apgm — ijl(f[k]mQ[klm[i]) + (= Dspam

Wherei=1,.Nyp; k=1,..,K; m=1,..,M,
How the solutions have been obtained is shown in Halim, Miyazaki and Ohta (1994b).

4. Results and Discussion

This section discussed the proposed algorithm and examines the outcomes of the proposed algorithm when used
in basic scenarios and numerical experiments. The purpose of using the suggested method on basic scenarios is to
give a general idea of how the algorithm functions and the outcomes achieved. Meanwhile, the goal of numerical
experiments is to obtain an understanding of algorithmic techniques for solving issues.

4.1. Result

Base on the solution in the last section, the proposed algorithm solution has developed as follows.
The Proposed Algorithm (PA)

Step 1: set parameters
Step 2: sequence the jobs [£] using the LDD rule obtained by Proposition 1; go to Step 3.
Step 3: start from £ = [1] and go to step 4.
Step 4: determine the demand allocation
Step 4.1: calculate the machine capacities using Equation (8); Continue to Step 4.2.
Step 4.2: sequence the machine priority by Proposition 2; Continue to Step 4.3.

Step 4.3: determine the demand allocation using Equation (9) for continue batch sizes case and Equation
(10) for integer batch sizes case; Go to Step 5.

Step 5: determine the number of batches, and the batch sizes, then schedule the resulting batches for each machine
using the common due date algorithm by Halim et al. (1994b).

Step 5.1: start from 7 = 1, go to Step 5.2
Step 5.2: calculate Ly = dig — S0 — Ay — max{die1), 0}; go to step 5.3
Step 5.3:if e, + Apnten + Awy = Li Set Ny, = 1 then go to Step 6; otherwise, go to Step 5.4.
Step 5.4: compute N’y using Equation (12) and go to Step 5.5.
Step 5.5: Set Nipax = [N'a] means the maximum integer less than or equal to N’y
Go to Step 5.6.

-65-

Journal of Industrial Engineering and Management — https://doi.org/10.3926/jiem.8710

Step 5.6: compute N, using Equation (11)

Step 5.6.1:if N%, <1 then set N, = 1

Step 5.6.2:if N%, = 1 N, then set Ni, = Ny

Step 5.6.3: if 1 < N, < Npa then set N, = [N',,] where [N%,] is the
minimum integer greater than or equal to N,
i (N, =)50 + Auntin < Lay st Niy = N,
otherwise N,” — 1,

Continue to Step 5.7.

Step 5.7: determine the batch sizes. If the problem considers Continuous batch sizes, proceed to Step.5.7.1,
otherwise go to Step 5.7.2.

Step 5.7.1: compute Qpy (7 =1, ..., N) using Equation (13)
Step 5.7.2: compute Qwyyy (7 =1, ..., N) using Equation (14)
Continue to Step 5.8.

Step5.8: sequence the batches O,y in non-increasing Oy, in the backward approach, The largest Qg
scheduled close to the due date.

Continue to Step 5.9.
Step 5.9: calculate beginning time with Equation (15). Continue to Step 5.10.
Step 5.10: if 7 < M set 2 + 1 and return to Step 5.2 otherwise go to Step 6.
Step 6:if £ < K, set £ = [£ + 1], then return to Step 4; otherwise, continue to Step 7.
Step 7: Calculate the total actual flow time using Equation (1) and STOP. m
The application of the proposed algorithm can be seen in a simple case example as follows: There are two jobs

(£ = 1,2) scheduled to process on three unrelated machines to minimize total actual flow time. The parameters are
shown in Table 1.

rocessing time, z,, Setup time, s,
p g P
(hours/ unit) (hours/ unit)

Due date, d Demand, n
(hours)

Table 1. The parameters of the case

The continue batch size case completion. The application of the proposed algorithm for the continue batch
size case yields the solution as follows. The sequence of jobs resulting from STEP 2 is 2-1 since the algorithm
adopts the LDD rule. STEP 3 schedule job number 2. The result of STEP 4 is that the demand equal =15 units are
distributed to the machines. The demand allocation for each consecutive machine (7 = 1, 2, 3) is 3.538 units, 6.077
units, and 5.385 units. STEP 5 continues to determine the number of batches and batch sizes on all machines. For
machine number 1 (7 = 1), the calculation result shows the number of batches (INz) is 1, and the batch size (Qaipn)
is 3.538 units. It leads to the starts processing of batch on machine number 1 (Byypy) at 12.923% hours. For 7z = 2, N
=1, Onp =6.077 units, and By at 13.923™ hours. Meanwhile for 7 = 3, the solution found with N = 1, with the
batch sizes are Orp = 5.385 units. The start processing By at 11.923% hours. Since another job has not been
scheduled, STEP 6 continues to the next job (job number 1). The solution is completed with the same steps as the
previous job. The last step (STEP 7) calculated the total actual flow time and found 164.192 hours. The complete
solution to this problem can be seen in Table 2.

-66-

Journal of Industrial Engineering and Management — https://doi.org/10.3926/jiem.8710

1 0 3538 | 1 (3.538) (12.923)

2 | 15 | 2 0 6077 | 1 6.077) (13.923) 1052'46
3 0 5385 | 1 (5.385) (11.923) 164.19
1] 0077 | 46 2 (3.3), (1.3) (6.623), (3.323) 2

1| 13| 2 | 0077 | 56 3| (2867),(1.867), (0.867) | (7.056), (4.19). 2323) | 58.73
3 | 0077 | 28 2 | (1433),(0933), (0.433) | (7.056), (4.19). (2.323)

Table 2. Complete solution for the case

The integer batch size case completion. The application of the proposed algorithm yields the solution as
follows. The sequence of jobs resulting from STEP 2 is 2-1 since the algorithm adopts the LDD rule. Start from
= 2. The result of STEP 3 is that the capacities of the machine ((,,, 77 = 1, 2, 3) are 3 units, 6 units, and 5 units
consecutively, and the machine priority sequence is 1-3-2 resulting by STEP 4. The next step (STEP 5) is the
demand allocation of each job appropriate with job sequence priority. The demand equal =15 units are distributed
to the machines. Sub-Algorithm 1 is used to solve that. The demand allocation for each consecutive machine
(m =1, 2, 3) is 3 units, 7 units, and 5 units. The result of STEP 5 shows that the demand allocation is bigger than
the capacities, which leads the completion time of the next job to be eatlier than its due date. STEP 6 continues to
determine the number of batches and batch sizes on all machines. The result of Sub Algorithm 2 is as follows. For
machine number 1 (= 1), the calculation result shows the number of batches (IN2) is 1, and the batch size (Do)
is 3 units. It leads to the starts processing of batch on machine number 1 (Byyy) at 14% hours. For » = 2, N = 7,
Oxpy = 7 units, and By at 13™ hours. Meanwhile for 7 = 3, the solution found with N = 1, with the batch sizes are
Oy = 5 units. The start processing By at 12.5% hours. Since another job has not been scheduled, STEP 7
continues to the next job (&£ = 1). The solution is completed with the same steps as the previous job. The last step
(STEP 8) calculated the total actual flow time and found 168.5 hours. The complete solution to this problem can be
seen in Table 3.

m
1 0 3 3 1 3) (14)
2 15 2 0 6 7 1 @) (13)
3 0 5 5 1 5) (12.5) 1685
1 0 8 5 2 @, (1) ©),3)
1 13 2 1 8 5 2 3), @ ©),)
3 0 4 3 2 @), D) ©),3)

Table 3. Complete solution for the case

An illustration of the solution schedule is shown in the Figure 1.

