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Abstract:

Purpose: This  paper  aims  to  purpose  a  Data-Driven  Quality  Improvement  (DDQI)  framework  for
improving production quality by analyzing existing data using machine learning, data visualization, and
correlation analysis.  The objective is  to predict optimal machine settings for different batches of  raw
materials to enhance process yield and minimize defects. A case study was conducted at a stainless-steel
woven wire mesh manufacturing plant in Thailand, using real production data and testing the predicted
machine parameters in actual production.

Design/methodology/approach: The framework starts with the integration of  existing data into the
master database. Next, data visualization and correlation analysis are employed to screen out unimportant
factors. Subsequently, machine learning is utilized to model the relationship between process parameters
and their corresponding quality characteristics. Finally, the model is used to identify the optimal settings for
production parameters that are suitable for new incoming batches based on the raw materials’ inspection
data. 

Findings: The results from implementing the DDQI framework in the case study company showed that it
was able to accurately predict the process yield of  the wire mesh weaving process. This capability enabled
the selection of  process parameters that were well-suited to the incoming materials, leading to an increase
in  process  yield  to  an  average  of  91.3%. The  results  indicate  that  the  DDQI  framework  not  only
significantly improves the process yield of  the case study factory but also facilitates more systematic and
planned decision-making regarding production.

Research  limitations/implications: The  model’s  performance  was  limited  by  the  quality  and
completeness of  the historical  data. Some complexities  in  the manufacturing processes could not  be
captured due to missing variables or unmeasured process aspects. While the Gradient Boosted Tree (GBT)
performed well, some batches still exhibited defects, indicating that there is room for model refinement or
the inclusion of  additional parameters. 

Originality/value: This research  introduces a novel integration of  machine learning, data visualization,
and correlation analysis  into a practical quality improvement framework.  It further provides empirical
evidence from a real-world implementation in the wire mesh industry,  demonstrating that  data-driven
optimization can outperform traditional quality tools with minimal disruption to manufacturing.

Keywords: quality improvement, machine learning, predictive models, gradient boosted tree, parameter prediction,
production yield, wire mesh manufacturing
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1. Introduction

In today’s increasingly interconnected and globalized environment, maintaining competitiveness presents significant
challenges for businesses. To remain competitive, organizations must deliver products and services that effectively
meet customer needs and expectations (Riepina, 2024). Achieving and ensuring a high level of  quality is a critical
factor  in  this  regard  (Psarommatis,  Prouvost,  May  & Kiritsis,  2020),  as  lower  defect  rates  lead  to  customer
satisfaction,  optimize  the  utilization  of  machinery  and  personnel,  and  contribute  to  cost  control.  Quality
improvement tools, which encompass a variety of  techniques and methodologies, play a crucial role in enabling
organizations to enhance their processes, identify and eliminate defects, and improve efficiency. These tools are
widely applied across diverse industries, including manufacturing, healthcare, and services (Carnerud, Mårtensson,
Ahlin & Slumpi, 2020; Coughlin & Posencheg, 2023; Fundin, Lilja, Lagrosen & Bergquist, 2025; Jomy, Lin, Huang,
Chen,  Malik,  Hwang  et  al.,  2025;  Maani,  Putterill  &  Sluti,  1994;  Nicolay,  Purkayastha,  Greenhalgh,  Benn,
Chaturvedi, Phillips et al., 2012). There are many different quality tools available, each designed to address specific
problems or areas for improvement. Some commonly used quality tools include flowcharts, Pareto charts, cause-
and-effect diagrams, statistical process control, Failure Mode and Effects Analysis (FMEA), quality control circles,
and Six Sigma. The application of  these tools has been associated with significant cost savings in the past. 

Traditional  quality  improvement tools  address quality  issues by identifying and eliminating the root causes of
problems, rather than merely addressing the symptoms. This approach requires a deep understanding of  process
mechanisms,  which is  increasingly difficult  and time-consuming to obtain in modern,  complex manufacturing
systems (Yin, Niu, He, Li & Lee, 2020a).To achieve this, the relationships between input factors, such as incoming
materials, labor, and machine parameter settings, and quality characteristics, must be thoroughly investigated and
modelled  to  predict  the  quality  level  for  given  input  variables  (Ramana  &  Reddy,  2013).  However,  these
relationships are often extremely complex and uncertain  (Liu, Liu & Duan, 2020) making analysis much more
challenging. 

