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Abstract:

Purpose: Nowadays finding reliable suppliers in the global supply chains has become so

important for success, because reliable suppliers would lead to a reliable supply and besides that

orders of  customer are met effectively. Yet, there is little empirical evidence to support this

view, hence the purpose of  this paper is to fill this need by considering risk in order to find the

optimum supply portfolio.

Design/methodology/approach: This paper proposes a multi objective model for the

supplier selection portfolio problem that uses conditional value at risk (CVaR) criteria to control

the risks of  delayed, disrupted and defected supplies via scenario analysis. Also we consider

discount’s constraints which are common assumptions in supplier selection problems. The

proposed approach is capable of  determining the optimal supply portfolio by calculating value-

at-risk and minimizing conditional value-at-risk. In this study the Reservation Level driven

Tchebycheff  Procedure (RLTP) which is one of  the reference point methods, is used to solve

small size of  our model through coding in GAMS. As our model is NP-hard; a meta-heuristic

approach, Non-dominated Sorting Genetic Algorithm (NSGA) which is one of  the most

efficient methods for optimizing multi objective models, is applied to solve large scales of  our

model.
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Findings: In order to find a dynamic supply portfolio, we developed a Mixed Integer Linear

Programming (MILP) model which contains two objectives. One objective minimizes the cost

and the other minimizes the risks of  delayed, disrupted and defected supplies. CVaR is used as

the risk controlling method which emphases on low-probability, high-consequence events.

Discount option as a common offer from suppliers is also implanted in the proposed model.

Our findings show that the proposed model can help in optimization of  a dynamic supplier

selection portfolio with controlling the corresponding risks for large scales of  real word

problems.

Practical implications: To approve the capability of  our model various numerical examples

are made and non-dominated solutions are generated. Sensitive analysis is made for

determination of  the most important factors. The results shows that how a dynamic supply

portfolio would disperse the allocation of  orders among the suppliers combined with the

allocation of  orders among the planning periods, in order to hedge against the risks of  delayed,

disrupted and defected supplies.

Originality/value: This paper provides a novel multi objective model for supplier selection

portfolio problem that is capable of  controlling delayed, disrupted and defected supplies via

scenario analysis. Also discounts, as an option offered from suppliers, are embedded in the

model. Due to the large size of  the real problems in the field of  supplier selection portfolio a

meta-heuristic method, NSGA II, is presented for solving the multi objective model. The

chromosome represented for the proposed solving methodology is unique and is another

contribution of  this paper which showed to be adaptive with the essence of  supplier selection

portfolio problem.

Keywords: supplier selection, dynamic supply portfolio, conditional value-at-risk, mixed integer

programming, RLTP, NSGA II

1. Introduction and motivation

Supply management deals with optimization of supply portfolio, which consists of supplier

selection and order allocation. Optimizing the allocation of orders on the part of the buyer in a

multi-supplier environment has become a major concern in supply chains (Moliné & Coves,

2013). To survive in the increasingly fierce global competition, firms require having cooperative

and reliable relationship with their suppliers, so supplier selection is an important issue in

supply management (Lee, 2009a). Supplier selection consists of recognition and assessment of

suitable suppliers (Ravindran, Bilsel, Wadhwa & Yang, 2010). In the selection process it is not
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reasonable to consider the cost lonely, because cost-based approach cannot guarantee quality

and on time delivery. In contemporary supply chain management, the performance of potential

suppliers is evaluated against multiple criteria rather than considering a single factor-cost. For

a suitable choice, many factors are involved such as price, quality, reliability, flexibility, and so

on. These factors may contradict each other and may not be satisfied simultaneously (Sawik,

2011a; Ho, Xu & Dey, 2010). 

In a risky make-to-order environment, customer-oriented manufacturers should be prepared

to produce varieties of products to meet different customer needs. Each product is typically

composed of many common and non-common (custom) parts that can be sourced from

different approved suppliers with different supply capacities. An important issue is how to

allocate the best order of parts among various suppliers so as to fulfill all customer orders of

products and to achieve a high customer service level at a low cost and, in addition, to

alleviate the impact of supply chain risks. The supply chain risk management has been

extensively studied over the past decade (Sawik, 2011b). According to the literature, there are

two risk levels: operational risks and disruption risks (Tang, 2006). Operational risks related to

the uncertainty such as uncertain customer demand. Disruption risks could be originated from

natural disasters (such as earthquakes, etc.) or manmade disasters (such as labor strikes,

terrorist attacks, etc.) and caused interruption or failure of the activities. Disruption risks may

be seriously detrimental to economy rather than operational risks (Sawik, 2011b). Knemeyer,

Zinn and Eroglu (2009) considered a proactive planning for catastrophic events in supply

chains, based on an innovative methodology which is used by the insurance industry to

quantify the risk of multiple types of catastrophic events on the key supply chain locations.

Despite the stochastic nature of supplier selection problem, a few researches consider

uncertainty and risk. Selecting the supply portfolio under variety of risks is a hard discrete

stochastic optimization problem. Risk measurement is a key concept in risk management. Two

popular methods of risk measurement, which have been used extensively in financial

engineering, are value-at-risk (VaR) and conditional value-at-risk (CVaR). VaR estimates

maximum loss when cost distribution is symmetric but CVaR determines the maximum loss for

undesirable conditions when cost distribution is asymmetric (Sawik, 2011a).

Wu and Olson (2010) combined DEA with VaR to improve a performance measurement system

and presented a new approach for selection of vendors in enterprise risk management (ERM).

They used Monte Carlo Simulation for benchmarking their proposed method. Ravindran et al.

(2010) developed multi-criteria supplier selection models with considering two types of risk

measures, value-at-risk (VaR) and miss-the-target (MtT). Their model had two phases, in

phase one; suppliers were ranked by AHP and key suppliers were selected. In phase two, the

orders of quantities are allocated among different suppliers with using the presented model.

Lee (2009a) proposed a fuzzy analytic hierarchy process model (FAHP) for evaluating buyer-

supplier relation with considering benefits, opportunities, costs and risks concepts. Due to the
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uncertainty in the real-life, fuzzy set theory was used in this model. Also Lee (2009b)

suggested FAHP model for supplier selection and applied it for a TFT-LCD manufacturer as a

case study. Wu, Zhang, Wu and Olson (2010) presented a fuzzy multi-objective programming

for supplier selection with considering quantitative (costs, quality acceptance levels, and on-

time delivery distributions) and qualitative (economic, environment and vendor rating) supplier

selection risk factors. Xiao, Chen and Li (2012) studied a supplier selection problem under

operational risk, for this purpose they extended fuzzy concepts. Sawik (2010) introduced a

mixed integer model for supplier selection for make-to-order manufacturing. For controlling

risks, the author set an upper limit for average defect rate and late delivery rate. Discount

policies are usually considered between buyers and suppliers. Discount offered by the supplier

is considered in the model provided by Sawik (2010). Also Sawik (2011c) controlled

operational risk by Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR) for problem of

supplier selection in make-to-order environment. Then in (Sawik, 2011b), the portfolio

approach was enhanced to consider a single-period supplier selection and supply chain

disruption risks. The author controlled this risk by VaR and CVaR concepts. Sawik (2012)

considered disruption risks in supplier selection portfolio. He presented models that deal with

the optimal selection and protection of part suppliers and order quantity allocation in a supply

chain with disruption risks. The objective of model was to achieve a minimum cost of suppliers’

protection, emergency inventory pre-positioning, parts ordering, purchasing, transportation

and shortage so as to mitigate the impact of disruption risks by minimizing the potential worst-

case cost.

The models were developed for supplier selection and order allocation could be either single-

period models that do not consider inventory or multi-period models which consider the

inventory; however it is obvious that in make-to-order and multi-period environment there is

no need to consider inventory. Ustun and Demirtas (2008) studied a multi-objective and multi-

period supplier selection problem. For selecting best supplier and optimal allocation, they

evaluated all suppliers with fourteen criteria via ANP technique and the multi objective model

was solved by multi-objective optimization technique. Sawik (2011a) studied a multi-period

supplier selection in the presence of disruption and delay risks. Moreover, the author used VaR

and CVaR via scenario analysis.

