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Abstract:

Purpose: This study develops a batch scheduling model on unrelated parallel machines with resource 
constraints  and  sequence-dependent  setup  times  to  minimize  total  actual  flow time.  The  research  is 
motivated by challenges in industrial settings where machines have different processing capabilities and 
setup times, impacting scheduling efficiency.

Design/methodology/approach: An algorithm is proposed using three steps: (1) sequencing jobs using 
the  Longest  Due  Date  (LDD) rule,  (2)  allocating  job  demands  to  machines  based  on  capacity,  and 
(3) solving  the  batch  scheduling  problem  for  each  machine  using  a  backward  scheduling  approach. 
Numerical  experiments were conducted to evaluate the model  against  optimal  solutions produced by 
enumeration algorithms.

Findings: The  proposed  algorithm  achieves  an  average  efficiency  of  99.32%  compared  to  the 
enumeration algorithm, with minimal deviation (0.4 %). The results validate key propositions for efficient 
scheduling, including prioritizing jobs by due dates, allocating demands based on machine capacity, and 
sequencing batches by size to minimize delays.

Research limitations/implications: The model assumes static machine conditions and predefined job 
parameters, limiting its application in static environments. Future research could extend this approach to 
incorporate real-time job arrivals or machine breakdown scenarios.

Practical implications: The algorithm offers a practical tool for industries to optimize batch scheduling 
on unrelated parallel machines, enhancing production efficiency and reducing operational costs.

Social  implications: By  improving  production  scheduling,  the  model  indirectly  supports  sustainable 
manufacturing practices through optimized resource utilization.

Originality/value: This  study  provides  a  novel  integration  of  backward  scheduling  with  resource 
constraints and sequence-dependent setup times, addressing a gap in scheduling research on unrelated 
parallel machines.

Keywords: batch scheduling, unrelated parallel machine, total actual flow time, sequence-dependent setup, resource 
constraints
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1. Introduction
Most  industrial  jobs  require  scheduling  and limited resources  to  maximize the goal  (Baker  & Trietsch,  2009; 
Georgiadis,  Elekidis & Georgiadis, 2019). One of  the topics with the most significant amount of  research is the 
parallel machine (PM) scheduling problem (Alhajjar & Mohammed, 2023; Lee & Jang, 2019; Li, Zhang, Leung & 
Yang, 2016; Mokotoff, Jimeno & Gutiérrez, 2001; Senthilkumar, Kannan & Madesh, 2017; Xu & Nagi, 2013). In 
this situation, several jobs must be processed on several machines simultaneously, and each machine handles each 
task independently, one at a time. There are three categories of  parallel machine scheduling problems: identical  
parallel  machines,  uniform machines,  and unrelated machines (Cheng & Sin,  1990;  Muñoz-Villamizar,  Santos, 
Montoya-Torres & Alvaréz, 2019). The identical machine category problems show that all machines have the same 
capability and speed for processing jobs. The uniform machine category problems assume that each machine has 
different capabilities and speeds for processing all jobs. Meanwhile, the unrelated machine category shows that each 
machine has different capabilities and speeds when processing each job.

This paper discusses the problem of  batch scheduling on unrelated parallel machines with sequence-dependent 
setup time (BS-UPMRS) in the JIT environment. The motivation for the research is based on problems at the 
weaving machine workstation. Several jobs are scheduled to be processed in parallel on group warp machines. The 
warp machine creates grey (the in-process cloth) from weaving booms, which are then refilled with a new one, with 
setup times varying depending on the job and the replacement boom. If  the replacement weaving boom comes 
from the same job, the setup time is the same length as the previous one, but it will be different if  the replacement 
boom comes from another job. Job processing times vary based on process conditions and machine efficiency. The 
company  aims  to  minimize  flow  time  and  maintain  on-time  delivery  by  returning  weaving  boom  wheels 
simultaneously after processing. This research uses the total actual flow time as an objective to determine the 
sequence of  jobs, calculate the number of  machines for each job, and determine the batch scheduling solution in 
each machine.

2. Literature Review

The literature often overlooks the study of  scheduling for unrelated parallel machine problems (UPM) (Kazemi, 
Mahdavi-Mazdeh, Rostami & Heydari, 2021; Muñoz-Díaz,  Escudero-Santana & Lorenzo-Espejo, 2024; Olteanu, 
Sevaux & Ziaee, 2022). Kazemi et al. (2021) address the integration of  production and distribution scheduling in a 
non-identical parallel machine environment using improved genetic algorithms (IGA). The objective is to minimize 
total job tardiness and delivery costs within a supply chain system by proposing a mixed-integer linear programming 
model and efficient metaheuristic approaches for solving large-scale problems. The study demonstrates that the 
Improved Genetic Algorithm (IGA) achieves an average deviation of  up to 0.29% from the optimal solution for 
small-scale problems, compared to 0.47% for the standard Genetic Algorithm (GA). For large-scale problems, the 
Relative  Percentage  Deviation  (RPD) averages  1.55% for  IGA and 3.83% for  GA,  highlighting  the  superior 
performance  of  the  proposed  IGA in  minimizing  deviations  while  addressing  complex  scheduling  scenarios. 
Olteanu et al. (2022) found that Simulated Annealing outperformed MILP and the Greedy Constructive Heuristic, 
achieving the best results with an average gap of  less than 8% and producing near-optimal solutions in over 90% of 
cases for large-scale problems. While MILP performed well on smaller instances, it required extensive computation 
time, and the Greedy Heuristic, despite its speed, showed significantly higher gaps from the optimal solution, often 
exceeding 30%. Muñoz-Díaz et al.  (2024) found that Tabu Search outperformed Simulated Annealing and the 
Constructive Heuristic, achieving the best results in over 96% of  cases. While Simulated Annealing performed well 
on smaller problems, its consistency decreased as problem size grew.

-59-

https://doi.org/10.3926/jiem.8710


Journal of  Industrial Engineering and Management – https://doi.org/10.3926/jiem.8710

Numerous publications have covered UPM setups in the past decade (Agárdi & Nehéz, 2021; Foroutan, Shafipour, 
Rezaeian  & Khojasteh,  2024;  Khanh-Van  & Van-Hop,  2021).  Agárdi  and  Nehéz  (2021)  proposed  a  genetic 
algorithm for an efficient solution. The authors found that setup time depends on the machine and job sequence, 
leading to decisions on assignment and sequence. Foroutan et al. (2024) discuss the scheduling of  unrelated parallel 
machines with family setups and soft time windows, aiming to minimize weighted earliness and tardiness while 
maximizing  the  number  of  Just-in-Time  jobs.  The  study  compares  four  metaheuristic  algorithms:  Simulated 
Annealing, Artificial Immune System, Genetic Algorithm, and Ant Colony Optimization. The results demonstrate 
that the Ant Colony Optimization algorithm, combined with a repair strategy and local search, outperforms the 
others, achieving an average improvement in objective function values of  2.12% to 8.52% and a relative deviation 
of  10.35%. The research by Khanh-Van & Van-Hop (2021) develops the Genetic Algorithm with Initial Sequence 
based on the Earliness-Tardiness criterion on Parallel Machines (GAISETP) to address unrelated parallel machine 
(UPM) scheduling problems with sequence-dependent setup times and machine capacity constraints. The algorithm 
demonstrates superior performance over previous methods, achieving near-optimal solutions in a case study of 
automotive component manufacturing. Specifically, GAISETP achieves an average gap of  less than 10% compared 
to optimal solutions for small-sized problems and approximately 6.5% for large-sized problems. The performance 
of  the algorithm is evaluated using criteria such as makespan, total earliness, and total tardiness, combined into a 
single objective function. 