Figure 1 shows three paralle]l machines processing two jobs (£ = 1,2) with due dates of 20 and 10 hours and
demands of 15 and 13 units, respectively. Based on the calculations of the proposed algorithm, the scheduling
sequence prioritizes the second job, followed by the first job. The second job, scheduled first, is represented in red
and is distributed across the three machines as follows: machine 1 processes 3 units (in one batch), machine 2
processes 7 units (in one batch), and machine 3 processes 5 units (in one batch). The first job, scheduled second, is
represented in blue and is distributed across the three machines as follows: machine 1 processes 4 and 1 units
(divided into two batches), machine 2 processes 3 and 2 units (divided into two batches), and machine 3 processes 2

-67-

Journal of Industrial Engineering and Management — https://doi.org/10.3926/jiem.8710

and 1 units (divided into two batches). The figure illustrates that the two jobs are scheduled in a backward
approach, ensuring that completion times do not exceed the respective due dates.

m=3

m=2

i m=1

D Osm Qum D Sjm

Figure 1. Gantt chart solution

4.2. Discussion

In this section, a comparative analysis is conducted between the performance of the proposed algorithm (PA) and
the optimal solution outlined by the enumeration algorithm (EA). The aim is to assess how the proposed algorithm
performs compared to the enumeration algorithm. The enumeration algorithm (EA) is obtained through the
following steps:

4.2.1. The Enumeration Algorithm (EA)

Step 1: set input parameters

Step 2: sequence the jobs by Proposition 1, and go to Step 3.
Step 3: for each job resulting from Step 2:

Step 3.1: generate the alternative combination of demand allocation (A, 7 = 1, ..., M) using restricted
integer partition with maximum value (RICMV) method, continue to Step 3.2.

Step 3.2:distribute each .4y, to the machine by the Proposition 2, continue to Step 3.3

Step 3.3: for each Ay, generate the alternative combination of the batch sizes on each machine (Qe,
=1, ..., N) using the integer partition method. Go to Step 4.

Step 4: for each machine,
Step 4.1: combinate each alternative (s, of a job with another job, continue to Step 4.2.

Step 4.2: calculate the total actual flow time of each combination (F,) using Equation 1, continue to Step
4.3

Step 4.3: find the minimum total actual flow time for each machine; go to Step 5

Step 5: calculate the total actual flow time of all machines. STOP. m

The completion of the last problem using the enumeration algorithm is as follows. Step 2 results in the sequence of
jobs being 2-1. Step 3 produces the alternatives of the combination of demand allocation .4,. Here is an example
for £ = 2. The parameters of the RICMV method are the number of demands (7), the number of machines
(M = 3), and the restricted of maximum value (7). the formula of r is calculated as follows.

r=max{Cym}+1; k=1,..,K; m=1,.,.M (16)

-68-

Journal of Industrial Engineering and Management — https://doi.org/10.3926/jiem.8710

The alternative solutions (A, 7 = 1, 2, 3) are shown in Table 4 as follows.

The RICMV combination solution The RICMYV combination solution (Ay.)
without Proposition 2 (Step 3.1) considering Proposition 2 (Step 3.2)

77,1 1,7,7)

(7,6,1) 1,7,6)

,5,3 3,7,5

5 3 . (7,5,3) (3,7,5)
(7,4, 4 “4,7,4

(6,6, 3) (3,6,0)

(6,4, 5) 4,6,5)

Table 4. Solutions for demand distribution using the RICMV method

The solution of Ay, is then used as a basis for enumerating decisions of N, and Q. using the integer partition
method. One of the combinations (A, 7 = 1, 2, 3) in Table 4 is 3, 7, 5. The following is the solution for 7z = 3
(Aw, = 5) which is solved with the integer partition method, is shown in Table 5 as follows.

Ay m=1,2,3 Quiy i=1, 000y N
1 ©)
5 G
3,2

3,7,5 5 G, 1,1)
: 2,2,1)
4 @2,1,1,1)
3 1,1,1,1,1)

Table 5. Solutions of demand distribution using the RICMV method (Step 3.3)

Step 4 is combining the Ok, for £ =1 and £ = 2, continue with Step 5 to calculate the total actual flow time. The
resulting example for this stage is shown in Table 6, which combines Qo = 5 unit (£ = 2, 7 = 3 and N, = 1) with
Q13[,] (/é = l, m=3and N, = 1, ceey 3)

Quy, ;=1 Qs N Qi 7=1, ..., Mv Combination {(Qxspy), (Q:s14)}

1 ©)), 3) 55.5
©) 3 2)), (2, 1) 52.5 minimum
3 1,1,1)), 1,1,1) 52.5 minimum

Table 6. Alternative solutions combination example (Step 4)

Table 6 shows the minimum F“ = 52.5 found from combination {(5), (2,1)} and {(5), (1,1,1)}. The next step, Step
5, is the final solution, shown in Table 7.

-69-

Journal of Industrial Engineering and Management — https://doi.org/10.3926/jiem.8710

Final Combination

1 (3), @1} 41 168.5
2 (), 3.2)} 75
3 {65), 21} or {(5), (1,1,1)} 52,5

Table 7. Final solutions (Step 5)

Table 7 shows that one of the enumeration procedure solution provides the same solution as the proposed
algorithm. The optimal combination of the enumeration procedure is founded with combination as shown in Tabel
8 as follows.

Optimal Combination

1 {@), (3,2} 60 167.5
2 {©), 3,21} 65
3 {3,2), 1,1} 42.5

Table 8. Optimal solutions resulted by Enumeration Algorithm

As shown in Table 8, the enumeration solution provides a better result than the proposed algorithm. The
effectiveness of the proposed algorithm is approximately 99.40% relative to the optimal solution.