Due to a major gap between the theoretical solutions of multi-product multi-period supplier

selection and real world problems, we intend to provide a multi-product, multi-period model

with discount’s constraints as a portfolio problem that is more realistic than the previous.

Hence, this paper presents a mixed integer, multi-period and multiple objectives programming

model for supplier selection for a dynamic supply portfolio and incorporates risks via scenario

analysis. The proposed model will make a simple tool for decision maker (DM) for evaluating

suppliers to optimize the supply portfolio. Moreover, time value of money due to interest rate is

considered for the expected cost objective. A Non-dominated Sorting Genetic Algorithm

(NSGA), which is one of the most efficient methods for optimizing multi objective models, is
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presented to solve large scales of our model. Also Reservation Level driven Tchebycheff

Procedure (RLTP), which is one of the reference point methods, is used to solve small size of

our model. To demonstrate the capability of our model numerical examples are generated.

This paper is organized as follows. Related works are presented in the next section. Problem

definition and the proposed model are discussed in sections 3 and 4 respectively. Solution

methods are suggested in section 6. Numerical examples and some computational results are

mentioned in section 7. And finally conclusions and future research directions are made in the

last section.

2. Related works

Meena, Sarmah and Sarkar (2011) studied a supplier selection problem under risks of supplier

failure due to the catastrophic events disruption. An analytical model is developed to

determine the optimal number of suppliers considering different failure probability, capacity,

and compensation. Yu, Zeng and Zhao (2009) focused on evaluating the impacts of supply

disruption risks on the choice between the famous single and dual sourcing methods in a two-

stage supply chain with a non-stationary and price-sensitive demand. Xu and Nozick (2009)

formulate a two-stage stochastic program and a solution procedure to optimize supplier

selection to hedge against disruptions. Their model allows for the effective quantitative

exploration of the trade-off between cost and risks to support improved decision-making in

global supply chain design.

Tsai and Wang (2010) applied a mixed integer programming approach to solve the sourcing

and order allocation problem with multiple products and multiple suppliers in a supply chain;

also two schemes of quantity discounts are used to compare the influence upon the buying

decisions. Xia and Wu (2007) developed an integrated approach of analytical hierarchy process

improved by rough sets theory and multi-objective mixed integer programming in order to

simultaneously determine the number of suppliers to employ and the order quantity allocated

to these suppliers in the case of multiple sourcing, multiple products, with multiple criteria and

with supplier’s capacity constraints. Authors considered that suppliers may offer price

discounts on total business volume, not on the quantity or variety of products purchased from

them. Stadtler (2007) presented a linear mixed integer programming (MIP) model, which not

only represents the all-units discount but also the incremental discount case.

Meena and Sarmah (2013) investigated an order allocation problem of a manufacturer/buyer

among multiple suppliers under the risks of supply disruption. A mixed integer non-linear

programming (MINLP) model is developed for order allocation considering different capacity,

failure probability and quantity discounts for each supplier. Sawik (2011a) considered the

problem of a multi period supplier selection and order allocation in make to order environment
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in the presence of supply disruption. In this regard the author presented a mixed integer

programming model in order to find the optimal dynamic supply portfolio. Sawik (2011a) has

suggested that the proposed model can be enhanced for a discount environment, where the

suppliers offer discounts based on quantity or business volume of ordered parts. Sawik (2010)

formulated similar problem of allocating orders for custom parts among suppliers in make to

order manufacturing as a mixed integer program model which considers the quantity and

business volume discounts offered by suppliers. The proposed model in (Sawik, 2010)

considered a single period supplier selection and order allocation problem which provides a

static supply portfolio. Sawik (2010) has mentioned to extend the model in a dynamic case

where orders arrive irregularly over time.

The proposed model in this paper is a combination of two models which developed by (Sawik,

2010) and (Sawik, 2011a). Indeed, our model is a multi-period supplier selection and order

allocation problem which finds the optimal dynamic supply portfolio, and also considers the

quantity and business volume discounts offered by suppliers as well. Moreover, time value of

money due to interest rate is considered. The developed model and assumptions is described

in detail next.

3. Problem description

In this paper, we consider a supply chain in which various types of products are assembled by

a single producer and also satisfy customer orders by providing different part types from

multiple suppliers. In this supply chain, we will focus on the supplier selection portfolio which is

a tactical decision and is made in each period. Due to the multi-period nature of the model, our

portfolio will be dynamic. It is not bad to describe a little about the differences between a

dynamic and a static supply portfolio. A dynamic supply portfolio is the allocation of orders

among the suppliers combined with the allocation of orders among the planning periods, but a

static supply portfolio is the allocation of orders for parts among the suppliers without

allocation of them among the planning periods (Sawik, 2011a). 

It is worthy to assume that the delivery date and the corresponding reliability of on-time

delivery of each supplier may randomly vary in different periods. With respect to requested

dates, different suppliers may deliver the ordered parts with different delays and a different

operational risk can be associated with each supply portfolio. So the disruption risk is

incorporated utilizing the concepts of VaR and CVaR. The portfolio is optimized by calculating

VaR and minimizing CVaR simultaneously. For a finite number of scenarios, CVaR allows the

evaluation of worst-case costs and shaping of the resulting cost distribution through optimal

supplier selection and order allocation decisions, i.e. the selection of optimal supply portfolio

(Sawik, 2011a). Likewise, the quality of parts delivered by each supplier may randomly vary

and each supplier may have different capacity with different discount offers. When the

suppliers are selected the risk of defective and unreliable (late) deliveries can be considered
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using past observations. The supply delays may result in the shortage of required parts and

the corresponding delay penalty costs of delayed customer orders will be incorporated into the

model. 

4. The proposed model

Let I={1,…, M} be the set of M suppliers and J={1,…, N} the set of N part types which are

required for the products, this is known ahead of time and not varying over the time horizon.

Denote by dj the demand for each part type j є J. The planning horizon consists of H planning

periods (e.g. days or weeks) and let T={1,…, H} be the set of planning periods. Assume that

supplies are subject to random disruptions. So supplies will be delayed or disrupted (never

delivered) in some periods. 

The procedure of Sawik (2011a) for calculating delays is as follows. On-time delivery

scheduled for period t occurs in that period, whereas the late delivery may occur in one of the

remaining periods t+1,…, H, i.e. To deliver the ordered parts by the end of the planning

horizon the delay cannot be longer than H-t periods. By convention, deliveries delayed until a

dummy period t=H+1 represents disruptions of supplies, i.e. no delivery of ordered parts.

Summarizing, it is assumed that the longest delay of each delivery scheduled for period t

cannot be greater than H-t periods, whereas the infeasible delay of H-t+1 periods (i.e.

delivery in a dummy period t=H+1), by convention represents a disruption, that is, no

delivery. 

Let us call delivery scenarios by l є L = {1,…, L} so Δl
ijt which is an integer vector, Δl

ijt є

{0,...,H-t+1}, this represents that delivery of part type j from supplier i є I scheduled for

period t є T is either on-time, if Δl
ijt = 0, is delayed by Δl

ijt periods, if 1 ≤ Δl
ijt ≤ H-t or is

disrupted, if Δl
ijt = H-t+1. The probability that scenario l for part type j and supplier i occurs in

period t is denoted by Пl
ijt. We assume that the last scenario in the set of scenarios represents

the probability of occurrence the disruption (i.e. scenario L). It is obvious that:

∑
l=1

L

Пijt
l = 1; i∈I, j∈J, t∈T (1)

Notations are shown in Table 1. 

Now we propose a mixed integer multi objective programming model for selection of a supply

portfolio in the presence of supply delays and disruptions with discounts constraints. As

mentioned before, the DM needs to select a dynamic supply portfolio, i.e. the allocation of

orders for parts among the suppliers and among the planning periods. A dynamic supply

portfolio in non-discount environment is defined as:

∑
i∈I

∑
t∈T

Fit =1 (2)
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and 0 ≤ Fit ≤ 1 is the fraction of the total demand for parts (all parts) ordered from supplier i

in period t. 