One of  the techniques commonly used to model such relationships is the design of  experiments (DOE). Various
types of  experimental designs have been reported to successfully improve quality levels in manufacturing processes
(Hanrahan & Lu,  2006),  for  example,  full  factorial  design  (Javorsky,  Franchetti  & Zhang,  2014;  Kadeethum,
Salimzadeh & Nick, 2019), fractional factorial design (Montgomery, 1990; Nabaterega, Kieft, Hallam & Eskicioglu,
2022), and the Taguchi method (Ghani, Choudhury & Hassan, 2004; Sukthomya & Tannock, 2005a; Yang & Tarng,
1998). However, these techniques require additional experiments and testing on actual production lines, which not
only  require  further  investment  but  also  cause  disruptions  to  production.  Moreover,  they  rely  on  certain
assumptions and often build models using the entire dataset, without splitting the data into separate training and
testing sets (Yin et al., 2020a).

Even though traditional quality improvement tools have proven to be useful, better methods to analyze the massive
amounts  of  data  collected  in  industry  database  emerged  (Köksal,  Batmaz  &  Testik,  2011).  In  the  modern
manufacturing environment, advances in information technology such as the Internet of  Things (IoT), sensor
technology, and cloud computing have resulted in an exponential increase in the amount of  manufacturing data
collected (O’Donovan, Leahy, Bruton & O’Sullivan, 2015). Numerous countries have introduced national strategies
to advance manufacturing, such as the Industrial Internet, Industry 4.0, and Made in China 2025. A common goal
of  these strategies is to achieve smart manufacturing, which requires the integration and coordination of  both the
physical and digital aspects of  manufacturing (Tao & Qi, 2019). Smart manufacturing involves the use of  systematic
computational analysis to analyze manufacturing data in order to make more informed decisions (Tao, Qi, Liu &
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Kusiak, 2018). It is recognized that Industry 4.0 has brought significant changes to traditional quality management
practices, giving rise to a new approach known as Quality 4.0 (Oliveira, Alvelos & Rosa, 2024).

At present, machine learning (ML) is playing a critical role in manufacturing digitalization and in the adoption of
the Industry 4.0 concept  (Chen, Sampath, May, Shan, Jorg, Aguilar-Martín  et al., 2023). In recent years, ML has
been  applied  to  a  wide  range  of  manufacturing  applications,  including  demand  forecasting,  supply  chain
optimization,  and predictive  quality  control.  A study by  Carnerud et  al.  (2020) revealed that  although quality
management researchers are generally positive about digitalization, related initiatives and conceptual approaches
within the field appear to lag behind current advancements.

The use of  ML with manufacturing data has been increased over the past 20 years (Sharp, Ak & Hedberg, 2018).
One of  the promising applications of  ML is manufacturing process modelling, in which process parameters are
used as input data and quality characteristics, such as process yield or defect rate, are used as target outputs. Data
obtained from the process is split into a training set (for building the model) and a testing set (for evaluating the
performance of  the model); hence, the performance of  the model is more reliable when applying it to new data.
ML does not require any assumptions about the data and can cope well with complex and non-linear relationships.
Moreover,  because  the  model  training  process  uses  only  historical  (past)  data,  it  can  be  performed  without
interfering with or interrupting the ongoing production process. Various ML algorithms have been applied to
model manufacturing process; for  example,  artificial  neural  network (ANN)  (Bhagya-Raj & Dash,  2022;  Coit,
Jackson & Smith, 1998; Sukthomya & Tannock, 2005b; Venkatesan, Kannan & Saravanan, 2009), support vector
machine (SVM)  (Ding, He, Yuan, Pan, Wang & Ros, 2021; Rostami, Dantan & Homri, 2015; Yin et al., 2020a;
Zouhri, Homri & Dantan, 2022), decision tree (DT) (Barrios & Romero, 2019; Ronowicz, Thommes, Kleinebudde
& Krysiński, 2015), deep learning (DL) (Mojahed-Yazdi, Imani & Yang, 2020; Shah, Wang & He, 2020; Wang, Ma,
Zhang, Gao & Wu, 2018) and ensemble models (Garrido-Labrador, Puente-Gabarri, Ramírez-Sanz, Ayala-Dulanto
& Maudes, 2020; Yin et al., 2020b). As a result, ML has proven to be more suitable for modelling the relationship
between  process  parameters  and  quality  outputs  than  traditional  quality  improvement  tools  in  the  modern
manufacturing environment. Once, the model is well established, it can be used to identify best parameter setting to
achieve the desired quality level.

Building on the strength of  ML in process modelling and optimization, this research addresses additional challenges
that arise in real manufacturing settings, such as raw material variability from multiple suppliers. To reduce the risk
of  relying on a single supplier, industries often engage multiple suppliers to provide the same type of  raw material.
This diversity introduces variation, and therefore, it becomes necessary to configure machinery tailored to the
characteristics of  each raw material. 