The next step is to compare the two algorithms with several cases. The goal is to gain numerical expetience
regarding the performance of the proposed algorithm when compared with the optimal algorithm as measured by
minimizing the total actual flow time (F'“) and computing the computer processing unit’s (CPU’) time. The two
algorithms are executed using the Visual Studio Community 2022 application with .NET 7 as a framework and
C#11 as a programming language. The outcomes ate reported using an Intel Xeon E5 v3, 6 cores, 20 GB of RAM,
and an AMD Radeon R750 GPU. The result is shown in Table 9.

Enumeration
Proposed Algorithm Algorithm % efficiency PA-EA
Number of Numberof Number CPU’s CPU’s CPU’s
windows machines of testing F time (sec) F time (sec) F time (sec)
2 2 100 44.51 0.04 43.55 0.68 98.09 % 95.50 %
2 3 100 58.86 0.01 57.91 18.42 98.68 % 99.34 %
2 4 100 59.68 0.02 58.93 69.71 98.82 % 98.97 %
2 5 100 61.02 0.02 59.61 73.59 97.80 % 99.68 %
2 6 100 64.66 0.05 63.59 247.45 98.33 % 99.27 %
2 7 100 67.50 0.10 66.28 217.63 98.27 % 98.86 %
2 8 100 71.28 0.15 69.98 295.64 98.34 % 98.31 %
2 9 100 77.86 0.19 76.00 306.72 97.69 % 99.30 %
2 10 100 83.59 0.18 81.71 320.73 97.88 % 99.37 %
2 11 100 85.10 0.28 83.78 372.46 98.57 % 98.65 %
Min | 97.69 % 95.50 %
Max | 98.82% 99.68 %
Mean | 98.25% 98.73 %
Standard Deviation | 0.38 % 1.20 %

Table 9. Comparison results between the two algotithms

-70-

Journal of Industrial Engineering and Management — https://doi.org/10.3926/jiem.8710

The experiment has been cartied out more than 3,000 times, but in Table 9, only a sample of the results of 1,000
experiments is presented, considering that the results exhibit similar characteristics. Table 9 shows that the average
percentage of efficiency F* produced by the PA algorithm reached 98.25% when compared to the optimal solution
produced by the EA algorithm, with a deviation of 0.38%. This indicates that the proposed algorithm consistently
generates high-quality solutions very close to the optimum when compared with the enumeration algorithm. The
small percentage difference mainly results from rounding operations in the model, specifically in Equation (10) for
integer demand allocation and Equation (14) for integer batch size calculation. These two equations are interrelated:
Equation (10) determines how the total job demand is discretely allocated to each machine, while Equation (14)
computes the integer batch sizes based on that allocation. Rounding up or down at either stage may slightly alter the
solution from the mathematical optimum, resulting in minor deviations in the final total actual flow time.

Table 9 also shows that the CPU time of the PA algorithm is significantly more efficient than that of the EA
algorithm. The average CPU efficiency reached 98.73% with a deviation of 1.20%, confirming that the proposed
algorithm maintains high computational performance even as the number of machines increases. For instance,
when the number of machines increased to eleven, the PA algorithm required only 0.2845 seconds, compared to
372.46 seconds for the EA, resulting in a speed-up of over 1,300 times. These numerical results confirm that the
proposed algorithm is suitable for solving complex batch scheduling problems efficiently. Furthermore, the
experimental findings empirically validate the three propositions proposed in this study: (1) jobs should be
scheduled using the Longest Due Date (LDD) priority rule, (2) job demands should be distributed according to
machine capacity—where larger capacities receive larger demand allocations, and (3) batches should be sequenced
such that larger batch sizes are scheduled closer to their respective due dates.

4.2.2. Branch-and-Bound (BNB) Algorithm

Although the Proposed Algorithm (PA) demonstrates high computational efficiency and consistently produces
near-optimal solutions, it cannot guarantee global optimality due to its heuristic nature. In contrast, the
Enumeration Algorithm (EA) ensures the exact optimal solution by exhaustively exploring all possible
combinations; however, its computational effort increases exponentially with the problem size, making it
impractical for large instances. To bridge the gap between efficiency and optimality, this study develops a Branch-
and-Bound (BNB) algorithm. The BNB approach systematically explores feasible nodes while eliminating
dominated or infeasible ones using the Lower Bound (LB) and Upper Bound (UB) concepts.

The Upper Bound (UB) represents the best total actual flow time (F “) obtained thus far during the BNB
exploration. Initially, the UB is set to the F* value generated by the Proposed Algorithm (PA), which serves as an
efficient near-optimal reference. Each time the BNB algorithm discovers a feasible schedule whose LBy is smaller
than the current UB, the UB is updated accordingly. Mathematically, for each feasible solution as follows.

UB = min(UB, total LBp); k =1, ...,K (17)

Where LBy denotes the total actual flow time of all feasible job, starting from current job position until end
position.

This definition ensures that the BNB search process always retains the best (minimum) total flow time discovered
so far.

In contrast, the Lower Bound (LB) represents the theoretical minimum total actual flow time that could still be
achieved by a partial or incomplete schedule under ideal conditions.

At each branching node, the LB serves as a decision criterion to determine whether a node is worth further
exploration. If the calculated LB value of a node exceeds or equals the current UB, that node can be safely
eliminated without affecting the global optimality of the final solution.

For a multi-job, multi-machine system, the LB of each job depends on its scheduling status.

-71-

Journal of Industrial Engineering and Management — https://doi.org/10.3926/jiem.8710

The BNB algorithm adopts a hybrid LB formulation that combines discrete and continuous relaxation
components:

1. For the active job (the job currently being scheduled), the discrete LB is computed based on its actual
allocation to each machine:

LB = Yot tpgm Apgms k= 1,..,K;m =1,...,M

Where 4,, is the processing time per unit job [£]” sequence on machine 7 (18)

A, is the number of allocated units of job [£]” sequence on machine

For the unscheduled (future) jobs, a continuous relaxation is employed to represent the minimum
attainable flow time assuming zero setup times and ideal machine utilization:

LBEont — n,%/z%=1(1/tk,m); k=1,..K;m=1,...M

19
Where #, is the total number of units of job 4. 1)
Accordingly, the total LB at the current ([£]”) position is formulated as follows:
total LB g = Y IR + LBASC 4 3K L LBEM k= 1,.., K (20)
(k] j=1 "0l (K] g=[k+1]=Pg e

If the computed LB, = UB, the corresponding node is eliminated because it cannot produce a better solution than
the current best. This condition forms the basis of the dominance pruning rule, which will be desctibed as follows.