Indices

i Supplier, i є I={1,...,M}

j Product type, j є J={1,...,N}

l Delivery scenario, l є L

t Planning period, t є T={1,...,H}

w Discount interval of supplier i for part type j in period t, wijt є Wijt={1,...,mijt} where Wijt is the set of 
discount intervals of supplier i for part type j in period t

Input parameters

aj Per unit and per period penalty cost of delayed part type j

Bj Per unit and per period cost of unfulfilled order for part type j, caused by supply disruptions for part type j

Cijt Capacity of supplier i for part type j in period t

dj Demand for part type j

ej The earliest delivery date of part type j

fj The latest delivery date of part type j

oijt Cost of ordering part type j from supplier i in period t

pijt Unit price of part type j purchased from supplier i in period t

qijt Expected defect rate of supplier i for part type j in period t

rijt Expected disruption rate of supplier i for part type j in period t

sijt Expected delay rate of supplier i for part type j in period t

q The largest acceptable average defect rate of supplies (defined by DM)

r The largest acceptable average disruption rate of supplies (defined by DM)

s The largest acceptable average delay rate of supplies (defined by DM)

α Confidence level (defined by DM)

Δl
ijt

Difference between scheduled delivery time (period t) and realized delivery time of part type j ordered by 
supplier i

Пl
ijt Disruption and delay probability for part type j scheduled to be supplied from supplier i in period t

ξijtw
Price discount rate (percentage of discount) associated with discount interval w of supplier i for part type j 
in period t

bijtw Upper limit on discount interval w of supplier i for part j in period t

β Annual interest rate

Decision Variables

VaR
The targeted cost of portfolio based on the ∝-percentile of costs, i.e. in 100∝% of scenarios, the costs 
cannot exceed VaR (value-at-risk)

Fit The fraction of total demand for parts ordered from supplier i to be delivered in period t (portfolio variable)

xijt
The fraction of total demand for part type j ordered from supplier i to be delivered in period t (order 
allocation variable)

yijt
1, if an order for part j to be delivered in period t is placed on supplier i; otherwise yijt=0 (supplier selection 
variables)

zijt

1, if part type j is ordered from supplier i in period t and total business volume (or total quantity) of that 
part type purchased from this supplier falls on the discount interval w; otherwise Zijtw=0 (customer order 
allocation variable)

Uijtw
1, if total business volume (or total quantity) part type j from supplier i falls on the discount interval w in 
period t; otherwise = 0

T' Tail cost for delivery scenario l (auxiliary variable to make CVaR equation linear)

Qijtw Auxiliary variable for making purchasing cost term in a linear expression

Table 1. Notations
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Sawik (2011a) suggested that the dynamic supply portfolio should be checked over the time

horizon against the highest acceptable defect rate, delay rate and disruption rate of supplies.

Now, denote by q, r and s the maximal acceptable average defect rate, delay rate and

disruption rate, respectively. We will trace this suggestion in our model.

In make to order environment, in which custom parts are typically ordered in small lot sizes,

supplier may sometimes offer discounts that depends on total value of sales volume (business

volume) or on total quantity of ordered parts. In the context of business volume, discount the

quantity or variety of purchased parts does not affect the offered price, while for the quantity

discount the price does not depend on the total amount of sales volume (Sawik, 2010).

The procedure of Sawik (2010) for considering discount constraints is as follows. Assume that

each supplier i offers cumulative (all-units) price breaks having bijtw discount intervals

according to the total business volume (or the total quantity), (bijtw-1, bijtw], where bijtw is upper

limit on the wth business volume (or quantity) discount interval for supplier i and part j in

period t and bijt0=0 for all iєI, jєJ and tєT. Let 0<ξijtw<1 be the discount rate (percentage of

discount) associated with interval w of supplier i for part type j in period t. If total business

volume (total quantity) from supplier i falls on interval w in period t, then the price of each

part type j is ((1-ξijtw).pijt). The following discount interval selection variable needs to be added

to enhance the supplier selection and to order allocation problem for the discount environment

(Sawik, 2010):

Uijtw=1 if total business volume (or total quantity) for part type j from supplier i falls on the

discount interval w in period t; otherwise Uijtw=0. 

Furthermore, the order assignment variable Zijwt needs to be clarified as follows:

Zijtw = 1, if parts type j are ordered from supplier i and total business volume (or total

quantity) of parts type j purchased from this supplier falls on the discount interval w in period

t; otherwise Zijtw = 0.

It is obvious that in make-to-order manufacturing, no inventory of custom parts can be kept

on hand and the parts are requisitioned with each customer order. So inventory balance

constraints do not need to be considered in the model. In addition, we can assume that parts

would be delivered within a time window [ej,fj] and derived from the customer requested due

date to reduce any further inventory holding cost. The delivery for part type j cannot be earlier

than the earliest date ej. On the other hand, the required parts type j can be delivered late,

beyond the latest date fj, or not delivered at all. Then, delay or disruption penalty costs will be

charged.

Let aj be per unit and per period penalty cost of delayed part type j caused by the late delivery,

where deliveries which are not later than fj, are not penalized. Similarly, let Bj be per unit and
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per period cost of unfulfilled order for part type j, caused by supply disruptions for part type j.

For delivery scenarios form (l=1) to (l=L-1) and each part type in each period deliveries which

are later than fj, are penalized by aj. We can assume that fj is always smaller than H. The total

expected delay penalty cost overall delivery scenarios, given an order allocation vector Z, is

then given by:

∑
l=1

L

∑
i∈I

∑
j∈J

∑
t∈T: I≤Δijt

l ≤H−t, f j<t+Δijt
l

Пijt
l a j(t+Δ ijt

l −f j)djx ijt (3)

Note that in equation (3) summations have two following limitations:

Summation on t is only for those parts which their fj are smaller than the sum of the time

scheduled for deliveries of them and its corresponding delay of concerned scenario, and

Summation on l is only for scenarios that their corresponding delays are between (1) to (H-t).

i.e. those scenarios that show delays not disruptions.

Also it is obvious that if fj=H, then no delivery within the planning horizon can be delayed and

penalized. However, any delay beyond H, by convention is a disruption, and hence penalized

with the cost of unfulfilled orders (Bj). The total expected penalty cost of unfulfilled orders for

parts due to supply disruptions (i.e. deliveries delayed until period H+1) is:

∑
i∈I

∑
j∈J

∑
t∈T: Δ

ijt
l =H−t+1

П ijt
L (Bjdj)x ijt (4)

The total business volume or total quantity of parts purchased from supplier i is,

∑
j∈J

∑
t∈T

∑
w∈W

ijt

pijt d jxijt Zijtw or ∑
j∈J

∑
t∈T

∑
w ∈W

ijt

djx ijtZijtw , respectively. It is clear that these two

expressions are nonlinear and will be made linear by fifth part of constraints in the next

section. Notice that the total business volume or the total quantity purchased from each

supplier i falls on exactly one discount interval of this supplier, and their phrases are nonlinear

that will be reformed to a linear phrase.

Now, the average purchasing and ordering cost for all demand (D) can be expressed as

follows:

f (y,Z,x) =∑
i∈I

∑
j∈J

∑
t∈T

oijt yijt+∑
i∈I

∑
j∈J

∑
t∈T

∑
w∈W

ijt

(1−ξijtw )pijt djZijtwxijt (5)

It is clear that y, Z and x are decision variables. The second part of equation (5) is a nonlinear

term so it will be changed to linear term by some constraints and will be mentioned in the next

part. Here the performance of the dynamic portfolio with discount in expected costs section

can be measured by the sum F(y, Z, x) of average cost per part of ordering, purchasing,

defects, delays and disruptions, respectively, in which the cost of a defective parts is assumed

to be identical with its regular price:

F(y ,Z,x) = (5) + (∑
i∈ I

∑
j∈ J

∑
t∈T

oijt yijt djpijt qijt xijt/D) + (3) + (4) (6)
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Now the procedure of evaluating the performance of the dynamic supply portfolio in risk

section could be clarified. First it is necessary to discuss a little about main general concepts of

VaR and CVaR, so for more details interested readers are referred to (Rockafellar & Uryasev,

2002; Uryasev, 2000).

Let αє(0,1) represents the confidence level for the cost distribution across all scenarios. The

following two risk measures are commonly used in portfolio selection problems. 