Setting process parameters in production can be done in several common ways, such as operator experience, trial
and error, and DOE. However, each method has its own advantages and disadvantages. Using operator experience
enables quick decision-making, but it can introduce bias, human error, and may overlook complex relationships.
The trial and error method is easy to carry out but is time-consuming and resource-intensive, and it may not always
find  the  true  optimal  settings.  DOE  provides  a  systematic  and  statistically  valid  approach  but  requires
experimentation, which can be costly and resource demanding.

Machine learning offers significant advantages over traditional methods for setting process parameters. ML excels at
modelling complex and nonlinear relationships  among numerous process variables.  This data-driven approach
reduces reliance on human intuition, minimizes the risk of  error or bias from manual adjustments, and allows for
real-time, dynamic adaptation to changing production conditions. Examples of  using ML to set process parameters
include Tan and Nhat (2022), who used ANN to optimize process parameters for thermoforming and addressed
challenges such as defects in the final product, and Dharmadhikari, Menon and Basak (2023), who discussed the
application of  reinforcement learning to optimize process parameters in additive manufacturing.

This research aims to create a new Data-Driven Quality Improvement (DDQI) framework for analyzing existing
data in databases with the goal of  improving quality and addressing defects in the manufacturing sector using ML
techniques, together with data visualization and correlation analysis. To demonstrate the proposed framework, we
conducted a  case  study with a large-scale  manufacturer  of  stainless-steel  woven wire  mesh in  Thailand.  The
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proposed method begins with the acquisition of  data from relevant databases, including supplier data, raw material
inspection data, machine parameter setting data from each process, and final product quality inspection data. Then
all the data is merged to create a master database. Since the master database is constructed by merging data from
various sources, it contains a large number of  related attributes. These attributes are then selectively chosen based
on the analysis of  relationships and visualization. Association rule analysis is also applied to study relationships
among defect  types.  The  selected attributes  are  used to  create  ML models.  When new lots  of  raw material
properties are tested, the test results are combined with the data set of  all possible process parameters to create a
scoring file for the ML model. This ML model is then used to predict the best-suited machine parameters settings.
Additionally, Local Outlier Factor (LOF) is employed to group raw materials with similar characteristics into the
same production batches, thereby reducing process variability.

The rest of  the paper is organized as follows; the next section discusses background theories, including a literature
review of  the application of  ML in manufacturing and a brief  review of  the ML methods used in this research.
Section 3 describes the research methodology, detailing all the steps of  the DDQI framework. Section 4 presents
relevant information about the case study company, along with an explanation of  the related production process.
Section 5 covers the results and discussion from the application of  DDQI in the case study company. The final
section provides the conclusion.

2. Background Theories
2.1. The Use of  Machine Learning in Manufacturing

Machine learning is one of  the fields that has recently gained significant attention. It combines concepts and
techniques from various fields, including computer science, statistics, artificial intelligence, and data science. With
the rapid development of  new learning algorithms, ML has been adopted in various fields, including healthcare,
manufacturing, education, financial modelling, and marketing (Jordan & Mitchell, 2015).

Machine learning algorithms are commonly categorized into three primary types: supervised learning, unsupervised
learning, and reinforcement learning. Supervised learning includes algorithms that enable computers to learn from
examples. Unsupervised learning consists  of  algorithms that allow computers to learn patterns on their own.
Reinforcement learning involves algorithms in which computers learn through trial and error, gaining insights from
actions that result in rewards in order to find the best actions leading to optimal outcomes. The use of  these
algorithms in manufacturing has been reported in literature (Dogan & Birant, 2021; Rai, Tiwari, Ivanov & Dolgui,
2021; Sharp et al., 2018; Wuest, Weimer, Irgens & Thoben, 2016).

Köksal et al. (2011) categorized the applications of  ML in quality improvement into four tasks: description of
quality,  classification of  quality,  prediction of  quality,  and parameter  optimization.  The description  of  quality
involves analyzing attributes or features that affect a product’s quality. For example, Hsu and Chien (2007) applied
DT and ANN to extract features from wafer bin maps, aiming to improve yield.  Chen, Tseng  nd Wang (2005)
utilized association rules to identify the root causes of  defective products. 