1. Prune-A (Out-of-Horizon) — A node is eliminated when backward scheduling yields a negative start time
(Bl < max(die;, 0)), meaning that the process or setup of a batch would begin before next due date of
time zero, making the schedule infeasible.

2. Prune-B (Dominance) — A node is eliminated when the total lower bound of the current node is not better
than the incumbent upper bound (UB = mwin(UB, total LBy)).

The pruning mechanism described above serves as the logical foundation for constructing the complete
Branch-and-Bound (BNB) algorithm. By combining the previously defined bounds (LB and UB) with the pruning
rules, the BNB algorithm systematically explores feasible scheduling nodes while efficiently discarding infeasible or
dominated ones. The algorithm consists of a structured sequence of decisions that correspond to the hierarchical
nature of the batch scheduling problem, where each decision stage progressively refines the search space toward the
global optimum.
Step 1: Initialization
Set all input parameters (Ze,, Sen di 7) for all jobs and machines.
Initialize UB = F* from the Proposed Algorithm (PA).
Step 2: Job Sequencing
Sequence jobs by Proposition 1 (LDD rule), obtaining ordered jobs [£] = [1], ..., [K]
Step 3: For each job k = [1] to [K] do

Step 3.1: Compute machine capacities using Equation (8):

Step 3.2: Sort machines in ascending order of C,, (Proposition 2).

Step 3.3: Generate all alternative demand allocations (A,,)

using the Restricted Integer Combination with Maximum Value (RICMV) method. Let G be the
total number of allocation alternatives.

Step 3.4: For each allocation g = 1 to G do

Step 3.4.1: Assign A, to machines according to Proposition 2.

-72-

Journal of Industrial Engineering and Management — https://doi.org/10.3926/jiem.8710

Step 3.4.2: For each feasible allocation, perform branching as follows:
Step 3.4.2.1: For each feasible number of batches Ny, = 1 to N,

Step 3.4.2.1.1: Generate all non-increasing batch partitions Q. using the
Cartesian Product method.

Step 3.4.2.1.2: Schedule batches backward using Proposition 3 and calculate
By using Equation (15):

Step 3.4.2.1.3: Check horizon feasibility:

If By, < max(dj+y), 0) then eliminate node by Prune-A rule and continue.

Step 3.4.2.1.4: Compute total actual flow time of [4]: F[‘fc] =yM_, F[‘fc]m and
continue

Step 3.4.2.1.5: Compute total LB using Equations 18-20

Step 3.4.2.1.6: If total I.B = UB then eliminate Prune-B rule; otherwise record
the corresponding schedule as the incumbent.

Step 4: Termination
When all nodes are fathomed, report UB and its associated schedule as the global optimal solution. m

Algorithm Evaluation and Example Results is as follows. The same two-job, three-machine example used for
evaluating the PA and EA algorithms is also applied here to demonstrate the implementation of the proposed
Branch-and-Bound (BNB) algorithm under backward scheduling, All job parameters, including processing times,
setup times, due dates, and demands, remain identical to those defined previously.

The algorithm is executed sequentially, starting with Step 1 (Initialization), where all model parameters are defined
and the upper bound (UB) is initialized using the Proposed Algorithm (PA), and Step 2 (Job Sequencing), which
applies the Largest Due-Date (LDD) rule to fix the processing order as Job-2 followed by Job-1. This sequence
provides the conditional search path for subsequent BNB exploration. The BNB procedure then follows the
hierarchical decision flow (Steps 3.1-3.6) and employs two pruning rules: Prune-A (out-of-horizon) and Prune-B
(dominance), using the lower-bound formulations as defined in the model.

Start from Job 2 (&£ = [1]) the result of step 3 is as follows. In Step 3.1, machine capacities are calculated using
Equation (8), resulting in capacity are (4,7,5) which represents the maximum feasible allocation of Job-2 units to
Machines 1-3. In Step 3.2, machines are sorted according to Proposition 2, which ensures that the RICMV
allocations follow the same capacity-based priority. Based on this order, three feasible allocation alternatives are
generated: (4, 7, 4), (4, 6, 5), and (3, 7, 5). For each allocation, the algorithm starts with a single-batch
configuration N = (1, 1, 1) and incrementally increases the number of batches in Cartesian order following the
established machines priority-Stepwise computation. The result of Step 3.3 until 3.4 for Job 2 is shown in Table

10 as follows.

Allocation Batch decision (V; Q) - Total LB Decision
“4,7,4 N=(@1,1,1;0= (4, 7], [4) 103.5 169.5 Prune-B
(3,7,5) N=(1,1,1;0=(3], 7], [5) 101.8 167.8 Prune-B

_ A Feasible — keep as
“,06,5) N=(@1,1,2);0= (4], 6], [3, 2]) 100.5 166.5 < UBg incumbent
4,6,5) 1,2,1),2,1,1),(1,1,3) ... 101.9 - 102.8 167.8 —168.8 Prune-B

Table 10. The Result of Step 3 for Job-2

As shown in Table 10, Job-2 obtains the optimal allocation on machines m1, m2, and m3, with processing
quantities of (4, 6, and 5), respectively. The corresponding number of batches (N) for each machine is (1, 1, and 2),

-73-

Journal of Industrial Engineering and Management — https://doi.org/10.3926/jiem.8710

with batch sizes of ([4], [6], and [3, 2]). The backward scheduling is feasible under the horizon constraint, and the
objective function value (f) is 100.5.

The stepwise computation then continues for Job-1 (£ = [2]) as described below. Given Fy* = 100.5, the

subsequent job is evaluated using the same branching logic. Six allocation candidates are examined: (6,4,3), (4,6,3)
(5,5,3), (7,3,3), (5,4,4), and (5,0,2). Because Job-1 is the last job, its LB corresponds directly to its actual flow-time
contribution (Fjy*). The summary result of Step 3 for Job 1 is shown in Table 11 as follows.

Allocation Batch decision (2V; Q) Fp* Total LB =100.5 + LB Decision
(6,4,3) N=(1,1,1); 0= (6], [4], [3]) 71.0 171.5 Prune-B
(4,6,3) N=(@1,1,1); 0= (4], [6], [3]) 09.2 169.7 Prune-B
(5,5,3) N=(@1,1,1;0= (5], 5], [3]) 09.8 170.3 Prune-B
(7,3,3) N=@1,1,1;0=(7], 3], 3] 72.0 172.5 Prune-B
(5.4.4) N=(1,1,1;0= (5], 4, [4) 70.1 170.6 Prune-B
(5,0,2) N=2,32;0=(32],[321],[1,1) | 67.0 167.5=UB Feasible — Incumbent final

Table 11. The Result of Step 3 for Job-1

Based on Table 11, it can be seen that after the (5,6,2) configuration is obtained, the total F* = 100.5 + 67.0 = 167.5,
which tightens the upper bound (UB) and prunes all remaining nodes. Both jobs satisfy the backward-horizon
feasibility without triggering Prune-A, while Prune-B effectively eliminates all dominated nodes once UB reaches
167.5. Finally, in Step 4, the algorithm reports UB = 167.5 as the optimal solution.