VaR at a 100 α% confidence level is the targeted cost of the portfolio such that for 100 α% of

the scenarios, the costs will not exceed VaR. In other words, VaR is a parameter (fixed by the

DM) or a decision variable based on the α-percentile of costs, i.e. in 100(1-α) % of the

scenarios, the costs may exceed VaR. For instance, 90%-VaR is an upper estimation of losses

which is exceeded with 10% probability (Rockafellar & Uryasev, 2002; Uryasev, 2000).

CVaR at a 100 α% confidence level is the expected cost of the portfolio in the worst 100(1-α)%

of the cases. In other words, we allow 100(1-α) % of the outcomes to exceed VaR, and the

mean value of these outcomes is represented by CVaR. So α-conditional Value-at-Risk (α-

CVaR) is the minimizing of “the expected value of the costs in the (1-α)100% worst cases”

(Rockafellar & Uryasev, 2002; Uryasev, 2000).

VaR represents the maximum cost associated with a specified confidence level of outcomes

(i.e. the likelihood that a given portfolio’s cost will not exceed the defined amount of VaR).

However, VaR does not explain the magnitude of the cost when the VaR limit is exceeded. In

other words, VaR is the acceptable cost level above which we want to minimize the number of

realizations and CVaR considers those portfolio outcomes, where costs exceed VaR. CVaR also

can be considered as a weighted measure of VaR and the costs above VaR, which may be

extremely high costs. When using CVaR to minimize worst-case costs, CVaR is always not less

than VaR (Sawik, 2011a).

So we can conclude that the CVaR is a superior than the VaR. Because it is able to quantify

losses more efficiently than the discrete distributions, and moreover it is coherent against of

the VaR. In addition, optimization of the CVaR leads to optimize of the VaR and also linear

programming approaches can be used for minimization of the CVaR. In the dynamic supply

portfolio selection problem discussed in this section α is assumed to be fixed by DM to control

the risk of losses due to supply delays and disruptions. The DM is willing to accept only

portfolios which the total probability of scenarios with costs greater than VaR is not greater

than 1-α. Furthermore, the DM wants to minimize the worst-case costs exceeding VaR. 

Now we introduce the scenario-based calculation of the CVaR which is adapted to our work by

following (Rockafellar & Uryasev, 2002; Uryasev, 2000). Assume that positive values of g(x,β)

represent losses and β has a finite discrete distribution with L realizations and corresponding
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probabilities given as πl for βl, l=1,…, L (l is representative of an individual scenario) with πl ≥

0 and 
l = 1

lL π = 1å . For g(x,β), the α-CVaR can be stated by the following minimization formula:

Ga(x ,VaR ) = VaR + 1
1−α

E [(g(x ,β)−VaR )+] (7)

Where (g(x,β)-VaR)+ = Max{g(x,β)-VaR,0}. 

Let α-CVaR for loss random variable g(x,β) be hα(x). So, the α-CVaR equation can be restated

as follows: 

hα(x) =min {VaR + 1
1−α

e[Max {g(x,B)−VaR,0}]} (8)

The above model is non-linear programming problem. And so, by considering additional

variables Tl for representing Max{g(x,β)-VaR,0} for all (l=1,…, L), this non-linear equation can

be transformed into a linear programming model as follows (Uryasev, 2000):

hα(x) = min{VaR+ 1
1−α

∑
l=1

L

πl Tl} (9)

S.t.

Tl ≥ g(x,βl)-VaR;       lєL

Tl ≥ 0;                     lєL

From another point of view Tl can be the amount by which costs (g(x,βl)) in scenario l exceed

VaR. Thus by the above model the portfolio will be optimized by calculating VaR and

minimizing CVaR simultaneously. In our model to select dynamic supply portfolio due to

equation (9) for minimizing expected worst-case cost per part we have (corresponding

constraints will be mentioned in the next part):

CVaR (x) = VaR +
∑
i∈I

∑
j∈J

∑
t∈T

∑
l∈L

Пijt
l Tl

1−α
(10)

Now we summarize equations and phrases in the former section in order to exhibit the

complete form of our model.

Objective #1: Minimizing the net present value of expected cost per part (the first objective is

like equation (6) with additional coefficients to consider time value of money for each phrase):

F1(y ,Z, x) = ∑
i∈I

∑
j∈J

∑
t∈T

oijt yijt

D(1+β)t
+ ∑

i∈I
∑
j∈ J

∑
t∈T

∑
w∈Wijt

(1−ξ ijtw)p ijtdjQijtw

D (1+β)t
+ ∑

i∈I
∑
j∈J

∑
t∈T

djpijt qijt xijt

D(1+β)t

+ ∑
l=1

L−1

∑
i∈I

∑
j∈J

∑
t∈T:1≤Δijt

l ≤H−t, fj< t+Δ ijt
l

Пijt
l a j(t+Δijt

l − f j)djxijt

D(1+β)t
+ ∑

i∈I
∑
j∈J

∑
t∈T:Δ ijt

l =H−t+1

Пijt
l (B jdj)xijt

D(1+β)t
(11)
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Where:    

D =∑
j=1

N

dj

Objective #2: Selection of dynamic supply portfolio to minimize expected worst-case costs: F2

(Var, T) = Equation (10).

Constraints:

1. Order assignment constraints:

All the demands for each part type in each period are supplied by exactly one supplier in one

discount interval.

∑
i∈I

∑
w∈W

ijt

Zijtw = 1; j∈J ,t∈T (12)

For each supplier the total quantity of ordered parts cannot exceed its capacity.

djxijt ≤ cijt yijt ; i∈I, j∈J, t∈T (13)

For each part type the total dedications to suppliers must be equal to 1 and corresponding

deliveries must not be delivered earlier than the earliest and not later than the latest delivery

date.

∑
i∈I

∑
t∈T: e

j
≤t≥f

j

xijt = 1; j∈J (14)

2. Portfolio selection constraints:

The portfolio definition constraint is: 

Fit =
∑
j∈J

djxijt

∑
j∈J

dj

; i∈I, t∈T (15)

The supplier i is selected for delivery of parts in period t if at least one order for part type j is

assigned to supplier i in period t.

yijt≥xijt ; i∈I, j∈J,t∈T (16)

The average defect rate of the portfolio cannot be greater than q.

∑
i∈I

∑
j∈J

∑
t∈T

qijt xijt≤q̄ (17)

The average disruption rate of the portfolio cannot be greater than r.

∑
i∈I

∑
j∈J

∑
t∈T

rijt xijt≤r̄ (18)

The average delay rate of the portfolio cannot be greater than s.

∑
i∈I

∑
j∈J

∑
t∈T

sijtxijt≤s̄ (19)
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Also we have the following constraints:

0≤xijt≤1; i∈I, j∈J ,t∈T (20)

0≤fit≤1; i∈I,t∈T (21)

yijt ∈{0,1}; i∈I, j∈J ,t∈T (22)

zijtw∈{0,1}; i∈I, j∈J,t∈T,w∈Wijt (23)

3. Risk constraints:

The tail cost of scenario l for all parts which is supplied from all suppliers is defined by the non-

negative amount which cost per part in scenario l exceeds VaR,

Tl ≥ Right hand side of equation (11) -VaR;    I є L (24)

Tl ≥ 0;      I є L (25)

It is worthy to say that the variable VaR does not need to be constrained of being non-

negative. Since Tl is constrained of being non-negative, the model tries to decrease VaR and

have a positive impact on the objective function. However, large reduction in VaR may result in

more scenarios with costs more than VaR (Sawik, 2011a).

Discount constraints are followed by Sawik (Uryasev, 2000) with modifications:

For a business volume discount environment, the total business volume purchased from each

selected supplier can be exactly in one discount interval. 

(bi, j , t,w−1+1)uijtw ≤pijt djQijtw ≤ bijtwuijtw; i∈I, j∈J,t∈T,w∈Wijt (26)

(where Qijtw = xijt zijtw) or

For a quantity discount environment, the total quantity purchased from each selected supplier

can be exactly in one discount interval.

(bi, j , t,w−1+1)uijtw ≤djQijtw ≤ bijtwuijtw; i∈I, j∈J,t∈T,w∈Wijt (27)

(where Qijtw = xijt zijtw)

Parts are ordered from supplier i, if supplier i is selected and assigned at least one part order.