Classification of  quality is an application where ML is used to predict quality classes. Among the various ML
methods, DT and ANN are extensively discussed techniques, as seen in studies by  Sik-Kang, Hyoen-Choe  and
Chan-Park  (1999) and  Chen,  Lee,  Deng  and Liu  (2007).  The  most  common application  of  ML for  quality
improvement is in the prediction of  quality. Various ML approaches, such as DT  (Li,  Feng,  Sethi,  Luciow &
Wagner, 2003), ANN (Kurtaran, Ozcelik & Erzurumlu, 2005) and SVM (Fei, Jinwu, Min & Jianhong, 2013), have
been reported. Quality optimization is the least commonly applied task compared to its applications in other areas.
Common tools found in optimization tasks include genetic algorithms (GA) (Kim, Oh, Lee, Lee & Yun, 2001) and
the Taguchi method (Teng & Hwang, 2007).

2.2. Machine Learning Algorithms for Manufacturing Process Modelling

This section briefly describes the ML algorithms used in this research, focusing on their operational characteristics
and demonstrated utility in manufacturing process modelling. The algorithms reviewed are Generalized Linear
Model (GLM), Decision Tree (DT), Random Forest (RF), Gradient Boosted Tree (GBT) and Deep Learning (DL), 
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Generalized Linear Model is a concept developed by John Nelder and Robert Wedderburn. It has been adapted to
work with error distributions that are not necessarily normal (Myers & Montgomery, 1997). The GLM can create
models even when the relationship between independent and dependent variables is not linear, using a link function
to connect the dependent variable to a linear function. This versatility allows GLM to model various manufacturing
datasets effectively. For example, Brinkley, Meyer and Lu (1996) demonstrated the application of  GLM combined
with nonlinear programming for quality improvement in circuit board manufacturing, significantly reducing defects
in  the  process.  Additionally,  GLM  has  been  successfully  used  in  predicting  semiconductor  yield  (Krueger,
Montgomery & Mastrangelo, 2011) and defects in plasma etching (Boumerzoug, 2010).

Decision Tree, random forest, and gradient boosted tree are tree-based supervised ML techniques. DT use training
data to build a tree-like diagram, consisting of  internal nodes representing tests on attributes, branches representing
outcomes of  these tests, and leaf  nodes holding class labels. Attribute selection is typically based on information
gain, calculated from the difference in entropy before and after a split. A key characteristic of  DT that makes it
particularly  useful  for  modelling  production processes  is  that  their  visual,  hierarchical  structure,  which  allows
engineers and operators to understand how decisions  are made.  DT also naturally  select  the most important
features (Choudhury, Mondal & Sarkar, 2024), helping to identify key process variables affecting product quality. 

Random forest, and gradient boosted tree and GBT are ensemble methods that construct multiple decision trees as
base  learners.  RF  creates  many  decision  trees  from  different  subsets  of  the  data,  with  each  tree  trained
independently  and randomly  using  bootstrap  aggregating,  or  bagging.  RF provides  the  benefits  of  improved
accuracy (Chen, Zhu, Niu, Trinder, Peng & Lei, 2020) and robustness to noise and outliers (Kang, 2023), both of
which are often present in real-world manufacturing environments. GBT, on the other hand, trains each tree based
on the residual errors of  the previous trees and uses the gradient descent algorithm to iteratively update tree
parameters to minimize a loss function. GBT offers high predictive power (Wang, Song, Zhao, Wang, Dong, Wang
et al., 2022) and the ability to handle complex interactions (Ghazwani & Begum, 2023), making it especially useful
in  multistage  or  highly  automated  manufacturing  systems.  There  have  been  some  reports  on  the  superior
performance of  GBT over RF (Yoon, 2021).

Deep learning enables computational models consisting of  multiple processing layers to acquire representations of
data with varying levels of  abstraction. DL discovers structure in large datasets by employing the backpropagation
algorithm, which guides the ML in adjusting its internal parameters. These parameters compute the representation
in each layer based on the representation in the preceding layer. Breakthroughs in image, video, speech, and audio
processing have been realized through deep convolutional networks, while recurrent networks have been used
particularly with sequential data, such as text and speech (LeCun, Bengio & Hinton, 2015). DL has the ability to
learn complex patterns, handle large datasets, and reportedly has superior predictive performance compared to
other ML methods (Bakyalakshmi, 2024). The DL algorithm employed in this research is the open-source H2O
deep learning algorithm, which is based on a multi-layer feedforward artificial neural network trained with gradient
descent using back-propagation.

3. Research Methodology
The content in this section explains the methods for utilizing existing data in the company’s database system to
address quality problems, as summarized in Table 1.

The research method is divided into four main steps: data collection and preprocessing, dimension reduction, ML
model building, and determination of  optimal parameters.

3.1. Data Collection and Preprocessing

This step is the first step in collecting data from relevant sources, generally including the following essential data:

• Supplier data: which contains information related to the suppliers of  raw materials, such as their past
quality rates, specifications, or related drawings.