Kong, Liu, Pei, Pardalos and Mladenovic (2020); Miao, Zhang and Cao (2011); and Shahvari & Logendra (2017) 
have explored batch scheduling on unrelated parallel machines (BS-UPM). Kong et al.  (2020) explore parallel-
batching  scheduling  with  nonlinear  processing  times,  focusing  on  single  and  unrelated  parallel  machines, 
introducing an optimal algorithm for single-machine settings and a hybrid SFLA-VNS meta-heuristic—combining 
Shuffle Frog Leap Algorithm (SFLA) and Variable Neighbourhood Search (VNS)—to effectively address NP-hard 
unrelated parallel machine problems. The paper aims to minimize the makespan by optimizing batch formation and 
scheduling  while  accounting  for  nonlinear  job  deterioration.  Computational  experiments  demonstrate  the 
superiority of  SFLA-VNS, achieving better convergence rates and solutions than other algorithms, particularly for 
large-scale instances, with improvements of  up to 3.8% in average objective values. Miao et al.  (2011) explore 
bounded  parallel-batch  scheduling  problems  for  deteriorating  jobs  on  single  and  multiple  machines,  where 
processing time increases linearly with start time. The paper introduces an optimal algorithm for the single-machine 
scenario and an FPTAS for parallel machines with identical release dates, while proving NP-hardness for single 
machines with distinct release dates. It contributes algorithms for specific cases, emphasizing their computational 
complexity and potential extensions for future research. Shahvari and Logendran (2017) propose a model for batch 
scheduling on unrelated-parallel machines, aiming to minimize a bi-criteria objective function that combines total 
weighted  completion  time  and  total  weighted  tardiness.  The  research  introduces  an  enhanced  Tabu  Search 
algorithm with three levels of  search (central, outside, and inside) that iteratively refines batch compositions, batch 
sequencing, and job sequencing to address the NP-hard nature of  the problem effectively. Experimental results 
show the proposed method achieves up to 37% improvement in objective function value compared to group 
scheduling,  and computational  efficiency is  enhanced by up to 40% through theoretical  lemmas to  eliminate 
ineffective search neighbourhoods. Shahvari,  Logendran and Tavana  (2022) proposes an efficient model-based 
branch-and-price algorithm to address batching and scheduling problems on unrelated-parallel machines, focusing 
on minimizing a linear combination of  total weighted completion time and total weighted tardiness. The model 
integrates a machine learning-based random forest algorithm for determining lower bounds on batch sizes and 
reformulates  a  mixed-integer  linear  programming  model  using  flow  conservation  constraints  to  reduce 
computational complexity. The branch-and-price algorithm demonstrated superior performance, achieving optimal 
solutions with significant reductions in computational time compared to existing benchmarks, while maintaining 
high solution quality across various problem scales.

Researchers in BS-UPM have explored the JIT field (Goli & Keshavarz, 2022; Halim,  Miyazaki & Ohta, 1991; 
Zarandi & Kayvanfar, 2015). Goli & Keshavarz (2022) examined a sequence-dependent group scheduling problem 
on parallel  machines within a  Just-In-Time (JIT) framework,  aiming to minimize total  weighted earliness  and 
tardiness. The study begins by developing a mathematical model suitable for solving small-sized instances of  the 
problem. Recognizing the problem’s NP-hard nature, the researchers proposed two meta-heuristic algorithms to 
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find  near-optimal  solutions:  The  Biogeography-Based  Optimization  (BBO)  algorithm,  introduced  as  a  novel 
approach, and the Variable Neighborhood Search (VNS) algorithm, a widely recognized method. To assess the 
effectiveness of  the proposed model and algorithms, extensive computational experiments were conducted. The 
results demonstrated the efficiency of  both algorithms in terms of  speed and solution quality,  with the BBO 
algorithm achieving a maximum gap of  1.04% and the VNS algorithm a slightly higher gap of  1.35%. These 
findings  underscore  the  potential  of  BBO  and  VNS  for  addressing  complex  scheduling  problems  in  JIT 
environments.  Halim et  al.  (1991) proposed a single-job batch-scheduling algorithm for distributing parts  and 
solving the batch-scheduling problem on parallel machines. The researchers use the total actual flow time as an 
objective, defined as the total time interval of  all parts in all batches flowing in the shop from arrival to the due 
date. This objective has proven to minimize flow time and on-time delivery simultaneously (Kurniawan, Yusriski, 
Isnaini,  Anas  &  Halim,  2021;  Kurniawan,  Yusriski,  Isnaini,  Ma’Ruf  &  Halim,  2024;  Maulidya,  Suprayogi, 
Wangsaputra & Halim, 2020; Yusriski,  Sukoyo, Samadhi & Halim, 2015; 2016; 2018; Yusriski,  Astuti, Ilham & 
Zahedi, 2019; Yusriski, Astuti, Biksono & Wardani, 2021). Zarandi & Kayvanfar (2015) investigated a bi-objective 
scheduling problem on identical parallel machines, integrating the Just-In-Time (JIT) philosophy to minimize the 
total  costs  of  tardiness,  earliness,  job  processing  time  adjustments,  and  makespan.  The  study  introduced  an 
innovative  approach  using  the  “bi-objective  parallel  net  benefit  compression-net  benefit  expansion” 
(BPNBC-NBE) heuristic,  which allows for flexible compression or expansion of  job processing times within 
defined  limits.  To  solve  this  complex  problem,  the  researchers  applied  two  multi-objective  meta-heuristic 
algorithms,  Non-Dominated  Sorting  Genetic  Algorithm II  (NSGAII)  and  Non-Dominated  Ranking  Genetic 
Algorithm (NRGA).  The findings  revealed that  NRGA excelled  in  achieving better  convergence towards  the 
Pareto-optimal front, while NSGAII demonstrated a wider spread across solutions. This research offers significant 
advancements in JIT scheduling by effectively balancing delivery precision with production efficiency, providing 
valuable insights for optimizing complex manufacturing systems and industrial processes. 

3. Model and Solution Method
This section discusses the problem formulation, describes a mathematical model, and develops a solution method, 
including the proposed algorithm.

3.1. Problem Formulation

Multiple jobs with individual due dates are scheduled on a workstation containing unrelated machines. Each job 
consists of  product units distributed to the machines, the so-called sub-jobs. Since each machine’s capabilities differ, 
sub-job sizes can vary, even though they come from the same job. The company can manage the arrival of  material 
to the shop at the right time and quantity (JIT environment), so to minimize inventory cost, each machine can 
process the sub-lot into some batches. The setup time is needed before any machine processes a batch; the length 
depends on the machine’s capabilities. The objective is to minimize the total actual flow time, and the decision is to 
determine the sequence of  jobs, the number of  machines allocated to process each job, the number of  batches, 
batch sizes, and the sequence of  the resulting batches on each machine. Since the actual flow time is an objective,  
this research adopts the backward scheduling methods. The notation and mathematical model are as follows.