∑
w∈W

ijt

uijtw = yijt; i∈I, j∈J, t∈T (28)

zijtw≤uijtw; i∈I, j∈J ,t∈T,w∈W ijt (29)

Also we have the following constraints.

uijtw∈{0,1 }; i∈I, j∈J, t∈T,w∈Wijt (30)

zijtw∈{0,1}; i∈I, j∈J,t∈T,w∈Wijt (31)

Constraints for making the second term of equations (11), (26) and (27) are linear.
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We define Qijtw = Zijtw. xijt as an auxiliary variable. Then we need to add the following

constraints to our model.

Qijtw ≥ 0; i∈I, j∈J,t∈T,w∈Wijt (32)

Qijtw ≤ zijtw; i∈I, j∈J, t∈T,w∈Wijt (33)

Qijtw−(M.(1−z ijtw)) ≤ xijt ; i∈I, j∈J, t∈T,w∈Wijt (34)

Qijtw+(M.(1−z ijtw)) ≥ xijt ; i∈I, j∈J, t∈T,w∈Wijt (35)

5. Solution methods

After developing the bi-objective mixed integer program for the dynamic supplier selection

portfolio in a discount environment, now we have to propose an appropriate method for solving

it. Reviewing literature for the procedure of solving same models shows that most of them

solved them in small to medium scales test problems by AMPL programming language and the

CPLEX solver (Sawik, 2010; Sawik, 2011c; Sawik, 2011a; Sawik, 2011b; Sawik, 2012). So as

our model is multi-objective, we must search methods for solving multi objective models. 

For solving small to medium size of our model, we suggest the Reservation Level driven

Tchebycheff Procedure (RLTP) that could be coded in common software packages like Lingo or

GAMS. This method is announced as a strong method for generating non-dominated solutions

by literature for multi objective mathematical models. RLTP is suitable for the proposed model

in this paper; because an interactive procedure is made by the DM for determining the tradeoff

between worst case costs (CVaR) and expected cost, hence the DM can select the best solution

based on his/her risk preference through this method. In fact this approach uses reservation

levels based upon DM responses for reducing of the objective space in each of its iterations.

Some other advantages of RLTP are that it produces only Pareto-optimal solutions and can

solve problems with non-convex nature; also this method is suitable for mixed integer multi-

objective models. 

To the best of our knowledge, heuristics and meta-heuristics methods have developed rarely

for the proposed type of supplier selection portfolio. As Sawik (2011a) and Sawik (2012)

suggested developing heuristics approaches for solving large size problems, because the size

of our model increases rapidly by the number of suppliers (M), part types (N), planning horizon

(H), discount intervals (m) and specially scenarios (L). The total number of potential supplies

in all periods is (MNHm) and we can define each scenario as a supply realization; hence the

total number of potential scenarios (L) as well as the number of variables and constraints in

the mixed integer programs grow exponentially in terms of (MNHm). Unfortunately for a

greater number of suppliers, part types, planning horizon, discount intervals and scenarios the

model could not be solved by GAMS in a reasonable time. As a result, for large scale test

problems we suggest a common and strong meta-heuristic method for solving multiple
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objective problems, NSGA-II. This method is so appropriate for solving multi objectives models

and has been applied sufficiently in literature of multiple objective models. This method

produces Pareto-optimal solutions and is appropriate for mixed integer multi-objective

mathematical models.

It should be mentioned that the purpose of this paper is to develop a new model and suggest

solution algorithms for the small, medium and large size problems. Undoubtedly other exact

and meta-heuristic algorithms may have better results and this requires more discuss that is

out of the scope of this paper and could be investigated in the future researches. In what

follows, we describe a little about our selected methods i.e. RLTP and NSGA-II. Interested

readers can refer to references that will be mentioned.

5.1. The exact solution procedure

The methods of multi-objective optimization have been successfully applied in the literature.

Tchebycheff metric based approaches have become popular for sampling the set of

nondominated solutions in an interactive search for the most preferred solution in multiple

objective decision making situations. These approaches systematically reduce the set of

nondominated solutions which remain available for identification and selection from one

iteration to the next (Reeves & MacLeod, 1999). Hereafter, we will prepare a little definition

about the Reservation Levels Tchebycheff metric Procedure.

Suppose we have K objective functions, in RLTP method first we have to specify the number of

solutions to be presented to the DM at each iteration, (P ≥ K), also we need to compute a

reference vector, z**, where zi**= max {fi(x) / x є S}+εi and the εi is small positive scalar for

each objective. Set Rli=-∞, (i=1,…, K) where RLi is the reservation level for the ith objectives.

Second it is necessary to generate a group of 2P dispersed weight vectors, A={λ є Rk / λiє(0,

1), ∑λi=1. Third, the associated Tchebycheff program for each weight vector must be solved

(the following model):

Min {α-ρ∑zi} (36)

s.t. 

α≥ λi(zi**-zi);     i=1,…,k

     fi(x)=zi ;   i=1,…,k

     zi ≥ RLi ;   i=1,…,k

     xєS

Where ρ is a small positive scalar and the suggested range for this parameter is from 0.0001

to 0.01. After solving the model (36), the P most different of the resulting objective vector

must be presented to the DM. If the DM wishes to continue to search for an improved solution,
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proceed to step 4. Otherwise, have the DM selects his/her current most preferred solution and

stop. Forth, DM must partition the current solutions into more and less preferred solution, and

adjust the RLs. Now we have to return to step 2 and continuing continue the algorithm.

Additional explanation about RLTP can be seen in Reeves & MacLeod (1999).

Using the RLTP algorithm and considering our model constraints, we arrive at a single-

objective, mixed integer programming model in each iteration; which can be solved efficiently

using a linear programming solver.

5.2. The proposed NSGA-II method

Optimization problems are involved in maximizing or minimizing of the objective value function

of the problem in order to satisfy all sets of constraints. If we have only one objective, the

problem is considered as single-objective and with the use of the most meta-heuristics

algorithms such as tabu search (TS), differential evolution algorithm (DEA), genetic algorithm

(GA), simulated annealing (SA), particle swarm optimization (PSO), etc. a near global optimum

solution or even global optimum solution can be obtained (Coello, Lamont & Veldhuizen,

2007). But if it is desired to consider more than one objective simultaneously, the problem is

considered as multi-objective optimization problem and former algorithms are not proper

anymore because they only find one solution in each running, therefore, new algorithms must

be designed for these type of problems and the non-dominated sorting genetic algorithm

(NSGA) was one of the first proposed algorithms by Srinivas and Deb (1994) for solving multi-

objective optimization problems. Highlights of this algorithm are presented as follows:

• Solutions are sorted based on how many solutions are better than the current solution.

• Fitness for solution is assigned based on their rank and non-dominating of other

solutions.

• Using fitness sharing method for near solutions in order to solutions’ variations are set

properly and solutions are distributed uniformly in search set.

But, there are three main criticisms in the implementation of NSGA: first, high computational

complexity of non-dominated sorting. Second, lack of elitism, and finally, need for specifying

the sharing parameter (Deb, Pratap, Agarwal & Meyarivan, 2002). As for these shortcomings,

second version of NSGA, non-dominated sorting genetic algorithm II (NSGA-II), was proposed

by Deb et al. (2002), which is based on Pareto domination. 
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Highlights of this algorithm are presented as follows:

• Using binary tournament selection operator.

• Defining crowding distance as alternative property for fitness sharing.

• Creating and saving non-dominated solutions which are obtained from pervious

algorithm steps.

In NSGA-II the same as all evolutionary algorithms (EV), the first step is to create initial

population. A good population size is related to the problem, at one side by increasing the

population size, the chance of the algorithm to find a better solution will be improved, but at

the other side the computational time of the algorithm for searching solutions increases

exponentially, in this paper, we consider 100 as the population size. At the second step the

fitness functions of all solutions are evaluated which at this paper these values are calculated

by equations (10) and (11). If there is only one fitness function we can easily sort solutions

but when there is more than one fitness function, the solutions should be ranked and sorted

based on all fitness functions, therefore, solutions are divided into two main categories,

dominated and non-dominated solutions. In a minimization problem, consider two solutions,

m1 and m2, the solution m1 dominates the solution m2 if and only if the following conditions

are satisfied.

 i є {1, 2,..., n}: fi(m1) ≤ fi(m2)    (a)

 j є {1, 2,..., n}: fj(m1) ≤ fj(m2)    (b)

If both of the above conditions are satisfied, then the solution m1 dominates the solution m2,

and m1 is a non-domination solution, but if each one of the conditions (a) or (b) is violated,

the solution m1 does not dominate m2, and based on these conditions, the NSGA-II ranks

solutions. At the fourth step, some solutions of each generation are selected by the binary

tournament selection method. Binary tournament selection method selects randomly two

solutions through population, and then compares them and finally the better is selected.