• Incoming inspection data: which includes various test results performed on incoming materials, such as
chemical testing, mechanical testing, and electrical properties testing.
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• Production  data:  which  contains  information  regarding  the  types  of  machines  and  their  parameters
settings.

• Quality inspection data: which includes the results of  final and in-process quality inspections.

Since  these  data  are  often stored separately  in  different  databases,  immediate  integration  may lead to errors.
Therefore, it  is necessary to clean the data beforehand to reduce errors. Common errors encountered include
inconsistent records, where different departments refer to the same item with different names. Additionally, it is
essential to handle outlier data, which may result from data collection errors, and to replace missing data in order to
obtain the most complete dataset possible. Finally, data from various sources are tracked, traced and merged into a
single table called the master database.

Main Steps Detail Steps Relevance data and tools

Data Collection and 
Preprocessing

Step 1: Collect data from relevance source

Supplier’s data
Incoming inspection data
Production data
Quality inspection data

Step 2: Data cleansing
Missing data
Wrong type data
Outlier detection

Step 3: Trace, Track and Merge all data into master database n/a

Dimension Reduction
Step 4: Correlation and Visualization Analysis R value, Visualization graphs

Step 5: Defect type correlation Association rule analysis

Machine Learning 
Model Building

Step 6: Build the ML models using significant parameters 
with quality characteristic as target GLM, DL, DT, RF, GBT

Step 7: Fine tuning the hyper-parameters to improve the 
performance

n/a

Step 8: Performance evaluation Root Mean Squared Error 
(RMSE) and Relative Error (RE)

Determination of  
Optimal Parameters

Step 9: Grouping new batch of  materials to reduce variation LOF

Step 10: Generate all possible combination of  controllable 
factors while keeping uncontrollable factors constant

Cartesian Product

Table 1. The detailed step in the proposed DDQI framework

3.2. Dimension Reduction

Since the master database is created by consolidating multiple databases throughout the factory, it contains a large
number of  attributes. This step involves reducing the number of  attributes by selecting those that are crucial for the
results. Including all available attributes in the model-building process can lead to excessive time consumption and
may also negatively impact the error of  the model.

The  selection  of  attributes  can  be  accomplished in  several  ways,  such  as  correlation  analysis  or  the  use  of
visualization. Visualizations such as histograms, box plots, and scatter plots are valuable tools for understanding the
distribution of  each feature, detecting outliers,  and identifying potential relationships between features and the
target outcome. For example, scatter plots can reveal features that exhibit clear trends in relation to the target
classes. These visualizations enable experts to recognize meaningful relationships, groupings, and clusters that may
be contextually significant but are not always captured by statistical criteria.

The involvement of  human experts with domain knowledge is crucial for interpreting these visual patterns, as they
can observe important relationships, such as overlapping categories and nonlinear separations. These insights help
guide  subsequent  analysis  steps  and  model  selection.  Incorporating  domain  knowledge  ensures  that  the
interpretation of  patterns is accurate and relevant, reducing the risk of  misinterpretation that could occur if  relying
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solely  on automated analysis.  Additionally,  in  this  research,  we applied association rule  analysis  techniques  to
examine the relationship between different types of  the defects (Wongwan & Laosiritaworn, 2018).

3.3. Machine Learning Model Building

This step involves creating a predictive model using ML techniques from the data in the master database. The target
attribute, which is the attribute that measures a quality characteristic such as the defect rate, the quantity of  detects,
or the process yield, is defined. The selected attributes from the previous step are then used to build the ML model.

This research uses three types of  datasets: training, validation, and test sets, to develop the ML models. The training
set is used to teach the model by adjusting its parameters, validation set is used to measure the performance of  the
model  during  training,  while  the  test  dataset  is  used after  the  model  is  fully  trained to provide  an unbiased
evaluation of  its  final  performance.  To prepare  the  data,  we first  split  the dataset  into two parts:  60  % for
training/validation and 40% for testing. Training/validation dataset is further split  using 3-fold cross-validation
approach. The grid search method was used to fine-tune the hyper-parameter of  each ML to ensure the best
performance. We chose the 60:40 split to achieve a balance between giving the model enough data to learn robust
patterns from the training set and having a large, representative test set for reliable performance evaluation.  The
model with the lowest error metrics was used in the next step.

3.4. Determination of  Optimal Parameter

When the new batches of  raw material have undergone testing, the LOF method is used with the test results to
group raw materials with similar characteristics and send them to the same production batch to reduce variation.
Additionally, the test results are combined with the possible production process parameters to generate a scoring
file for the ML model of  the process in order to generate the results. Therefore, the best machine parameter setting
can be determined.