Index

k : the job index k = 1, …, K

m : the machine index m = 1, …, M

i : the batch index i = 1, …, Nkm

Parameter

nk : the demands of  job k

dk : the due date of  job k

Δkm : the length between the due date of  job k and the completion time of  first batch scheduled on machine m by 
the backward scheduling approach

tkm : the processing time of  job k on machine m

skm : the setup time of  the job k on machine m 
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Variable

M : the number of  machines (group machine) which is allocated to process a job

K : the number of  jobs

Akm : sub-demand, the unit quantity of  job k allocated to machine m 

Nkm : the number of  batches of  job on a machine m 

Bkm[i] : the starting time of  the batch sequence i th job k on machine m 

Qkm[i] : the size of  the batch sequence i th job k on machine m 

Objective

F a : the total actual flow time of  all jobs

(1)

Subject to:

(2)

(3)

(4)

(5)

(6)

(7)

Equation  (1)  is  the  objective  function,  minimizing  the  total  actual  flow time  for  multi-job  unrelated  parallel 
machines. Constraint (2) and (3) state the material balance. Constraint (2) shows that the total unit of  a job allocated 
on all parallel machine is equal to that demand. Constraint (3) shows the total number of  units in all batches of  job 
scheduled on each machine must be equal to the total unit allocated to that machine. Constraints (4) state that all  
batches of  jobs are processed on any parallel machines in the length of  the scheduling period (between t = 0 and 
their individual due date). Constraint (5) states that the first batch of  job j scheduled in the unrelated m parallel 
machine  using  a  backward  scheduling  approach  must  be  completed  at  their  individual  due  date  (d)  exactly. 
Constraints (6) state the length between the due date of  the job j and the completion time of  first batch scheduled 
on machine m. Constraint (7) states that the minimum batch number and the minimum batch sizes are one, and the 
element is a natural number.

3.2. Problem Solution

This section will determine the decision variables along with the formula for calculating the minimum total actual 
flow time. The Six decisions are proposed: the job’s sequencing, the demand allocation, the resource (machines) 
priority, the batch scheduling decisions consist of  the decision of  the number of  batches, the batch sizes, and the 
scheduling of  resulting batches.
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3.2.1. Decision 1: Job’s Sequencing

Multiple jobs are scheduled on parallel unrelated machines with an individual due date. Since this study adopts the 
backward scheduling approach, the jobs must be scheduled using the proposition as shown as follows.

Proposition 1. Suppose there are K jobs with their respective due date scheduled on an unrelated parallel machine using the backward 
scheduling approach. In that case, the total actual flow time of  jobs can be minimized by scheduling the jobs using the Longest Due Date 
(LDD) rule. 

Proof. Suppose there are K jobs k = 1, …, K with an individual due date (d1, …, dK) respectively. The Jobs are scheduled using 
two schedule sequences, namely S and Z , adopting a backward scheduling approach. The S is a job sequence using the Longest Due  
Date (LDD) rule, while Z is a sequence using other rules so that the jobs sequence is S ≠ Z. Let’s assume there is a pair of  jobs, 
namely  a and  b (a, b  k) with  da ≥ db  , Position  a precedes  b in  S, but vice versa in Z. If  the positions of  a and  b are 
interchanged, then the value of  F a increases in S and decreases in Z. Applying the pairwise interchange method to all jobs so that Z  
= S produces an optimal schedule Z. This proves that the LDD rule produces an optimal solution to minimize the total actual flow  
time. ■ (proven).

3.2.2. Decision 2: Demand Allocation

In the case of  parallel machines, decisions on demand allocation are influenced by machines available capacity 
where each machine have a unique parameter, including job processing time and machine setup time. It leads to 
different machine capacities when the machine processes the jobs. The capacities of  the machines are calculated 
using the following formula.

(8)

3.2.3. Decision 3: Resource (Machines) Priority

The machine priority for allocating the demand jobs can be obtained by following the Proposition as follows.

Proposition 2. If  there are M unrelated parallel machines with their processing time and capacities will be assigned to process a job  
during a scheduled period, then selecting the machines priority for allocating the demand jobs obtained by the increasing of  machine 
capacity, t[1]C[1] ≤ … ≤ t[M]C[M].

Proof. Let it see the Equation (1). Assume there is one job with one batch to be scheduled and so Equation (1) can be write as  

follows: . Partial differential ∂F a over ∂Qm found . If  the batch size on the machine equal to 

that capacity (Qm = Cm) so min F a can be found when min 2tmCm since m = 1, …, M, the priority allocation the demand to machine 
obtained by increasing of  tmCm, t[1]C[1] ≤ … ≤ t[M]C[M]. ■ (proven).

Constrain (2) shows that the demand of  jobs can be divided into several sub-demands in each machine. If  the 
number of  batches in each machine equal to 1, the batch sizes is a number of  units that allocated to the machine, 
the formula for calculating the Akm with the continuous allocation size and integer size are as follows. 

The continuous allocation calculated by formula:

(9)

-63-



Journal of  Industrial Engineering and Management – https://doi.org/10.3926/jiem.8710

The integer allocation calculated by formula:

(10)

How the solutions have been obtained is shown in the Appendix.

3.2.4. Decision 4: Number of  Batches

This step discusses how to divide the sub-demand of  the job in each machine into several batches (Qkmi, i = 1, …, 
Nkm) and determine that sequence to minimize the total actual flow time. The decision method of  this study 
adopted the solution of  Halim, Miyazaki and Ohta, (1994a), which discussed batch scheduling model on a single 
machine common due date. The proposition of  the sequence of  the batch is as follows.

Proposition 3. Suppose that there are N batches of  job j scheduled on single machine with batch sizes (Qkmi, i = 1, …, Nkm) respectively. 
The optimal backward sequence that minimizes F a is obtained from arranging the batches in order of  non-increasing batch sizes:

Proof. Looking at the formula as follows:  in Equation (1). It can be observed that the value 
index of  batches (Qkm[i]) are already in increasing order. Therefore, to minimize F a, the batches should sequence in a non-increasing 
order of  batch sizes (starting from the batch closest to the due date). ■ (proven).

This research also uses the formula in Halim et al. (1994a) to calculate the number of  batches (Nkm, N0
max) and the 

batch sizes  (Qkm[i], i = 1, …,  Nkm)  with several adjustments regarding the problems discussed. The formula for 
calculating the number of  batches is shown as follows.

(11)

(12)

3.2.5. Decision 5: Batch Sizes

The formula for calculating the batch sizes is shown as follows.

The continuous batch sizes calculated by formula:

(13)
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The integer allocation calculated by formula:

(14)

3.2.6. Decision 6: Scheduling of  Resulting Batches

The scheduling of  each batch can be determined by calculating its  beginning time, which represents the arrival 
position of  the batch on the production floor. The beginning time of  each batch is derived by integrating Constraints 
(4), (5), and (6). Based on the combination of  these three constraints, the following formula is obtained as follows.

(15)

How the solutions have been obtained is shown in Halim, Miyazaki and Ohta (1994b).

4. Results and Discussion
This section discussed the proposed algorithm and examines the outcomes of  the proposed algorithm when used 
in basic scenarios and numerical experiments. The purpose of  using the suggested method on basic scenarios is to 
give a general idea of  how the algorithm functions and the outcomes achieved. Meanwhile, the goal of  numerical  
experiments is to obtain an understanding of  algorithmic techniques for solving issues.

4.1. Result

Base on the solution in the last section, the proposed algorithm solution has developed as follows.

The Proposed Algorithm (PA)

Step 1: set parameters 

Step 2: sequence the jobs [k] using the LDD rule obtained by Proposition 1; go to Step 3.

Step 3: start from k = [1] and go to step 4.

Step 4: determine the demand allocation

Step 4.1: calculate the machine capacities using Equation (8); Continue to Step 4.2. 

Step 4.2: sequence the machine priority by Proposition 2; Continue to Step 4.3.

Step 4.3: determine the demand allocation using Equation (9) for continue batch sizes case and Equation 
(10) for integer batch sizes case; Go to Step 5.