To further evaluate the computational efficiency and structural behavior of the optimization methods, a
comparative experiment was conducted between the Branch and Bound (BNB) algorithm and the Enumeration
Algorithm (EA) under identical scheduling environments. While both methods guarantee global optimality, their
internal search mechanisms differ significantly: the EA performs exhaustive enumeration of all feasible
combinations, whereas the BNB approach employs pruning strategies to systematically eliminate dominated or
infeasible nodes based on bounding criteria. The performance comparison focuses on three primary indicators,
total actual flow time, CPU execution time, and the resulting performance index, to assess how pruning influences
computational time without compromising optimality. The summary of this comparison is presented in Table 12 as
follows.

Based on Table 12, it can be observed that the Branch and Bound (BNB) algorithm consistently achieves the same
optimal total actual flow time (F“) as the Enumeration Algorithm (EA) across all test scenarios, with an average
efficiency of 100% and zero deviation in solution accuracy. This confirms that both methods are capable of
attaining globally optimal results under identical scheduling configurations. However, substantial differences are
evident in the computational time (CPU) required to reach those solutions. The BNB method demonstrates an
average CPU efficiency of 88.53% with a standard deviation of 1.68%, indicating that it performs significantly
faster than the exhaustive enumeration procedure. In particular, the CPU performance index—which represents the
relative reduction in computational effort—averages 90.65%, signifying that the BNB algorithm effectively reduces
computation time by more than nine times on average while preserving the same level of optimality as the EA.

The observed performance improvement can be directly attributed to the pruning mechanism inherent in the
Branch and Bound structure. While the Enumeration Algorithm (EA) explores every possible combination of job
allocations and batch sequences exhaustively, the BNB method systematically eliminates non-promising or
dominated nodes during the search process. This is achieved through the application of Lower Bound (LB) and
Upper Bound (UB) thresholds, along with two pruning rules—Prune-A (Out-of-Horizon) and Prune-B
(Dominance)—which discard infeasible or suboptimal branches early in the computation. As a result, the BNB
algorithm focuses only on promising solution regions without compromising global optimality. This selective search
strategy explains the substantial reduction in CPU time while maintaining perfect efficiency in I . Therefore, the

-74-

Journal of Industrial Engineering and Management — https://doi.org/10.3926/jiem.8710

BNB serves as a practical and computationally efficient alternative to exhaustive enumeration, offering exact

solutions with markedly reduced computation effort.

BNB Algorithm EA Algorithm % efficiency BNB-EA
Number of Numberof Number CPU’s CPU’s CPU’s Performance
windows machines of testing F* time (sec) F* time (sec) F* time (sec) Index
2 2 100 43.55 0.09 43.55 0.68 100% | 91.13% 66.11%
2 100 57.91 2.40 57.91 18.42 100% | 86.99% 92.78%
2 4 100 58.93 7.87 58.93 69.71 100% | 89.60% 87.46%
2 5 100 59.61 9.23 59.61 73.59 100% | 90.22% 92.21%
2 6 100 63.59 66.25 63.59 247.45 100% | 88.33% 96.65%
2 7 100 66.28 57.20 66.28 217.63 100% | 87.82% 92.50%
2 8 100 69.98 88.01 69.98 295.64 100% | 87.29% 97.51%
2 9 100 76.00 89.78 76.00 306.72 100% | 88.59% 92.74%
2 10 100 81.71 89.08 81.71 320.73 100% | 89.74% 93.81%
2 11 100 83.78 117.17 83.78 372.46 100% | 85.59% 94.71%
Min | 100% | 85.59% 66.11%
Max | 100% | 91.13% 97.51%
Mean | 100% | 88.53% 90.65%
Standard Deviation | — 1.68% 9.05%

Table 12. Comparison results between the Enumeration algorithm with branch-and-bound algorithm

The next step is to compare the proposed algorithm with the Branch and Bound (BNB) method using several test
cases. The objective is to obtain numerical insights into the performance of the proposed algorithm relative to the
BNB method, measured in terms of minimizing the total actual flow time (F) and the required central processing
unit (CPU) time. The results of this comparison are presented in Table 13.

From Table 13, the experiment was conducted more than 3,000 times under identical scheduling conditions to
evaluate the performance of the Proposed Algorithm (PA) and the Branch-and-Bound (BNB) method. However,
Table 13 only presents a representative sample of 1,000 experimental results, as all trials exhibited consistent
performance patterns. As shown in the table, the average efficiency percentage of F“ obtained from the PA reached
98.25% with a standard deviation of 0.38%, while the average CPU efficiency reached 78.48% with a deviation of
15.21%. These results demonstrate that both algorithms produce consistent and high-quality solutions, with the PA
showing superior computational efficiency and the BNB maintaining comparable accuracy. The minor deviations
observed between runs are mainly caused by rounding operations in the mathematical model, particularly in
Equation 10 for integer demand allocation and Equation 14 for integer batch size computation. Since these two
equations are interdependent, small rounding differences, either upward or downward, can lead to slight variations
in total actual flow time without significantly affecting the overall optimality.

-75-

Journal of Industrial Engineering and Management — https://doi.org/10.3926/jiem.8710

Proposed Algorithm BNB-Algorithm % efficiency PA-BNB
Number of Numberof Number

windows machines of testing ‘ time (sec) ‘ time (sec) F° time (sec)

2 2 100 44.51 0.04 43.55 0.09 98.09% 37.21%

2 3 100 58.86 0.01 57.91 2.40 98.68% 76.31%

2 4 100 59.68 0.02 58.93 7.87 98.82% 74.15%

2 5 100 61.02 0.02 59.61 9.23 97.80% 81.48%

2 6 100 64.66 0.05 63.59 66.25 98.33% 87.47%

2 7 100 67.50 0.10 66.28 57.20 98.27% 82.83%

2 8 100 71.28 0.15 69.98 88.01 98.34% 86.29%

2 9 100 77.86 0.19 76.00 89.78 97.69% 86.50%

2 10 100 83.59 0.18 81.71 89.08 97.88% 86.41%

2 11 100 85.10 0.28 83.78 117.17 98.57% 86.17%

Min | 97.69% 37.21%

Max | 98.82% 87.47%

Mean | 98.25% 78.48%

Standard Deviation 0.38% 15.21%

Table 13. Comparison results between the proposed algorithm with branch-and-bound algorithm