Selection criteria in NSGA-II primarily are based on solution rank and after that are based on

crowding distance. It is more favorable whatever solution rank is lower and crowding distance

is higher.

Now, with repeating binary selection operator on population of each generation, a set of

population is selected for participating in crossover and mutation. In this paper, the crossover

probability (cp) and the mutation probability (mp) consider as 0.8 and 0.3, respectively.

Accordingly, based on (cp) each pair of chromosomes are selected and with the implementation

of the crossover operation new offspring are created, furthermore, based on (mp) the mutation

operation is employed for each chromosome to explore more solution space. The created

population merges with main population. The new population is sorted in ascending order by

their ranks. Members of population with same rank are sorted in descending order by crowding
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distance. As the same size as main population, members are selected from new population.

The selected members create next generation population, and this cycle continues until

termination conditions are fulfilled. Figure 1 and Figure 2, show schematic illustration of

crowding distance criterion and pseudo-code of the NSGA-II, respectively (more information

about these pictures are available in their corresponding references which are noted below

them).

Figure 1. Schematic illustration of crowding distance criterion 

(Boloori Arabani, Zandieh & Ghomi, 2011)

Figure 2. Pseudo-code of the NSGA-II (Coello et al., 2007)
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6. Numerical experiments

Now, numerical examples are presented to demonstrate possible applications of the proposed

approach for supplier selection portfolio in a discount environment. As we have suggested two

solution methods, in this part a test is regarded for each of them. Small size test problems are

solved in a reasonable computation time by GAMS. But as the dimension of the test problems

grow, computation time is amplified exponentially in GAMS. Hence large size test problems

require the meta-heuristic method to be solved. 

6.1. Small size test problem with RLTP

6.1.1. Defining parameters

Our small size example includes 3 suppliers; 3 part types; 3 periods; and 3 scenario deliveries.

Also we only consider quantity discount constraints in this example with 3 discount intervals

for all suppliers and all part types in all periods. For delivery scenarios of supplier i, part type j

and period t we assumed that the delivery scheduled for that period occurs either in period t or

in period H or not all; i.e. ordered supplies may occur on-time (Δl
ijt= 0; for all i, j, t) or with the

longest delay (Δl
ijt = H-t; for all i, j, t) or never (Δl

ijt = H-t+1; for all i, j, t). The probabilities of

different scenarios (πijtl) are shown in Table 2. It should be noted that we assumed that the

probability of occurrence a special scenario in a particular period is independent from earlier

periods and their scenarios. Also the source of random generation for other parameters is

shown in Table 3, Table 4, Table 5 and Table 6.

Part type

1 2 3

Scenario
1 2 3 1 2 3 1 2 3

Period Supplier

1

1 0.4 0.3 0.03 0.5 0.2 0.03 0.4 0.4 0.02

2 0.5 0.4 0.01 0.5 0.2 0.03 0.8 0.1 0.01

3 0.2 0.5 0.03 0.3 0.3 0.04 0.3 0.4 0.03

2

1 0.6 0.3 0.01 0.9 0.1 0.00 0.7 0.1 0.02

2 0.2 0.5 0.03 0.5 0.4 0.01 0.3 0.5 0.02

3 0.4 0.4 0.02 0.2 0.6 0.02 0.7 0.3 0.00

3

1 0.5 0.2 0.03 0.5 0.3 0.02 0.2 0.7 0.01

2 0.4 0.3 0.03 0.7 0.2 0.01 0.3 0.5 0.02

3 0.1 0.7 0.02 0.5 0.2 0.03 0.6 0.2 0.02

Table 2. Occurrence probability values of different scenarios
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Parameter Value Parameter Value

aj ~Uniform[40;80] (details in Table 4) rijt In Table 6

Bj
~Uniform[50;100]

 (details in Table 4) 
sijt In Table 6

Cijt [1.8∑dj /M] for all i and all t q 0.20

dj
~Uniform[120;180]
 (details in Table 4) 

r 0.30

ej 1 for all j s 0.25

fj
All parts should be delivered until the end of the

period that they are ordered in (t) for all j
α 0.75

oijt 400 for all i, all j and all t Δl
ijt Mentioned former 

pijt Table 5 Пl
ijt In Table 2

qijt In Table 6 ξijtw 0.05(w-1) for all i, all j and all t

bijtw [w.cijt/mijt];w=1,…,mijt β 0.20

mijt 3 for all i, all j and all t

Table 3. Values of all parameters

Part type

1 2 3

aj 66 53 78

Bj 95 70 60

dj 124 146 143

Table 4. Values of aj, Bj and dj

Period

1 2 3

Part type
1 2 3 1 2 3 1 2 3

Supplier

pijt

1 20 12 52 20 8 70 21 16 60

2 23 26 60 23 9 72 25 12 54

3 23 12 52 27 12 60 22 13 64

Table 5. Values of unit price of part type j purchased from supplier i in period t
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Period

1 2 3

Part type
1 2 3 1 2 3 1 2 3

Supplier

rijt

1 0.05 0.03 0.08 0.04 0.03 0.06 0.05 0.04 0.09

2 0.04 0.02 0.03 0.06 0.04 0.03 0.03 0.05 0.03

3 0.06 0.02 0.01 0.06 0.05 0.02 0.05 0.03 0.03

sijt

1 0.07 0.06 0.08 0.07 0.06 0.08 0.07 0.06 0.08

2 0.04 0.06 0.10 0.05 0.05 0.09 0.03 0.07 0.11

3 0.07 0.06 0.08 0.08 0.07 0.08 0.06 0.05 0.08

qijt

1 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01

2 0.02 0.02 0.03 0.01 0.01 0.02 0.01 0.03 0.02

3 0.02 0.02 0.02 0.01 0.01 0.02 0.01 0.03 0.02

Table 6. Values of expected defect rate, disruption rate and delay rate of supplier i 

for part type j in period t

6.1.2. Findings through RLTP

The proposed model was solved through coding in GAMS 23.5 and RLTP was implemented for

test problems. We developed a mixed integer model (MIP) so the CPLEX solver on a laptop

with Intel Core i7 processor running at 2 GHz and with 4GB RAM (DDR3) was used. In what

follows, first, we describe the results through the steps of RLTP and after that the final results

will be illustrated.

6.1.3. Implementing RLTP for the proposed model

As declared in section 5, to implement RLTP for the mentioned example, following steps are

done:

Iteration 1:

As we have 2 (K=2) objectives so we consider presenting 4 (n=4) solutions to the DM at each

iteration. Also the best solution for each individual objective is obtained by solving two SOP

(Single Objective Programming) model with corresponding constraints, the results are:

Z1
*= 23.4764

Z2
*= 23.4764

Reservation levels (RLs) for the first iteration will be considered as follows:

RL1
1= 32 (First objective reservation level in iteration 1)
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RL2
1= 32 (Second objective reservation level in iteration 1)

Now we generate a group of 8 (=2×n) dispersed weight vectors randomly to use them in the

next step. The generated vectors are shown in Table 7:

Objective 1 Objective 2

λ1 0.45 0.55

λ2 0.5 0.5

λ3 0.65 0.45

λ4 0.2 0.8

λ5 0.6 0.4

λ6 0.3 0.7

λ7 0.9 0.1

λ8 0.63 0.37

Table 7. Weight vectors for each objective

Here we solve the associated AWTP (“Augmented weight Tchebycheff procedure”, for more

explanation see Reeves & MacLeod, 1999) model for each λ and present the n (=4) most

different (maximally dispersed) of the resulting objective vector to the DM. The results are

presented in Table 8.