Step 5: determine the number of  batches, and the batch sizes, then schedule the resulting batches for each machine 
using the common due date algorithm by Halim et al. (1994b).

Step 5.1: start from m = 1, go to Step 5.2

Step 5.2: calculate L[k] = d[k]m – s[k]m – ∆[k]m – max{d[k+1]m, 0}; go to step 5.3

Step 5.3: if  skm + Akmtkm + ∆km ≥ Lk Set Nkm = 1 then go to Step 6; otherwise, go to Step 5.4.

Step 5.4: compute N0
max using Equation (12) and go to Step 5.5. 

Step 5.5: Set Nmax = N0
max means the maximum integer less than or equal to N0

max

Go to Step 5.6.
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Step 5.6: compute N0
km using Equation (11) 

Step 5.6.1:if  N0
km ≤ 1 then set Nkm = 1

Step 5.6.2:if  N0
km ≥ 1 Nmax then set Nkm = Nmax

Step 5.6.3: if  1 < N0
km < Nmax then set Nu

0 = N0
km where N0

km is the 

minimum integer greater than or equal to N0
km. 

if  (Nu
0 – 1)skm + Akmtkm ≤ Lk, set Nkm = Nu

0 

otherwise Nu
0 – 1, 

Continue to Step 5.7.

Step 5.7: determine the batch sizes. If  the problem considers Continuous batch sizes, proceed to Step.5.7.1, 
otherwise go to Step 5.7.2.

Step 5.7.1: compute Qkm[i] (i = 1, …, N) using Equation (13) 

Step 5.7.2: compute Qkm[i] (i = 1, …, N) using Equation (14)

Continue to Step 5.8.

Step5.8: sequence the batches  Qkm[i] in non-increasing  Qkm[i] in the backward approach, The largest  Qkm[i] 

scheduled close to the due date. 

Continue to Step 5.9.

Step 5.9: calculate beginning time with Equation (15). Continue to Step 5.10.

Step 5.10: if  m < M set m + 1 and return to Step 5.2 otherwise go to Step 6.

Step 6: if  k < K, set k = [k + 1], then return to Step 4; otherwise, continue to Step 7.

Step 7: Calculate the total actual flow time using Equation (1) and STOP. ■ 

The application of  the proposed algorithm can be seen in a simple case example as follows: There are two jobs 
(k = 1,2) scheduled to process on three unrelated machines to minimize total actual flow time. The parameters are 
shown in Table 1.

Job number, k

processing time, tm

(hours/ unit)
Setup time, sm

(hours/ unit)
Due date, d

(hours)
Demand, n

(unit)m = 1 m = 2 m = 3 m = 1 m = 2 m = 3

1 1 1 2 2 1 1 10 13

2 2 1 1.5 3 4 2 20 15

Table 1. The parameters of  the case

The continue batch size case completion. The application of  the proposed algorithm for the continue batch 
size case yields the solution as follows. The sequence of  jobs resulting from STEP 2 is 2-1 since the algorithm 
adopts the LDD rule. STEP 3 schedule job number 2. The result of  STEP 4 is that the demand equal =15 units are 
distributed to the machines. The demand allocation for each consecutive machine (m = 1, 2, 3) is 3.538 units, 6.077 
units, and 5.385 units. STEP 5 continues to determine the number of  batches and batch sizes on all machines. For 
machine number 1 (m = 1), the calculation result shows the number of  batches (N21) is 1, and the batch size (Q21[1]) 
is 3.538 units. It leads to the starts processing of  batch on machine number 1 (B21[1]) at 12.923th hours. For m = 2, N 
= 1, Q22[1] =6.077 units, and B22[1] at 13.923th hours. Meanwhile for m = 3, the solution found with N = 1, with the 
batch sizes are  Q23[1] = 5.385 units. The start processing  B23[1] at 11.923th hours. Since another job has not been 
scheduled, STEP 6 continues to the next job (job number 1). The solution is completed with the same steps as the 
previous job. The last step (STEP 7) calculated the total actual flow time and found 164.192 hours. The complete  
solution to this problem can be seen in Table 2. 
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k n m ∆km Akm Nkm

Qkm[i]

(i = 1, …, Nkm)
Bkm[i]

(i = 1, …, Nkm) Fm
a F a

2 15

1 0 3.538 1 (3.538) (12.923)
105.46

2

164.19
2

2 0 6.077 1 (6.077) (13.923)

3 0 5.385 1 (5.385) (11.923)

1 13

1 0.077 4.6 2 (3.3), (1.3) (6.623), (3.323)

58.732 0.077 5.6 3 (2.867), (1.867), (0.867) (7.056), (4.19). (2.323)

3 0.077 2.8 2 (1.433), (0.933), (0.433) (7.056), (4.19). (2.323)

Table 2. Complete solution for the case

The integer batch size case completion. The application of  the proposed algorithm yields the solution as 
follows. The sequence of  jobs resulting from STEP 2 is 2-1 since the algorithm adopts the LDD rule. Start from 
k = 2. The result of  STEP 3 is that the capacities of  the machine (C2m, m = 1, 2, 3) are 3 units, 6 units, and 5 units 
consecutively, and the machine priority sequence is 1-3-2 resulting by STEP 4. The next step (STEP 5) is the 
demand allocation of  each job appropriate with job sequence priority. The demand equal =15 units are distributed 
to the machines. Sub-Algorithm 1 is used to solve that. The demand allocation for each consecutive machine 
(m = 1, 2, 3) is 3 units, 7 units, and 5 units. The result of  STEP 5 shows that the demand allocation is bigger than 
the capacities, which leads the completion time of  the next job to be earlier than its due date. STEP 6 continues to 
determine the number of  batches and batch sizes on all machines. The result of  Sub Algorithm 2 is as follows. For 
machine number 1 (m = 1), the calculation result shows the number of  batches (N21) is 1, and the batch size (Q21[1]) 
is 3 units. It leads to the starts processing of  batch on machine number 1 (B21[1]) at 14th hours. For m = 2, N = 7, 
Q22[1] = 7 units, and B22[1] at 13th hours. Meanwhile for m = 3, the solution found with N = 1, with the batch sizes are 
Q23[1] = 5 units. The start processing  B23[1] at 12.5th hours. Since another job has not been scheduled, STEP 7 
continues to the next job (k = 1). The solution is completed with the same steps as the previous job. The last step 
(STEP 8) calculated the total actual flow time and found 168.5 hours. The complete solution to this problem can be 
seen in Table 3. 

j n m ∆km Ckm Akm Nkm

Qkm[i]

(i = 1, …, Nkm)
Bkm[i]

(i = 1, …, Nkm) F a

2 15

1 0 3 3 1 (3) (14)

168.5

2 0 6 7 1 (7) (13)

3 0 5 5 1 (5) (12.5)

1 13

1 0 8 5 2 (4), (1) (6), (3)

2 1 8 5 2 (3), (2) (6), (3)

3 0 4 3 2 (2), (1) (6), (3)

Table 3. Complete solution for the case

An illustration of  the solution schedule is shown in the Figure 1.

Figure 1 shows three parallel machines processing two jobs (k = 1,2) with due dates of  20 and 10 hours and 
demands of  15 and 13 units, respectively. Based on the calculations of  the proposed algorithm, the scheduling 
sequence prioritizes the second job, followed by the first job. The second job, scheduled first, is represented in red 
and is distributed across the three machines as follows: machine 1 processes 3 units (in one batch), machine 2 
processes 7 units (in one batch), and machine 3 processes 5 units (in one batch). The first job, scheduled second, is 
represented in blue and is distributed across the three machines as follows: machine 1 processes 4 and 1 units 
(divided into two batches), machine 2 processes 3 and 2 units (divided into two batches), and machine 3 processes 2 
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and 1 units  (divided into two batches).  The figure illustrates  that  the two jobs are  scheduled in  a  backward 
approach, ensuring that completion times do not exceed the respective due dates.