As presented in Table 9 and Table 13, the comparative results highlight the consistent performance of the
Proposed Algorithm (PA) when evaluated against both the Enumeration Algorithm (EA) and the
Branch-and-Bound (BNB) method. Table 9 shows that the PA achieved an average efficiency of 99.32% with a
deviation of 0.4% compared to the optimal solutions obtained by the EA, confirming that the proposed method is
capable of generating near-optimal results with drastically reduced computation time. Meanwhile, Table 13
demonstrates that, when compared with the BNB method, the PA maintains a similar level of accuracy while
executing much faster across all test conditions. Although the BNB method provides slightly more stable accuracy,
it requires substantially higher computational effort. Overall, these findings indicate that the EA serves as a
theoretical benchmark for optimality, the BNB offers a balanced compromise between accuracy and computational
cost, and the PA provides the most practical alternative for large scale or real time scheduling problems where
computational speed and scalability are crucial.

5. Conclusions

This research successfully developed a batch scheduling model for unrelated parallel machines under resource
constraints and sequence-dependent setup times, aiming to minimize the total actual flow time. The proposed
algorithm proved highly effective, achieving an average efficiency of 99.32% compared to the optimal solutions
obtained through the Enumeration Algorithm (EA), with only a minor deviation of 0.4%. Further comparative
analysis with the Branch and Bound (BNB) method demonstrated that the proposed algorithm achieved
comparable solution quality while requiring significantly less computational time, whereas the BNB method
provided a balanced compromise between accuracy and computational effort. Additional evaluation between the
BNB and EA confirmed that both algorithms consistently reached identical optimal solutions; however, the BNB
achieved this with substantially reduced computation time through an effective pruning mechanism based on Lower
and Upper Bound thresholds. These findings validate that both exact algorithms ensure global optimality, while the
proposed algorithm maintains near-optimal performance with exceptional computational efficiency, making it
suitable for complex and large-scale scheduling environments.

Future research could extend this model to more dynamic production systems, such as flexible flowline
environments where unrelated parallel machines are deployed at multiple stages. Exploring additional factors, such

-76-

Journal of Industrial Engineering and Management — https://doi.org/10.3926/jiem.8710

as machine breakdowns or real-time job arrivals, could further enhance the model’s applicability in diverse industrial
scenarios.

Data Availability Statement

The data that support the findings of this study are available in https://zenodo.org/ at DOI
https://doi.org/10.5281/zenodo.17373704, reference number 17373704. These data wete detived from the
following tesources available in the public domain: https://zenodo.otg/records/17373704.

The dataset does not involve human subjects, personal information, or any sensitive content, and therefore does
not raise concerns related to human subject protection, ethics, privacy, or security. The authors declare no
competing interests. There are no conflicts of interest with any person, institutions, or organizations related to the
content of this manuscript.

Declaration of Conflicting Interests

The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication
of this article.

Funding

This research was funded by the Internal Research Funding Scheme of the Research and Community Service
Department, Universitas Jenderal Achmad Yani (Unjani), Indonesia, 2023, and the PPMI Scheme of Institut
Teknologi Bandung (ITB), Indonesia, grant number 02/1T1.C07/SK-KP/2022.

References

Agardi, A., & Nehéz, K. (2021). The Unrelated Parallel Machines Scheduling Problem with Machine and Job
Dependent Setup Times, Availability Constraints, Time Windows and Maintenance Times. Management and
Production Engineering Review; 12(3), 15-24. Available at: https://api.semanticscholar.org/CorpusID:238863350

Alhajjar, A., & Mohammed, H. (2023). Some Algorithms Used in Parallel Machine Scheduling. Wasit Journal for Pure
Sciences, 2. https://doi.org/10.31185/wjps.158

Baker, K.R., & Trietsch, D. (2009). Safe scheduling: Setting due dates in single-machine problems. Ewropean Jonrnal
of Operational Research, 196(1), 69-77. https://doi.org/10.1016/j.¢jor.2008.02.009

Cheng, T.C.E., & Sin, C.C.S. (1990). A state-of-the-art review of parallel-machine scheduling research. Exrgpean
Journal of Operational Research, 47(3), 271-292. https://doi.org/10.1016/0377-2217(90)90215-W

Foroutan, R.A., Shafipour, M., Rezaeian, J., & Khojasteh, Y. (2024). Just-in-time scheduling of unrelated parallel
machines with family setups and soft time window constraints. Journal of Industrial and Production Engineering, 41(8),
692-715. https://doi.org/10.1080/21681015.2024.2361046

Georgiadis, G.P, Elekidis, A.P.,, & Georgiadis, M.C. (2019). Optimization-based scheduling for the process
industries: From theory to real-life industrial applications. Processes, 7(7). https:/ /doi.org/10.3390/pr7070438

Goli, A., & Keshavarz, T. (2022). Just-in-time scheduling in identical patallel machine sequence-dependent group

scheduling problem. Journal of Industrial & Management Optimization, 18(6), 3807-3830. Available at:
https://api.semanticscholar.org/CorpusID:237959397

Halim, A.H., Miyazaki, S., & Ohta, H. (1991). A Batch-Scheduling Problem to Minimize Actual Flow Times on
Hetero geneous Machines under JIT Environment. Bulletin of the University of Osaka Prefecture, 40(A), 7137.

Halim, A.H., Miyazaki, S., & Ohta, H. (1994a). Batch-scheduling problems to minimize actual flow times of parts

through the shop under JIT environment. Eurgpean Journal of Operational Research, 72(3), 529-544.
https://doi.org/10.1016/0377-2217(94)90421-9

-77-

https://doi.org/10.1016/0377-2217(94)90421-9
https://api.semanticscholar.org/CorpusID:237959397
https://doi.org/10.3390/pr7070438
https://doi.org/10.1080/21681015.2024.2361046
https://doi.org/10.1016/0377-2217(90)90215-W
https://doi.org/10.1016/j.ejor.2008.02.009
https://doi.org/10.31185/wjps.158
https://api.semanticscholar.org/CorpusID:238863350
https://zenodo.org/records/17373704
https://doi.org/10.5281/zenodo.17373704
https://zenodo.org/

Journal of Industrial Engineering and Management — https://doi.org/10.3926/jiem.8710

Halim, A. H., Miyazaki, S., & Ohta, H. (1994b). Lot Scheduling Problems of Multiple Items in The Shop with Both

Receiving and Delivery Just In Time. Production and Planning Control, 5(2), 175-184.
https://doi.org/10.1080/09537289408919484