Objective 1 Objective 2

λ1 23.568 23.461

λ4 23.693 23.441

λ7 23.486 23.475

λ8 23.525 23.468

Table 8. Objective values for selected λ

Now if the DM is satisfied with the best values of each objective, the RLTP will stop; otherwise

it is necessary to go the next step that means the next iteration will start. In the proposed

example we suppose the DM is not satisfied with the presented values so next iteration will be

as follows.

Iteration 2:

Based on the opinion of the DM the results are divided in two clusters, the most preferred

solutions and the least preferred solutions. This task is shown in Table 9.
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The most preferred The least preferred

Objective 1,Objective 2 23.568, 23.461 23.693, 23.441

Objective 1,Objective 2 23.486, 23.475 23.525, 23.468

Table 9. The most and the least preferred of objectives

The RLs have to be adjusted and the following procedure will be used: 

For each objective in each iteration, the difference between the worst value of the current most

preferred solution for that objective and the worst value for that objective over all current

solutions was determined. A percentage of that difference, 50% in this example, was then

subtracted from the current most preferred solution value to arrive at the RL for that objective

for the next iteration. To illustrate, the worst value of the first objective in the initial most

preferred solution was 23.568. The worst initial value for that objective over the set of all

current solution was 23.693 for a difference of 0.125. Subtracting 50% of that difference from

the worst solution value over the set of all current solution yields a RL for the second iteration

of 23.6305. This procedure for the second objective will produce 23.475. Using a higher or

lower percentage would decrease or increase the rate of objective space reduction,

respectively. The results of this part are:

RL1
2= 23.6305 (First objective reservation level in iteration 2)

RL2
2= 23.475 (Second objective reservation level in iteration 2)

After this adjustment, we go back again to step 2 of RLTP.

The generated vectors for second iteration are shown in Table 10.

Objective 1 Objective 2

λ1 0.33 0.67

λ2 0.8 0.2

λ3 0.34 0.66

λ4 0.61 0.39

λ5 0.12 0.88

λ6 0.45 0.55

λ7 0.13 0.87

λ8 0.94 0.06

Table 10. Weight vectors for each objective
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Solving the associated model for each λ and presenting the 4 most different (maximally

dispersed) of the resulting objective vector to the DM, is done in Table 11.

Objective 1 Objective 2

λ2 23.498 23.473

λ5 23.631 23.451

λ6 23.568 23.461

λ8 23.485 23.475

Table 11. Objective values for selected λ

Finally in this example we can suppose that the DM is satisfied by solution that is produced by

λ6, i.e. 23.568 for objective#1 and 23.461 for objective#2 as the most preferred solution and

RLTP is stopped. It is important to emphasis that the RLTP procedure is an interactive way for

finding Pareto front. Also RLTP makes it possible to embed the risk preference of the DM by

considering different weights for each objective i.e. as the first objective minimizes the

expected net present value of costs and the second objective minimizes the worst case costs,

so by dedicating larger weights to the first objective we consider the DM as a risk seeker one

while by dedicating larger weights for the second objective means considering the DM as a risk

avoiding one. Figure 1 shows the Pareto front which was made through two steps of RLTP. In

other words the tradeoff between the expected cost and the expected worst-case cost is clearly

shown in Figure 1, where the convex efficient frontier of Mean Cost-CVaR model for the

confidence level α =0.75 is presented. As mentioned in (Reeves & MacLeod, 1999), RLTP only

produces non-dominated solutions and this claim is illustrated in Figure 3. 

Figure 3. Pareto front which was made through two iterations of RLTP

-242-



Journal of Industrial Engineering and Management – http://dx.doi.org/10.3926/jiem.880

6.1.4. Presenting and analyzing final results 

In this section the details of the selected solution through RLTP (i.e. 23.568 for objective#1

and 23.461 for objective#2) is intended to be described. The model is run and the results are

given as follows. 

Since the main goal of the model is to determine the portfolio’s variables, we go straight ahead

to this part of solution first. The optimal supply portfolios (fraction of total demand dispersed

between suppliers in the planning periods) are shown in Figure 6. In Figure 3 average of the

defect rate, delay rate disruptions rate for all part types for each period and each supplier are

shown. Comparison of Figure 6 and Figure 7 indicate the lowers are defect, disruption and

delays rates, the greater is the fraction of total demand. It is also observed that the supplies

(i,t) associated with the lowest average disruption and delay rate (1,3) are allotted the largest

fraction of total demand. The results indicate that the average disruption and defect rates are

key determinants in the decision of dynamic allocation of demand among the suppliers.

Figure 4. Supply portfolio for α=75%

Figure 5. Average of the expected defect rate, expected delay rate and expected disruptions 

rate for all part types for each period and each supplier

It is worthy to make a sensitive analysis on confidence level of the model. In the example

which was solved before, α was set at 75%, which means that focus is on minimizing the
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highest 25% of all outcomes scenarios. Now we solve again the example by α=20 %. The

resulted portfolio is shown in Figure 8. By comparing Figure 6 and Figure 8 we can see when α

increases, a more risk-averse DM increases the number of selected supplies to mitigate the

impact of risks by diversification of the supply portfolio (the number of selected supplies is 3

for α=25 % and 4 for α=75 %). 

Figure 6. Supply portfolio for α=25%

Figure 7. Supply portfolio for α=75% with an increase in delay and disruption penalizes

Another important sensitive analysis can be done on penalty cost of delays and disruptions for

the last solution produced by RLTP; we increased these penalties as Table 12 and results for

portfolio variables are depicted in Figure 9. It can be concluded form new results that the more

penalty values for disrupted or delayed supplies, the more balanced portfolio will be. This idea

is concluded from the caparison between Figures 6 and 9 where it shows by more penalty

values DM makes to dedicate more leveled orders from different suppliers to disperse more

risks. In fact by more leveled portfolio, if an individual supply is disrupted or delayed, and if

that supply has a high value, a large penalty will be charged. While with more leveled portfolio

maximum risk will be minimized. As it is obvious in Figure 9, the smaller are differences

between the highest and the lowest fraction of allotted demand.
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 Part type

1 2 3

aj 66 53 78

Bj 95 70 60

Table 12. New values of aj, Bj

The computational results for objective values and important variables are summarized in

Table 13. As we can see, CVaR measure has a greater or equal value respect to VaR measure.

The results acquired for risk measures in Table 13 confirm this judgment. The result of the VaR

for α=0.75 in test problem shows that the smallest value such that probability that loss

exceeds or equals to this value (23.461) is not larger than 1-α (25%). Because of discrete

distribution of scenarios and little number of scenarios, in high confidence level the VaR and

CVaR values lead to equal values; however, in less confidence level the difference of these two

risk measures is appeared (for α=0.25). Also, obviously, by increasing in confidence level the

VaR and CVaR measures increase respect to measures with less confidence level. The results in

Table 13 confirm this idea. It can be concluded the CVaR measure is more conservative than

VaR measure and so, it is more suitable for risk-averse DMs. In Table 14 the size of mixed

integer program is represented by the total number of variables, number of binary variables,

number of constraints, and number of non-zero coefficients in the constraint matrix. 

Values

Confidence level α=0.75 α=0.25

RLTP Objective 0.002 0.0003

Objective#1 (Expected cost) 23.568 23.476

Objective#2 (CVaR) 23.461 23.374

VaR 23.461 22.777

Portfolio variable (Fit)

F12=0.022
F13=0.375
F23=0.273
F33=0.330

F13=0.375
F23=0.295
F33=0.330

Order allocation variable (xijt)

X122=0.074
X133=1

X223=0.926
X313=1

X133=1
X223=1
X313=1

Table 13. The solution results for multi objective model by the selected 

solution by weight vector λ6 in Table 10

Total number of variables Number of binary variables Number of equations Number of non-zero coefficients

314 189 475 1799

Table 14. The size of proposed mixed integer model
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6.2. Large size test problem with NSGA-II

In this part we develop a test problem for large size problems that includes 5 suppliers; 10

part types; 12 periods; 3 delivery scenarios and 5 discount intervals. This size of model can be

considered as a real size that can be applicable in real word. To demonstrate the capability of

our meta-heuristic algorithm first we tried to make some non-dominated solutions by RLTP and

then by our NSGA-II method for this test problem. Hence, we can compare solutions and see

how good NSGA-II method is. It should be noted that a lot of test problems were made by the

provided code in MATLAB (R 2010a version) (MATLAB, 2010), but for a lot of test problems

RLTP method which is coded by GAMS could not make any solutions after a long time, so the

comparison with our NSGA-II was not possible. Parameters of the proposed model are shown

in Table 15.