4. Industrial Case Study
A case study of  a large-scale manufacturer of  stainless-steel woven wire mesh in Thailand was used to demonstrate
the proposed method. The company has been in operation for over 20 years, and the demand for wire mesh has
increased continuously in both Thailand and abroad. The major weaving type for this case study is the plain weave
type, as shown in Figure 1. There are two side views of  the stainless-steel woven wire mesh plain weave type
shown.

Figure 1. Stainless-steel woven wire mesh plain weave type

The production process of  woven wire mesh, shown in Figure 2, consists of  eight main processes. The first
process  is  the material  receiving process,  which is  the  responsibility  of  the  warehouse  (WH) and the  quality
assurance department (QA). They inspect raw materials and documents from suppliers, checking specifications
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such as type, quantity, dimensions, appearance defects, and test results. Next, the raw material is forwarded to the
second process, the beaming process. This process is the responsibility of  the weaving department (BW), where the
wire is rolled from pails or drums onto each flange of  the bobbin. The number of  wires in each flange varies
according to the width of  the woven wire mesh based on customer requests. The third process is the weaving
process, which is the responsibility of  the BW department. They assemble the wire with two wire directions, warp
and weft, using the woven wire method and different types of  weaving patterns such as plain weave or twilled
weave. The fourth process is the cutting and inspection process, which falls under the responsibility of  the BW and
QA departments. This involves rolling the wire mesh into a flat sheet, stretching, cutting, and inspecting for mesh
defects by appearance. Width, height, mesh count, and aperture size are also measured during this process. The
fifth process is the surface finishing process, which is the responsibility of  the surface finishing department (SF).
This involves pre-treatment, powder coating, and baking the wire mesh. This process is capable of  coating both
stainless steel and aluminium materials.  The remaining processes are concerned with fabrication,  packing,  and
shipping to the customer.

Figure 2. The production process of  stainless-steel woven wire mesh, door, and window products

Historical total annual production data from 2006 to 2023 is presented in Figure 3, which shows that the annual
production of  wire mesh increase steadily from 282,304 square meters in 2006, to 1,060,895 square meters in 2023.

Figure 3. Annual mesh production volume between 2006-2023
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The number of  defects that occur in the woven wire process has increased every year, as shown in Figure 4. The
number of  defects increased from 4.9% in 2006 to 9.4% in 2023. Defect problems could affect the delivery
schedule, increase production costs per unit, and affect the firm’s ability to compete with competitors.

Figure 4. Percentage of  mesh defects between 2006 and 2016

There are approximately 16 types of  defects. The top three defects considered in this research are mark warp
(MW), hard warp (HP) and creeper (CP). These three types of  defects account for 53.3%, with MW, HP, and CP
constituting 19.9%, 19.3% and 14.1% respectively. Figure 5 shows pictures of  the three defect types. MW (Figure
5a) appears as a trace-like pattern resembling a broken net along the warp line. HP (Figure 5b) is a defect where the
warp wire forms a raised ridge line that is more visible than the others, and is clearly noticeable across the entire
surface of  the work. CP (Figure 5c) occurs when the weft wire is serrated, ridged, or not level compared to the
normal weave.

a) Mark warp (MW) b) Hard warp (HP) c) Creeper (CP)

Figure 5. Top three defect type

The yearly production yield of  the case study company was more than 90%. However, since 2017, the production
yield has dropped to between 84.5% and 87.2%, which no longer meets the company’s KPI. The reason for the
significant drop in production yield is anticipated to be the variation in incoming wire properties.  Due to the
pressure to reduce costs and the shortage of  raw materials, the company has had to seek additional wire suppliers,
resulting in the problem of  variability in the composition of  wires that differ from each manufacturer. These raw
materials,  when  introduced  into  the  production  process,  require  appropriate  adjustments  to  the  machinery.
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However, there has not been a clear study on the impact of  parameters in the production process on quality levels.
Consequently, the same set of  parameters is used for raw materials from all suppliers, leading to an overall decrease
in yield. If  the company can adjust the production process parameters to align with the quality of  raw materials
from each batch provided by different suppliers, the yield of  the process should be improved. This will ultimately
lead to significant cost reductions. 