Kazemi, H., Mahdavi-Mazdeh, M., Rostami, M., & Heydari, M. (2021). The integrated production-distribution
scheduling in parallel machine environment by using improved genetic algotithms. Journal of Industrial and
Production Engineering, 38(3), 157-170. https://doi.org/10.1080/21681015.2020.1848930

Khanh-Van, B., & Van-Hop, N. (2021). Genetic algorithm with initial sequence for parallel machines scheduling
with sequence dependent setup times based on earliness- tardiness. Journal of Industrial and Production Engineering,
38(1), 18-28. https://doi.org/10.1080/21681015.2020.1829111

Kong, M., Liu, X., Pei,]., Pardalos, PM., & Mladenovic, N. (2020). Parallel-batching scheduling with nonlinear

processing times on a single and unrelated parallel machines. Journal of Global Optinization, 78(4), 693-715.
https://doi.org/10.1007/s10898-018-0705-3

Kurniawan, D., Yusriski, R., Isnaini, M.M., Anas, M., & Halim, A.H. (2021). A Flow Shop Batch Scheduling Model
with Part Deterioration and Operator Learning-Forgetting Effects to Minimize Total Actual Flow Time.
Proceedings of the Second Asia Pacific International Conference on Industrial Engineering and Operations Management, 1936,
644-655.

Kurniawan, D., Yusriski, R., Isnaini, M.M., Ma’Ruf, A., & Halim, A.H. (2024). A Flow Shop Batch Scheduling
Model with Pre-Processing and Time- Changing Effects to Minimize Total Actual Flow Time. Journal of Industrial
Engineering and Management, 17(2), 542-561.

Lee, J. H.,, & Jang, H. (2019). Uniform Parallel Machine Scheduling with Dedicated Machines, Job Splitting and
Setup Resources. Sustainability (Switzerland), 11(24), 1-23. https://doi.org/10.3390/su11247137

Li, K., Zhang, X., Leung,].Y.T., & Yang, S.L.. (2016). Parallel machine scheduling problems in green manufacturing
industry. Journal of Manufacturing Systems, 38, 98-100. hteps://doi.org/10.1016/j.jmsy.2015.11.006

Maulidya, R., Suprayogi, Wangsaputra, R., & Halim, A.H. (2020). A batch scheduling model for a three-stage hybrid
flowshop producing products with hierarchical assembly structures. International Jonrnal of Technology, 11(3),
608-618. https://doi.org/10.14716/ijtech.v11i3.3555

Miao, C., Zhang, Y., & Cao, Z. (2011). Bounded parallel-batch scheduling on single and multi machines for
deteriorating jobs. Information Processing Letters, 111(16), 798-803. https://doi.org/10.1016/j.ipl.2011.05.018

Mokotoft, E., Jimeno, J.L., & Gutiérrez, A.I. (2001). List scheduling algorithms to minimize the makespan on
identical parallel machines. Top, 9(2), 243-269. https://doi.org/10.1007/bf02579085

Mufioz-Diaz, M.L., Escudero-Santana, A., & Lorenzo-Espejo, A. (2024). Solving an Unrelated Parallel Machines
Scheduling Problem with machine- and job-dependent setups and precedence constraints considering Support
Machines. Computers and Operations Research, 163. https://doi.org/10.1016/j.cor.2023.106511

Mufioz-Villamizar, A., Santos, J., Montoya-Tortes, J., & Alvaréz, M.]. (2019). Improving effectiveness of parallel
machine scheduling with earliness and tardiness costs: A case study. International Journal of Industrial Engineering
Computations, 10(3), 375-392. https://doi.org/10.5267 /j.ijiec.2019.2.001

Olteanu, A.L., Sevaux, M., & Ziaee, M. (2022). Unrelated Parallel Machine Scheduling with Job and Machine
Acceptance and Renewable Resource Allocation. Agorithms, 15(11), 1-17. https:/ /doi.org/10.3390/215110433

Senthilkumar, B., Kannan, T., & Madesh, R. (2017). Optimization of flux-cored arc welding process parameters by

using genetic algotithm. International Journal of Advanced Manufacturing Technology, 93(1-4), 35-41.
https://doi.org/10.1007/s00170-015-7636-7

-78-

https://doi.org/10.1007/s00170-015-7636-7
https://doi.org/10.3390/a15110433
https://doi.org/10.5267/j.ijiec.2019.2.001
https://doi.org/10.1016/j.cor.2023.106511
https://doi.org/10.1007/bf02579085
https://doi.org/10.1016/j.ipl.2011.05.018
https://doi.org/10.14716/ijtech.v11i3.3555
https://doi.org/10.1016/j.jmsy.2015.11.006
https://doi.org/10.3390/su11247137
https://doi.org/10.1007/s10898-018-0705-3
https://doi.org/10.1080/21681015.2020.1829111
https://doi.org/10.1080/21681015.2020.1848930
https://doi.org/10.1080/09537289408919484

Journal of Industrial Engineering and Management — https://doi.org/10.3926/jiem.8710

Shahvari, O., & Logendran, R. (2017). An Enhanced tabu search algorithm to minimize a bi-critetia objective in
batching and scheduling problems on unrelated-parallel machines with desired lower bounds on batch sizes.
Computers and Operations Research, 77, 154-176. https://doi.org/10.1016/j.cor.2016.07.021

Shahvari, O., Logendran, R., & Tavana, M. (2022). An efficient model-based branch-and-price algorithm for

unrelated-parallel machine batching and scheduling problems. Journal of Scheduling, 25(5), 589-621.
https://doi.org/10.1007/s10951-022-00729-7

Xu, J., & Nagi, R. (2013). Identical parallel machine scheduling to minimise makespan and total weighted

completion time: A column generation approach. International Journal of Production Research, 51(23-24), 7091-7104.
https://doi.org/10.1080/00207543.2013.825379

Yusriski, R., Astuti, B.,, Biksono, D., & Wardani, T.A. (2021). A single machine multi-job integer batch scheduling

problem with multi due date to minimize total actual flow time. Decision Science Letters, 10(3), 231-240.
https://doi.org/10.5267 /j.ds1.2021.4.002

Yusriski, R., Astuti, B., Ilham, M., & Zahedi (2019). Integrated Batch Production and Multiple Preventive
Maintenance Scheduling on A Single Machine to Minimize Total Actual Flow Time. IOP Conference Series: Materials
Science and Engineering, 598(1), 12083. https://doi.org/10.1088/1757-899X/598/1/012083