Parameter Value Parameter Value

aj ~ Uniform [100; 200] rijt ~Uniform [0.001;0.009]

Bj ~ Uniform [200;400] sijt ~Uniform [0.001;0.004]

Cijt ~ Uniform [500;700] q 0.95

dj ~ Uniform [300; 700] r 0.80

ej 1 for all j s 0.97

fj
All parts should be delivered until the end of

the period they are ordered in (t) for all j
α 0.75

oijt ~ Uniform [100;150] Δl
ijt Mentioned former

pijt ~ Uniform [500;700] Пl
ijt

~Uniform [0.05;0.25]
(for l=1,…,l=L-1)

qijt ~ Uniform [0.001;0.004] Пl
ijt

~Uniform [0.01;0.12]
(for l=L)

bijtw [w.cijt/mijt]; w= 1,…,(mijt=40) ξijtw 0.05(w-1) for all i, all j and all t

mijt 40 for all i, all j and all t β 0.20

Table 15. Values of all parameters 

As mentioned in section 5, RLTP method needs the best possible solution of each objective

individually. CPLEX solver after a considerable time and gap made the following results for

each objective. 

Z1
* = 92.184508 (Absolute gap: 54.232942)

Z2
* = 97.654553 (Absolute gap: 68.425849)

Reservation levels (RLs) for the first iteration will be considered as follows:

RL1
1 = 200 (First objective reservation level in iteration 1)

RL2
1 = 200 (Second objective reservation level in iteration 1)
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As we have 2 (K=2) objectives so we will consider to present 8 (n=8) solutions to the DM at

each iteration. So we randomly generate a group of 16 (=2×n) dispersed weight vectors to use

them in the next step. The generated vectors are shown in Table 16.

Objective 1 Objective 2

λ1 0.4 0.6

λ2 0.6 0.4

λ3 0. 5 0.5

λ4 0.3 0.7

λ5 0.7 0.3

λ6 0.55 0.45

λ7 0.18 0.82

λ8 0.38 0.62

λ9 0.43 0.57

λ10 0.21 0.79

λ11 0.38 0.62

λ12 0.71 0.29

λ13 0.78 0.22

λ14 0.69 0.31

λ15 0.03 0.97

λ16 0.59 0.41

Table 16. Weight vectors for each objective

Here we solve the associated AWTP (“Augmented weight Tchebycheff procedure”, for more

information see Reeves & MacLeod (1999)) model for each λ and present the n (=3) most

different (maximally dispersed) of the resulting objective vector to the DM. The results, which

are presented in Table 16 and RLTP, are stopped after one iteration. It should be noted that the

solutions for each λ had considerable gap for RLTP objective function that those gaps are

shown in the last column of Table 17.

Objective 1 Objective 2 RLTP objective function
absolute gap

λ2 99.023 123.286 1.05819

λ4 103.163 122.458 1.050982

λ6 101.066 123.322 1.060341

λ7 103.286 120.944 1.046173

λ9 100.158 127.046 1.072544

λ13 98.720 122.201 1.177907

λ14 102.107 122.045 1.121844

λ16 104.298 123.850 1.083998

Table 17. Objective values for selected λ
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NSGA-II method made the following results for each objective. Results of iterations 57, 100

and 350 are illustrated in Table 18.

Iteration Objective 1 Objective 2

57

98.9398692 212.2468078

104.4850313 97.65857192

100.4196316 116.9182974

101.8503318 102.0474934

103.050333 97.81699661

102.3275586 99.30488047

102.869205 98.0832395

100

98.9398692 212.2468078

104.0845977 97.30380731

99.5061131 115.2043315

99.5061131 115.2043315

99.94955866 101.7087943

350

95.89775 99.28186964

100.2331273 94.4763972

97.96652779 94.79240783

100.0887156 94.58571687

Table 18. Objective values for selected λ

Now in Figure 8, we can comprise RLTP and NSGA-II methods. As shown in this figure NSGA-II

has made more dispersed and a lot better solutions than NSGA-II. Also RLTP has a lot of

difficulty in finding the best solution of each objective individually as well as in finding the

solution of RLTP objective function. Details of one solution through RLTP for instance are shown

in Table 19 and Table 20; also Figure 9, depicts the results of portfolio variables which are the

most important results of the model. The same sensitive analysis like section 6.1.4 can be

developed for large scales, but for avoidance of repetition they are not motioned again here.

Figure 8. Solutions which are made through NSGA II and RLTP for the large scale test problem
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Iteration 350

Objective#1 100.0887

Objective#2 (CVaR) 94.58572

Confidence Level 0.75

Table 19. Objective’s values and confidence level of NSGA-II for the proposed test problem

Supplier
1 2 3 4 5

Period

1 0.000435 0.005685 0.003427 0.002858 0.001869

2 0 0.003182 0.001667 0.003968 0.005457

3 0 0.003181 0.001869 0 0.009224

4 0 0.007535 0.004192 0.000678 0.001869

5 0.008436 0 0.001869 0.003181 0.000787

6 0.0029 0.001667 0.003695 0.003181 0.002831

7 0.002304 0.004848 0.003588 0 0.003534

8 0 0.004373 0.006717 0.000435 0.002749

9 0.005515 0.000678 0.005577 0.002504 0

10 0.005635 0.001741 0.001869 0.005029 0

11 0.087507 0.088612 0.002504 0.002254 0

12 0 0.1686 0.335864 0 0.171919

Table 20. Results of portfolio variables (Fit) resulted from NSGA-II

Figure 9. Values of supply portfolio variables for α=75% in a large size test problem

7. Conclusion and future research

In this paper we presented a scenario-based multiple objectives model for dynamic supplier

selection portfolio problem. We demonstrated that the proposed dynamic portfolio approach

and the mixed integer programming model with conditional value-at-risk as a risk measure can
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be applied for the selection of suppliers and the allocation of orders quantity in supply chains

with risks and discount constraints. As we considered dynamic supply portfolio, not only orders

are allotted between suppliers but also are dispersed in planning horizon; hence the risks are

mitigated and dispersed much more than the static supply portfolio. Our multi objective model

minimizes the net present value of expected total cost over all scenarios; and at the same time

the model aims to minimize the mean outcomes of scenarios which their costs exceeds VaR.

Two solution methods proposed in this paper for solving the model, the first one, which was

coded in GAMS and solved through CPLEX solver, is RLTP. This method solved small to medium

size test problems. The other method is NSGA-II and solved large size test problems. The non-

dominated supply portfolios, which were made, emphasized the effect of varying cost/risk

preference of the DM. To demonstrate the effectiveness of the proposed model, various test

problems were developed and results were reported. 

Sensitive analysis was done and limited computational experiments indicated that the most

important results from sensitive analysis was that the disruption and delay rates of suppliers

are the most effective parameters in finding the optimal portfolio. The suppliers associated

with the lowest disruption and delay rates are allotted the largest fraction of total demand. On

the other hand, experiments demonstrated that the more risk averse the supply portfolio is,

i.e. the higher confidence level (α), the more supplies are selected over planning horizon.

Furthermore, the number of selected suppliers increases with the confidence level, which

demonstrates that the impacts of risks are mitigated by diversification of the supply portfolios.

At the end, we make the following relevant suggestions for future research: (1) determining

the occurrence probability of scenarios in a more precise way because in the proposed model

deliveries beyond the planning horizon are not allowed. It is possible to consider also the other

scenarios that allow for delayed deliveries beyond the planning horizon. (2) embedding

scenarios to demand of part types (3) formulating the model as a multi stage stochastic one

(4) determining the rates of disruption, delay and defect in a more realistic way (5) it would be

interesting to develop a new approach based, for example, on fuzzy logic, to deal with

uncertainty of disruption risks (6) our multi objective model in small sizes can be solved by

other approaches, like multi-choice goal programming with utility method for generating

efficient solutions, and the results can be compared to RLTP (7) also other meta-heuristic

methods can be developed for large scale test problems.
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