5. Results and Discussion
5.1. The Master Database

Figure 6 shows the list of  attributes that are from six databases. The first section contains information about
suppliers, such as the manufacturer’s name, specification number, and the type of  oil used. The second section is
the incoming wire chemical testing results,  which include the manufacturer/seller’s name, heat number, wire
batch number, and the percentage for each element: %C, %Ni, %Si, %P, %S, %Mo, and %Cr. The third section
is mechanical properties; every pail (drum) of  wire must be tested, and the following must be recorded: wire
batch number, pail number, manufacturer name, ultimate tensile strength, elongation after fracture, and offset
yield for both warp and weft wire directions. The fourth section is the beaming process parameter settings. There
are many factors in the beaming process, including beaming lot number, beaming station number, wire type,
beaming shift, beaming width, beaming length, beaming tension level, beaming speed, and warp group number.
The fifth section contains data regarding the weaving process, including weaving loom number, width size of  the
mesh, total weaving length, reed number, weaving tension, weaving speed, weaving timing, weaving bar level,
weaving back roll level, and weaving front roll level. Finally, the sixth section is the final product inspection data,
which includes mesh roll number, the length of  each mesh roll, the calculated total mesh area for each roll, the
calculated standard size mesh area for each roll, total scrap wire mesh, percent of  production yield for each roll
(%STD), percent of  scrap for each roll (%Scrap), and the total quantity of  defects for each roll (a total of  26
defect types). These data are traced, tracked, and merged to produce the master database, which contains 58
attributes and 9,219 records.

Figure 6. Attributes available in each database

5.2. Visualization and Correlation Analysis
5.2.1. Visualization

Data visualization has been utilized by creating graphs between process parameters (independent variables) and
quality characteristics, including production yield, and the occurrence of  the defect types CP, HP, and MW. Figure 7
shows some examples of  visualization graphs of  wire mesh parameters. Figure 7a) is a box plot of  production yield
percentage  (%STD) of  the  six  suppliers.  Due to the  confidentiality  of  the  suppliers,  their  names cannot  be
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disclosed here. It can be observed that the median of  %STD for every supplier is similar, except for supplier C,
which has a significantly lower median, while supplier F has a slightly higher median than the other suppliers.
Supplier C shows the highest variation, while supplier F shows a significantly left-skewed distribution.

Figure 7b) is a bar chart of  the average number of  top three defects separated by beaming tension. On average, CP
defects occur a maximum of  3.88 times at a beaming tension level of  4.0. Therefore, setting the beam tension at a
low level of  1.0 to 3.0 should result in fewer CP defects. HP defects, on the other hand, reach a maximum of  3.42
occurrences at a beaming tension at level of  2.0. Consequently, the beam tension should be set to the highest,
specifically at level 4 to minimize HP defects. Regarding the MW defect, it is evident that its occurrence tends to
increase if  the beam tension level is set too high. MW defects reach a maximum of  3.5 times at beaming tension
level 4.0. Therefore, setting the beam tension at a lower level, specifically at 1.0, will result in fewer MW defects. In
conclusion, CP and MW defects are more likely to occur at beam tension level 4. However, setting the tension too
low can lead to an increase in HP defects. Figure 7 c) d) and e) show the scatter plots between beaming speed and
the average number of  CP, HP and MW defects, respectively. It appears that CP and HP defects decrease with an
increasing beam speed, but this leads to an increase in MW defects.

a) Box plot of  % production yield separated by type of  weft
supplier

b) Bar chart of  the average number of  top three defects
separated by beaming tension.

c) Scatter chart between beaming speed
and average number of  CP defect

d) Scatter chart between beaming speed
and average number of  HP defect

e) Scatter chart between beaming speed
and average number of  MW defect

Figure 7. Example of  visualization graph of  wire mesh parameters

Association rule analysis was also used to study the relationship among defect types (Wongwan & Laosiritaworn,
2018). It was found that the occurrence of  the HP defect is very strongly associated with the OM (Open Mesh)
defect, as OM is almost always found whenever HP is present. The results of  the study also revealed correlations
among HP, OM, and OF (Open Mesh Full) defects. For instance, when HP is present, there is a 59.4 % chance that
both OM and OF defects will also occur. These findings can be used to improve production processes by enabling
better  defect  monitoring,  addressing root causes,  refining inspection methods,  and establishing more effective
judgment criteria in the future.
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5.2.2. Correlation Analysis

Scatter plots were created between the numeric process parameters and quality characteristics. Their correlation
coefficients (r) were calculated. In this research, factors with an r value greater than 0.5 were selected. Figure 8
shows the correlation graphs for the average number of  MW defect rates and ten independent variables. It was
found that all ten factors had r values higher than 0.5, including beaming tension, beaming speed, beaming station,
weaving back roll, weaving speed, weaving tension, weaving timing, weaving loom, weaving front roll, and warp
tensile.

Figure 8. Correlation results and graphs for the MW defect rate
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The results of  the significant factors are summarized in Table 2. These results will be utilized in the next phase of
ML modeling. It is evident that there are conflicting factors that hinder immediate implementation. For instance,
beaming speed has an adverse effect on both HP and MW defects. This implies that decreasing beaming speed will
increase the HP defect while decreasing the MW defect.