Figure 1. Gantt chart solution

4.2. Discussion

In this section, a comparative analysis is conducted between the performance of  the proposed algorithm (PA) and 
the optimal solution outlined by the enumeration algorithm (EA). The aim is to assess how the proposed algorithm 
performs compared to the enumeration algorithm.  The enumeration algorithm (EA) is  obtained through the 
following steps:

4.2.1. The Enumeration Algorithm (EA)

Step 1: set input parameters

Step 2: sequence the jobs by Proposition 1, and go to Step 3.

Step 3: for each job resulting from Step 2:

Step 3.1: generate the alternative combination of  demand allocation (A[k]m, m = 1, …, M) using restricted 
integer partition with maximum value (RICMV) method, continue to Step 3.2.

Step 3.2:distribute each A[k]m to the machine by the Proposition 2, continue to Step 3.3

Step 3.3: for each A[k][m], generate the alternative combination of  the batch sizes on each machine (Qkm[i], 
i = 1, …, N) using the integer partition method. Go to Step 4.

Step 4: for each machine, 

Step 4.1: combinate each alternative Qkm[i] of  a job with another job, continue to Step 4.2.

Step 4.2:calculate the total actual flow time of  each combination (Fm
a) using Equation 1, continue to Step 

4.3

Step 4.3: find the minimum total actual flow time for each machine; go to Step 5 

Step 5: calculate the total actual flow time of  all machines. STOP. ■ 

The completion of  the last problem using the enumeration algorithm is as follows. Step 2 results in the sequence of 
jobs being 2-1. Step 3 produces the alternatives of  the combination of  demand allocation Akm. Here is an example 
for  k  = 2. The parameters of  the RICMV method are the number of  demands (n), the number of  machines 
(M = 3), and the restricted of  maximum value (r). the formula of  r is calculated as follows.

(16)
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The alternative solutions (Akm, m = 1, 2, 3) are shown in Table 4 as follows. 

n M r
The RICMV combination solution 

without Proposition 2 (Step 3.1)
The RICMV combination solution (Akm) 

considering Proposition 2 (Step 3.2)

15 3 7

(7, 7, 1) (1, 7, 7)

(7, 6, 1) (1, 7, 6)

(7, 5, 3) (3, 7, 5)

(7, 4, 4) (4, 7, 4)

(6, 6, 3) (3, 6, 6)

(6, 4, 5) (4, 6, 5)

Table 4. Solutions for demand distribution using the RICMV method

The solution of  Akm is then used as a basis for enumerating decisions of  Nkm  and Qkm[i] using the integer partition 
method. One of  the combinations (Akm, m = 1, 2, 3) in Table 4 is 3, 7, 5. The following is the solution for m = 3 
(Akm = 5) which is solved with the integer partition method, is shown in Table 5 as follows.

A2m, m = 1, 2, 3 A23 N2 Q23[i], i = 1, …, N2

3, 7, 5 5

1 (5)

2
(4, 1)

(3, 2)

3
(3, 1, 1)

(2, 2, 1)

4 (2, 1, 1, 1)

3 (1, 1, 1, 1, 1)

Table 5. Solutions of  demand distribution using the RICMV method (Step 3.3)

Step 4 is combining the Qkm[i] for k = 1 and k = 2, continue with Step 5 to calculate the total actual flow time. The 
resulting example for this stage is shown in Table 6, which combines Q23[1] = 5 unit (k = 2, m = 3 and Nk = 1) with 
Q13[i] (k = 1, m = 3 and Nk = 1, …, 3).

Q23[1], N2 = 1 Q13 N1 Q13[1], i = 1, …, N1 Combination {(Q23[1]), (Q23[i])} Fm
a Min Fm

a

(5) 3

1 (3) (5), (3) 55.5

2 (2, 1) (5), (2, 1) 52.5 minimum

3 (1, 1, 1) (5), (1, 1, 1) 52.5 minimum

Table 6. Alternative solutions combination example (Step 4)

Table 6 shows the minimum F a = 52.5 found from combination {(5), (2,1)} and {(5), (1,1,1)}. The next step, Step 
5, is the final solution, shown in Table 7.
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m Final Combination Fm
a F a

1 {(3), (4,1)} 41 168.5

2 {(7), (3,2)} 75

3 {(5), (2,1)} or {(5), (1,1,1)} 52.5

Table 7. Final solutions (Step 5)

Table  7 shows that  one of  the enumeration procedure solution provides the same solution as  the proposed 
algorithm. The optimal combination of  the enumeration procedure is founded with combination as shown in Tabel 
8 as follows.

m Optimal Combination Fm
a F a

1 {(4), (3,2)} 60 167.5

2 {(6), (3,2,1)} 65

3 {(3, 2), (1,1)} 42.5

Table 8. Optimal solutions resulted by Enumeration Algorithm

As  shown in  Table  8,  the  enumeration  solution  provides  a  better  result  than  the  proposed  algorithm.  The 
effectiveness of  the proposed algorithm is approximately 99.40% relative to the optimal solution.

The next step is to compare the two algorithms with several cases.  The goal is  to gain numerical  experience 
regarding the performance of  the proposed algorithm when compared with the optimal algorithm as measured by 
minimizing the total actual flow time (F a) and computing the computer processing unit’s (CPU’s) time. The two 
algorithms are executed using the Visual Studio Community 2022 application with .NET 7 as a framework and 
C#11 as a programming language. The outcomes are reported using an Intel Xeon E5 v3, 6 cores, 20 GB of  RAM, 
and an AMD Radeon R750 GPU. The result is shown in Table 9.

Number of 
windows

Number of 
machines

Number 
of  testing

Proposed Algorithm
Enumeration 

Algorithm % efficiency PA-EA

F a
CPU’s 

time (sec) F a
CPU’s 

time (sec) F a
CPU’s 

time (sec)

2 2 100 44.51 0.04 43.55 0.68 98.09 % 95.50 %

2 3 100 58.86 0.01 57.91 18.42 98.68 % 99.34 %

2 4 100 59.68 0.02 58.93 69.71 98.82 % 98.97 %

2 5 100 61.02 0.02 59.61 73.59 97.80 % 99.68 %

2 6 100 64.66 0.05 63.59 247.45 98.33 % 99.27 %

2 7 100 67.50 0.10 66.28 217.63 98.27 % 98.86 %

2 8 100 71.28 0.15 69.98 295.64 98.34 % 98.31 %

2 9 100 77.86 0.19 76.00 306.72 97.69 % 99.30 %

2 10 100 83.59 0.18 81.71 320.73 97.88 % 99.37 %

2 11 100 85.10 0.28 83.78 372.46 98.57 % 98.65 %

Min 97.69 % 95.50 %

Max 98.82 % 99.68 %

Mean 98.25 % 98.73 %

Standard Deviation 0.38 % 1.20 %

Table 9. Comparison results between the two algorithms
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The experiment has been carried out more than 3,000 times, but in Table 9, only a sample of  the results of  1,000  
experiments is presented, considering that the results exhibit similar characteristics. Table 9 shows that the average 
percentage of  efficiency F a produced by the PA algorithm reached 98.25% when compared to the optimal solution 
produced by the EA algorithm, with a deviation of  0.38%. This indicates that the proposed algorithm consistently 
generates high-quality solutions very close to the optimum when compared with the enumeration algorithm. The 
small percentage difference mainly results from rounding operations in the model, specifically in Equation (10) for 
integer demand allocation and Equation (14) for integer batch size calculation. These two equations are interrelated: 
Equation (10) determines how the total job demand is discretely allocated to each machine, while Equation (14) 
computes the integer batch sizes based on that allocation. Rounding up or down at either stage may slightly alter the 
solution from the mathematical optimum, resulting in minor deviations in the final total actual flow time.