Yusriski, R., Sukoyo, Samadhi, TM.A.A., & Halim, A.H. (2015). Integer batch scheduling problems for a
single-machine with simultaneous effects of learning and forgetting to minimize total actual flow time.
International Journal of Industrial Engineering Computations, 6(3), 365-378. https://doi.org/10.5267 /j.ijiec.2015.2.005

Yusriski, R., Sukoyo, Samadhi, TM.A.A., & Halim, A.H. (2016). An Integer Batch Scheduling Model for a Single
Machine with Simultaneous Learning and Deterioration Effects to Minimize Total Actual Flow Time. IOP
Conference Series: Materials Science and Engineering, 114(1). hetps://doi.org/10.1088/1757-899X/114/1/012073

Yusriski, R., Sukoyo, Samadhi, TM.A.A., & Halim, A.H. (2018). An integer batch scheduling model
considering learning, forgetting, and deterioration effects for a single machine to minimize total inventory

holding cost. IOP Conference Series: Materials Science and Engineering, 319(1).
https://doi.org/10.1088/1757-899X/319/1/012038

Zarandi, M.H.F, & Kayvanfar, V. (2015). A bi-objective identical parallel machine scheduling problem with
controllable processing times: a just-in-time approach. International Journal of Advanced Manufacturing Technology, 77(1-
4), 545-563. https://doi.org/10.1007/500170-014-6461-8

Appendix

Constraint (3) shows that shows that the demand of jobs can be divided into several sub-demands in each machine.
Let be assumed that the number of batches in each machine (INjy,) equal to 1, the batch sizes is a number of units
that allocated to the machine, notated by -4,. Constraint (3) can be written as follows

A[k]m + t[k]mA[k]m + S[klm < d[k];k =1,..K,m=1,.., M; (Al)

Since dy is similar for each 7 so Equation (A1) can be written as follows.

A + i Apgs + S = Bz + treApgz + Sz =

A2
= Apgm-1 + tpgmApgm-1 + Spam-1 = Bpam + tpgmApgm + Spgm (A2)

For M = 2, Equation (A.2) can be expand as follows.
Apgr + tug A + S = Az + G242z + Sz (A3)

-79-

https://doi.org/10.1007/s00170-014-6461-8
https://doi.org/10.1088/1757-899X/319/1/012038
https://doi.org/10.1088/1757-899X/114/1/012073
https://doi.org/10.5267/j.ijiec.2015.2.005
https://doi.org/10.1088/1757-899X/598/1/012083
https://doi.org/10.5267/j.dsl.2021.4.002
https://doi.org/10.1080/00207543.2013.825379
https://doi.org/10.1007/s10951-022-00729-7
https://doi.org/10.1016/j.cor.2016.07.021

Journal of Industrial Engineering and Management — https://doi.org/10.3926/jiem.8710

Solving Ay from Equation (A.3) found as follows.

Az — Bpgn + tg24ikgz + Sikz — Skt

Ay =
[k]1 t

The formula of Ay, as follows.

Apgr — Az + g1l + S — Sz

Arpr =
[k]2 tz

From Constrain (3) found as follows.
At = Mg~ Apaz
Substituting Equation (A.5) into (A.6) found as follows.

A + Spgn + LA — Bixgz — Sz

A = T = tikl

Solving Ay from Equation (A.7) found as follows.

Apy = L2k +A k]2 S k12~ AlKk)1 ~S[k]L
(k] i1tz

Using similar step to solve Ay, the Ay, can be solved as follows.

A = 1™k AT ST~ Alk]2 ST
(k12 k) ttx)2

For M = 3, the formula of A1, A and A, as follows.

Arr)z—A1k)a HE k]2 ALK 2 FS[K]2 S [K]1

Ay = o

A _ Az~ Akga Hek]sALk)s TS[kIs ~S[k]1
[k]1 — tik]s

Avrs = A1 —Aprg2 k)1 Ak +HS [k S [k]2
[k]2 — tiiz

i A3 —Apk12 +E k13 ATk S [K]3 ~S[k]2
[k]2 = Lz

A _ A1~ Aks ek Ak tS[k]1 S [k]3
[k]3 — tiigs

A _ A2~ Aks k2 A k)2 TS[k]2 ~S[k]3
k13 =

tikjs
From Equation (2) we found:

Afkgr = Ny — Apgz — Afkgs

-80-

(A4

(A.5)

(A.6)

(A7)

(A.8)

(A.9)

(A.10)

(A11)

(A.12)

(A.13)

(A.14)

(A.15)

(A.16)

Journal of Industrial Engineering and Management — https://doi.org/10.3926/jiem.8710

Substituting Equation (A.12) and (A.14) into (A.16) found as follows.

A1 — Az + tigaAikga + Stk — Sikg2

Apr =g — ”
i (A17)
A = Apigz + g Ak + Stk ~ Spgs
L3
solving Ay found as follows.
N1tz -t A -A +s =S -t A -A +s =S
A[k _ MKitki2tks [k]3(k11~ A[k]2 +S[k]1 [k]z) [k]z([k]1~2[k]3 T S[k]1 [k]3) (A.18)
Ltz ekl tiels k12t ks
Re-writing Equation (A.18) can be found as follows.
Ao = T2 g + 202 (Apigi—Bpa +Spai—span)tpa:) (A19)
[kt £ T2 tagj ZiLa tpai ™ '
Simplifying Equation (A.19) found as follows.
Avr = NtV Agatsiga) |
[t tia W k)1
(A.20)
A . .
where V = Zﬁl(m) and W =31, (L), i€Em
Lk t[ki
Base on Equation (A.20),
the general formula for 7 =1, ..., M as follows.
A _ MtV BpgmtSigm) |
ljm tikymW tiklm
(A.21)

ArgritSik1i 1 .
where V = Zf’il(M) andW = YM, (t—) iEM N
Tkl

ki

Journal of Industrial Engineering and Management, 2026 (www.jiem.org)

Article’s contents are provided on an Attribution-Non Commercial 4.0 Creative commons International License. Readers are
allowed to copy, distribute and communicate article’s contents, provided the authot’s and Journal of Industrial Engineering and
Management’s names are included. It must not be used for commercial purposes. To see the complete license contents, please
visit https:// creativecommons.org/licenses/by-nc/4.0/.

-81-

https://creativecommons.org/licenses/by-nc/4.0/
http://www.jiem.org/

	A Batch Scheduling Model on Unrelated Parallel Machines with Resource Constraints and Sequence-Dependent Setup Time to Minimize Total Actual Flow Time
	1. Introduction
	2. Literature Review
	3. Model and Solution Method
	4. Results and Discussion
	5. Conclusions
	Data Availability Statement
	Declaration of Conflicting Interests
	Funding
	References
	Appendix