Table 9 also shows that the CPU time of  the PA algorithm is significantly more efficient than that of  the EA 
algorithm. The average CPU efficiency reached 98.73% with a deviation of  1.20%, confirming that the proposed 
algorithm maintains high computational performance even as the number of  machines increases. For instance, 
when the number of  machines increased to eleven, the PA algorithm required only 0.2845 seconds, compared to 
372.46 seconds for the EA, resulting in a speed-up of  over 1,300 times. These numerical results confirm that the 
proposed  algorithm  is  suitable  for  solving  complex  batch  scheduling  problems  efficiently.  Furthermore,  the 
experimental  findings  empirically  validate  the  three  propositions  proposed  in  this  study:  (1)  jobs  should  be 
scheduled using the Longest Due Date (LDD) priority rule, (2) job demands should be distributed according to 
machine capacity—where larger capacities receive larger demand allocations, and (3) batches should be sequenced 
such that larger batch sizes are scheduled closer to their respective due dates.

4.2.2. Branch-and-Bound (BNB) Algorithm

Although the Proposed Algorithm (PA) demonstrates high computational efficiency and consistently produces 
near-optimal  solutions,  it  cannot  guarantee  global  optimality  due  to  its  heuristic  nature.  In  contrast,  the 
Enumeration  Algorithm  (EA)  ensures  the  exact  optimal  solution  by  exhaustively  exploring  all  possible 
combinations;  however,  its  computational  effort  increases  exponentially  with  the  problem  size,  making  it 
impractical for large instances. To bridge the gap between efficiency and optimality, this study develops a Branch-
and-Bound  (BNB) algorithm.  The  BNB  approach  systematically  explores  feasible  nodes  while  eliminating 
dominated or infeasible ones using the Lower Bound (LB) and Upper Bound (UB) concepts.

The  Upper  Bound (UB)  represents  the  best  total  actual  flow time  (F a)  obtained  thus  far  during  the  BNB 
exploration. Initially, the UB is set to the F a value generated by the Proposed Algorithm (PA), which serves as an 
efficient near-optimal reference. Each time the BNB algorithm discovers a feasible schedule whose LB[k]  is smaller 
than the current UB, the UB is updated accordingly. Mathematically, for each feasible solution as follows.

(17)

Where  LB[k] denotes the total actual flow time of  all feasible job, starting from current job position until end 
position.

This definition ensures that the BNB search process always retains the best (minimum) total flow time discovered 
so far.

In contrast, the  Lower Bound (LB) represents the theoretical minimum total actual flow time that could still be 
achieved by a partial or incomplete schedule under ideal conditions.

At each branching node, the LB serves as a decision criterion to determine whether a node is worth further 
exploration. If  the calculated LB value of  a node exceeds or equals the current UB, that node can be safely  
eliminated without affecting the global optimality of  the final solution.

For a multi-job, multi-machine system, the LB of  each job depends on its scheduling status.
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The  BNB  algorithm  adopts  a  hybrid  LB  formulation  that  combines  discrete  and  continuous  relaxation 
components:

1. For the active job (the job currently being scheduled), the discrete LB is computed based on its actual 
allocation to each machine:

Where t[k],m is the processing time per unit job [k]th sequence on machine m

A[k],m is the number of  allocated units of  job [k]th sequence on machine m

(18)

For  the  unscheduled  (future)  jobs,  a  continuous  relaxation  is  employed  to  represent  the  minimum 
attainable flow time assuming zero setup times and ideal machine utilization:

Where nk is the total number of  units of  job k.
(19)

Accordingly, the total LB at the current ([k]th) position is formulated as follows:

(20)

If  the computed LBp ≥ UB, the corresponding node is eliminated because it cannot produce a better solution than 
the current best. This condition forms the basis of  the dominance pruning rule, which will be described as follows.

1. Prune-A (Out-of-Horizon) – A node is eliminated when backward scheduling yields a negative start time 
(B[k],m < max(d[k+1], 0)), meaning that the process or setup of  a batch would begin before next due date of 
time zero, making the schedule infeasible.

2. Prune-B (Dominance) – A node is eliminated when the total lower bound of  the current node is not better 
than the incumbent upper bound (UB = min(UB, total LB[k])).

The  pruning  mechanism  described  above  serves  as  the  logical  foundation  for  constructing  the  complete 
Branch-and-Bound (BNB) algorithm. By combining the previously defined bounds (LB and UB) with the pruning 
rules, the BNB algorithm systematically explores feasible scheduling nodes while efficiently discarding infeasible or 
dominated ones. The algorithm consists of  a structured sequence of  decisions that correspond to the hierarchical 
nature of  the batch scheduling problem, where each decision stage progressively refines the search space toward the 
global optimum.

Step 1: Initialization

Set all input parameters (tkm, skm, dk, nk) for all jobs and machines.

Initialize UB = F a from the Proposed Algorithm (PA).

Step 2: Job Sequencing

Sequence jobs by Proposition 1 (LDD rule), obtaining ordered jobs [k] = [1], …, [K]

Step 3: For each job k = [1] to [K] do

Step 3.1: Compute machine capacities using Equation (8):

Step 3.2: Sort machines in ascending order of  Cm (Proposition 2).

Step 3.3: Generate all alternative demand allocations (A[k]m) 

using the Restricted Integer Combination with Maximum Value (RICMV) method. Let G be the 
total number of  allocation alternatives.

Step 3.4: For each allocation g = 1 to G do

Step 3.4.1: Assign A[k]m to machines according to Proposition 2.
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Step 3.4.2: For each feasible allocation, perform branching as follows:

Step 3.4.2.1: For each feasible number of  batches N[k]m = 1 to Nmax:

Step 3.4.2.1.1:  Generate all  non-increasing batch partitions  Q[k]m[i] using the 
Cartesian Product method.

Step 3.4.2.1.2: Schedule batches backward using Proposition 3 and calculate 
B[k]m[i] using Equation (15):

Step 3.4.2.1.3: Check horizon feasibility: 

If  B[k],m < max(d[k+1], 0) then eliminate node by Prune-A rule and continue.

Step 3.4.2.1.4: Compute total actual flow time of  [k]:   and 
continue

Step 3.4.2.1.5: Compute total LB using Equations 18-20

Step 3.4.2.1.6: If  total LB ≥ UB then eliminate Prune-B rule; otherwise record 
the corresponding schedule as the incumbent.

Step 4: Termination

When all nodes are fathomed, report UB and its associated schedule as the global optimal solution. ■ 

Algorithm Evaluation and Example Results  is  as follows. The same two-job, three-machine example used for 
evaluating the PA and EA algorithms is also applied here to demonstrate the implementation of  the proposed 
Branch-and-Bound (BNB) algorithm under backward scheduling. All job parameters, including processing times, 
setup times, due dates, and demands, remain identical to those defined previously. 

The algorithm is executed sequentially, starting with Step 1 (Initialization), where all model parameters are defined 
and the upper bound (UB) is initialized using the Proposed Algorithm (PA), and Step 2 (Job Sequencing), which 
applies the Largest Due-Date (LDD) rule to fix the processing order as Job-2 followed by Job-1. This sequence 
provides the conditional  search path for subsequent BNB exploration.  The BNB procedure then follows the 
hierarchical decision flow (Steps 3.1–3.6) and employs two pruning rules: Prune-A (out-of-horizon) and Prune-B 
(dominance), using the lower-bound formulations as defined in the model. 

Start from Job 2 (k = [1]) the result of  step 3 is as follows. In Step 3.1, machine capacities are calculated using  
Equation (8), resulting in capacity are (4,7,5) which represents the maximum feasible allocation of  Job-2 units to 
Machines 1–3. In Step 3.2, machines are sorted according to Proposition 2, which ensures that the RICMV 
allocations follow the same capacity-based priority. Based on this order, three feasible allocation alternatives are  
generated:  (4,  7,  4),  (4,  6,  5),  and  (3,  7,  5).  For  each  allocation,  the  algorithm starts  with  a  single-batch  
configuration N = (1, 1, 1) and incrementally increases the number of  batches in Cartesian order following the 
established machines priority-Stepwise computation. The result of  Step 3.3 until 3.4 for Job 2 is shown in Table 
10 as follows.

Allocation Batch decision (N; Q) F[1]
a Total LB Decision

(4, 7, 4) N = (1, 1, 1); Q = ([4], [7], [4]) 103.5 169.5 Prune-B

(3, 7, 5) N = (1, 1, 1); Q = ([3], [7], [5]) 101.8 167.8 Prune-B

(4, 6, 5) N = (1, 1, 2); Q = ([4], [6], [3, 2]) 100.5 166.5 < UB₀ Feasible – keep as 
incumbent

(4, 6, 5) (1, 2, 1), (2, 1, 1), (1, 1, 3) … 101.9 – 102.8 167.8 – 168.8 Prune-B

Table 10. The Result of  Step 3 for Job-2

As shown in  Table  10,  Job-2 obtains  the  optimal  allocation on machines  m1,  m2,  and m3,  with  processing 
quantities of  (4, 6, and 5), respectively. The corresponding number of  batches (N) for each machine is (1, 1, and 2), 
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with batch sizes of  ([4], [6], and [3, 2]). The backward scheduling is feasible under the horizon constraint, and the  
objective function value (f) is 100.5.

The  stepwise  computation  then  continues  for  Job-1  (k =  [2])  as  described  below.  Given  F[1]
a =  100.5,  the 

subsequent job is evaluated using the same branching logic. Six allocation candidates are examined: (6,4,3), (4,6,3) 
(5,5,3), (7,3,3), (5,4,4), and (5,6,2). Because Job-1 is the last job, its LB corresponds directly to its actual flow-time 
contribution (F[2]

a). The summary result of  Step 3 for Job 1 is shown in Table 11 as follows.

Allocation Batch decision (N; Q) F[2]
a Total LB = 100.5 + LB Decision

(6,4,3) N = (1, 1, 1); Q = ([6], [4], [3]) 71.0 171.5 Prune-B

(4,6,3) N = (1, 1, 1); Q = ([4], [6], [3]) 69.2 169.7 Prune-B

(5,5,3) N = (1, 1, 1); Q = ([5], [5], [3]) 69.8 170.3 Prune-B

(7,3,3) N = (1, 1, 1); Q = ([7], [3], [3]) 72.0 172.5 Prune-B

(5,4,4) N = (1, 1, 1); Q = ([5], [4], [4]) 70.1 170.6 Prune-B

(5,6,2) N = (2, 3, 2); Q = ([3, 2], [3, 2, 1], [1, 1]) 67.0 167.5 = UB Feasible – Incumbent final

Table 11. The Result of  Step 3 for Job-1

Based on Table 11, it can be seen that after the (5,6,2) configuration is obtained, the total F a = 100.5 + 67.0 = 167.5, 
which tightens the upper bound (UB) and prunes all remaining nodes. Both jobs satisfy the backward-horizon 
feasibility without triggering  Prune-A, while  Prune-B effectively eliminates all dominated nodes once UB reaches 
167.5. Finally, in Step 4, the algorithm reports UB = 167.5 as the optimal solution.

To  further  evaluate  the  computational  efficiency  and  structural  behavior  of  the  optimization  methods,  a 
comparative experiment was conducted between the Branch and Bound (BNB) algorithm and the Enumeration 
Algorithm (EA) under identical scheduling environments. While both methods guarantee global optimality, their 
internal  search  mechanisms  differ  significantly:  the  EA  performs  exhaustive  enumeration  of  all  feasible 
combinations, whereas the BNB approach employs pruning strategies to systematically eliminate dominated or 
infeasible nodes based on bounding criteria. The performance comparison focuses on three primary indicators, 
total actual flow time, CPU execution time, and the resulting performance index, to assess how pruning influences 
computational time without compromising optimality. The summary of  this comparison is presented in Table 12 as 
follows.

Based on Table 12, it can be observed that the Branch and Bound (BNB) algorithm consistently achieves the same 
optimal total actual flow time (F a) as the Enumeration Algorithm (EA) across all test scenarios, with an average 
efficiency of  100% and zero deviation in solution accuracy.  This confirms that both methods are capable of 
attaining globally optimal results under identical scheduling configurations. However, substantial differences are 
evident in the computational time (CPU) required to reach those solutions. The BNB method demonstrates an 
average CPU efficiency of  88.53% with a standard deviation of  1.68%, indicating that it performs significantly 
faster than the exhaustive enumeration procedure. In particular, the CPU performance index—which represents the 
relative reduction in computational effort—averages 90.65%, signifying that the BNB algorithm effectively reduces 
computation time by more than nine times on average while preserving the same level of  optimality as the EA.

The observed performance improvement can be directly attributed to the pruning mechanism inherent in the 
Branch and Bound structure. While the Enumeration Algorithm (EA) explores every possible combination of  job 
allocations  and  batch  sequences  exhaustively,  the  BNB  method  systematically  eliminates  non-promising  or 
dominated nodes during the search process. This is achieved through the application of  Lower Bound (LB) and 
Upper  Bound  (UB)  thresholds,  along  with  two  pruning  rules—Prune-A  (Out-of-Horizon)  and  Prune-B 
(Dominance)—which discard infeasible or suboptimal branches early in the computation. As a result, the BNB 
algorithm focuses only on promising solution regions without compromising global optimality. This selective search 
strategy explains the substantial reduction in CPU time while maintaining perfect efficiency in F a. Therefore, the 
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BNB serves  as  a  practical  and computationally  efficient  alternative  to  exhaustive  enumeration,  offering  exact 
solutions with markedly reduced computation effort.

Number of 
windows

Number of 
machines

Number 
of  testing

BNB Algorithm EA Algorithm % efficiency BNB-EA

F a

CPU’s 
time (sec) F a

CPU’s 
time (sec) F a

CPU’s 
time (sec)

Performance 
Index

2 2 100 43.55 0.09 43.55 0.68 100% 91.13% 66.11%

2 3 100 57.91 2.40 57.91 18.42 100% 86.99% 92.78%

2 4 100 58.93 7.87 58.93 69.71 100% 89.60% 87.46%

2 5 100 59.61 9.23 59.61 73.59 100% 90.22% 92.21%

2 6 100 63.59 66.25 63.59 247.45 100% 88.33% 96.65%

2 7 100 66.28 57.20 66.28 217.63 100% 87.82% 92.50%

2 8 100 69.98 88.01 69.98 295.64 100% 87.29% 97.51%

2 9 100 76.00 89.78 76.00 306.72 100% 88.59% 92.74%

2 10 100 81.71 89.08 81.71 320.73 100% 89.74% 93.81%

2 11 100 83.78 117.17 83.78 372.46 100% 85.59% 94.71%

Min 100% 85.59% 66.11%

Max 100% 91.13% 97.51%

Mean 100% 88.53% 90.65%

Standard Deviation – 1.68% 9.05%

Table 12. Comparison results between the Enumeration algorithm with branch-and-bound algorithm

The next step is to compare the proposed algorithm with the Branch and Bound (BNB) method using several test  
cases. The objective is to obtain numerical insights into the performance of  the proposed algorithm relative to the 
BNB method, measured in terms of  minimizing the total actual flow time (F a) and the required central processing 
unit (CPU) time. The results of  this comparison are presented in Table 13.

From Table 13, the experiment was conducted more than 3,000 times under identical scheduling conditions to 
evaluate the performance of  the Proposed Algorithm (PA) and the Branch-and-Bound (BNB) method. However, 
Table 13 only presents a representative sample of  1,000 experimental  results,  as all  trials exhibited consistent 
performance patterns. As shown in the table, the average efficiency percentage of  F a obtained from the PA reached 
98.25% with a standard deviation of  0.38%, while the average CPU efficiency reached 78.48% with a deviation of 
15.21%. These results demonstrate that both algorithms produce consistent and high-quality solutions, with the PA 
showing superior computational efficiency and the BNB maintaining comparable accuracy. The minor deviations 
observed between runs  are  mainly  caused by  rounding operations  in  the  mathematical  model,  particularly  in 
Equation 10 for integer demand allocation and Equation 14 for integer batch size computation. Since these two 
equations are interdependent, small rounding differences, either upward or downward, can lead to slight variations 
in total actual flow time without significantly affecting the overall optimality.
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Number of 
windows

Number of 
machines

Number 
of  testing

Proposed Algorithm BNB-Algorithm % efficiency PA-BNB

F a
CPU’s 

time (sec) F a
CPU’s 

time (sec) F a
CPU’s 

time (sec)

2 2 100 44.51 0.04 43.55 0.09 98.09% 37.21%

2 3 100 58.86 0.01 57.91 2.40 98.68% 76.31%

2 4 100 59.68 0.02 58.93 7.87 98.82% 74.15%

2 5 100 61.02 0.02 59.61 9.23 97.80% 81.48%

2 6 100 64.66 0.05 63.59 66.25 98.33% 87.47%

2 7 100 67.50 0.10 66.28 57.20 98.27% 82.83%

2 8 100 71.28 0.15 69.98 88.01 98.34% 86.29%

2 9 100 77.86 0.19 76.00 89.78 97.69% 86.50%

2 10 100 83.59 0.18 81.71 89.08 97.88% 86.41%

2 11 100 85.10 0.28 83.78 117.17 98.57% 86.17%

Min 97.69% 37.21%

Max 98.82% 87.47%

Mean 98.25% 78.48%

Standard Deviation 0.38% 15.21%

Table 13. Comparison results between the proposed algorithm with branch-and-bound algorithm

As presented  in  Table  9  and  Table  13,  the  comparative  results  highlight  the  consistent  performance  of  the 
Proposed  Algorithm  (PA)  when  evaluated  against  both  the  Enumeration  Algorithm  (EA)  and  the 
Branch-and-Bound (BNB) method. Table 9 shows that the PA achieved an average efficiency of  99.32% with a 
deviation of  0.4% compared to the optimal solutions obtained by the EA, confirming that the proposed method is 
capable  of  generating  near-optimal  results  with  drastically  reduced  computation  time.  Meanwhile,  Table  13 
demonstrates that, when compared with the BNB method, the PA maintains a similar level of  accuracy while 
executing much faster across all test conditions. Although the BNB method provides slightly more stable accuracy, 
it  requires  substantially  higher  computational  effort.  Overall,  these  findings  indicate  that  the  EA serves  as  a 
theoretical benchmark for optimality, the BNB offers a balanced compromise between accuracy and computational 
cost, and the PA provides the most practical alternative for large scale or real time scheduling problems where 
computational speed and scalability are crucial.

5. Conclusions
This research successfully developed a batch scheduling model for unrelated parallel  machines under resource 
constraints and sequence-dependent setup times, aiming to minimize the total actual flow time. The proposed 
algorithm proved highly effective, achieving an average efficiency of  99.32% compared to the optimal solutions 
obtained through the Enumeration Algorithm (EA), with only a minor deviation of  0.4%. Further comparative 
analysis  with  the  Branch  and  Bound  (BNB)  method  demonstrated  that  the  proposed  algorithm  achieved 
comparable  solution  quality  while  requiring  significantly  less  computational  time,  whereas  the  BNB  method 
provided a balanced compromise between accuracy and computational effort. Additional evaluation between the 
BNB and EA confirmed that both algorithms consistently reached identical optimal solutions; however, the BNB 
achieved this with substantially reduced computation time through an effective pruning mechanism based on Lower 
and Upper Bound thresholds. These findings validate that both exact algorithms ensure global optimality, while the 
proposed  algorithm maintains  near-optimal  performance  with  exceptional  computational  efficiency,  making  it 
suitable for complex and large-scale scheduling environments.

Future  research  could  extend  this  model  to  more  dynamic  production  systems,  such  as  flexible  flowline 
environments where unrelated parallel machines are deployed at multiple stages. Exploring additional factors, such 
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as machine breakdowns or real-time job arrivals, could further enhance the model’s applicability in diverse industrial 
scenarios. 
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Appendix
Constraint (3) shows that shows that the demand of  jobs can be divided into several sub-demands in each machine. 
Let be assumed that the number of  batches in each machine (N[k]m) equal to 1, the batch sizes is a number of  units 
that allocated to the machine, notated by Akm. Constraint (3) can be written as follows

(A.1)

Since d[k] is similar for each m so Equation (A1) can be written as follows.

(A.2)

For M = 2, Equation (A.2) can be expand as follows.

(A.3)

-79-

https://doi.org/10.1007/s00170-014-6461-8
https://doi.org/10.1088/1757-899X/319/1/012038
https://doi.org/10.1088/1757-899X/114/1/012073
https://doi.org/10.5267/j.ijiec.2015.2.005
https://doi.org/10.1088/1757-899X/598/1/012083
https://doi.org/10.5267/j.dsl.2021.4.002
https://doi.org/10.1080/00207543.2013.825379
https://doi.org/10.1007/s10951-022-00729-7
https://doi.org/10.1016/j.cor.2016.07.021


Journal of  Industrial Engineering and Management – https://doi.org/10.3926/jiem.8710

Solving A[k]1 from Equation (A.3) found as follows.

(A.4)

The formula of  A[k]2 as follows.

(A.5)

From Constrain (3) found as follows.

(A.6)

Substituting Equation (A.5) into (A.6) found as follows.

(A.7)

Solving A[k]1 from Equation (A.7) found as follows.

(A.8)

Using similar step to solve A[k]1, the A[k]2 can be solved as follows.

(A.9)

For M = 3, the formula of  A[k]1, A[k]2 and A[k]3, as follows.

(A.10)

(A.11)

(A.12)

(A.13)

(A.14)

(A.15)

From Equation (2) we found:

(A.16)
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Substituting Equation (A.12) and (A.14) into (A.16) found as follows.

(A.17)

solving A[k]1 found as follows.

(A.18)

Re-writing Equation (A.18) can be found as follows.

(A.19)

Simplifying Equation (A.19) found as follows.

(A.20)

Base on Equation (A.20),

the general formula for m = 1, …, M as follows.

(A.21)
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