Dependent Variable Positive Correlation Coefficient Negative Correlation Coefficient

%STD
(Yield)

1. Beaming speed = 0.82
2. Weaving speed = 0.92
3. Warp offset yield = 0.58

1. Weaving tension = -0.66
2. Weaving timing = -0.50
3. Warp elongation = -0.51

HP Defect
(Hard Warp) 1. Weaving front roll level = 0.85

1. Beaming tension = -0.76
2. Beaming speed = -0.98
3. Weaving speed = -0.56 
4. Weaving back roll level = -0.72

MW Defect
(Mark Warp)

1. Beaming tension = 0.86
2. Beaming speed = 0.95
3. Weaving tension = 0.64
4. Weaving front roll level = 0.92
5.Warp tensile = 0.50
6.Beaming station = 0.78
7.Weaving loom number = 0.78

1. Weaving speed = -0.81 
2. Weaving back roll level = -0.70 
3. Weaving timing = -0.50

CP Defect
(Creeper)

1. Beaming tension = 0.76
2. Weaving front roll level = 0.82
3. Weaving timing = 0.54
4.Beaming station = 0.53

1. Beaming speed = -0.99
2. Weaving speed = -0.51
3. Weaving back roll level = -0.83

Table 2. Summary of  correlation coefficient analysis results

After completing the visualizing and correlation analysis, a total of  12 significant attributes were identified through
visualization,  as listed in Table 3. Table 3 summarizes how each factor affects the output variable and which
database the variable comes from. It also describes the data type, whether it is real, integer, or nominal. Additionally,
it  specifies  whether  the  variable  values  can  be  adjusted  during  actual  production  operations  (such  as  setting
parameters for machines) or cannot be adjusted (such as test results for raw materials).

No. Database
Attributes

(independent variable) Abbreviation
Possible Affected Output

(dependent variable)
Data
type Adjustable

1
Beaming 
process

Beaming tension B01 CP, HP, MW defect rate Real Yes

2 Beaming speed B02 CP, HP, MW defect rate Real Yes

3 Beaming station B03 MW defect rate Integer Yes

4

Weaving 
process

Weaving speed W01 HP, MW defect rate Integer Yes

5 Weaving tension W02 MW defect rate Integer Yes

6 Weaving back roll level (BR) W03 CP, HP, MW defect rate Integer Yes

7 Weaving front roll level (FR) W04 CP, HP, MW defect rate Integer Yes

8 Weaving time W05 MW defect rate Integer Yes

9 Weaving loom number W06 MW defect rate Integer Yes

10
Mechanical 
testing

Warp tensile M01 % Production yield Real No

11 Warp elongation M02 % Production yield Real No

12 Warp offset yield M03 % Production yield Real No

Table 3. Summary of  important factors from visualization
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5.3. Wire Grouping Based on Mechanical Testing

There are two main threads in the weaving process: warp and weft. The warp thread is vertical and positioned from
top to bottom. It must be arranged before the weaving process begins and remains stationary throughout the
weaving process. On the other hand, the weft thread is horizontal and moves in and out during weaving. The warp
threads need to be carefully arranged before weaving since they cannot be adjusted during the process, making
them harder to control compared to the weft threads.

The incoming wire undergoes a mechanical property testing process before it is used in production. Based on past
data, it has been found that wires entering the process exhibit significant differences in mechanical properties, even if
they are sourced from the same supplier. It has been observed that arranging wires with similar mechanical properties
for warp direction leads to an improvement in the %STD. However, in the past, the factory categorized wires solely
based on the warp tensile value (M01). From the analysis of  the relationships in the previous section, it was found that
other mechanical properties, such as warp elongation (M02) and warp offset yield (M03), also impact the %STD. To
group the wires more accurately, this research applied the LOF value considering M01, M02, and M03 together.

The LOF, a commonly used method for detecting outliers, has been applied to the selection of  warp wires. Wires with
high LOF values are not used in the warp direction, as they exhibit significantly different characteristics from the
group. The objective is to arrange the selected wires in the warp direction to achieve the most uniform characteristics.
Table 4 presents the results after calculating the LOF values for the inspection data. A column labelled “Outlier”
shows the LOF value for each data point. A lower LOF value indicates that the data point is more similar to others in
the group, while a higher value suggests it is more different. Each wire is sorted in ascending order based on its LOF
value, and the wires are then arranged in this order along the warp direction of  the weaving machine.

ID Tensile Strength Offset Yield @0.2% Elongation at Break Pail No. outlier

1 745.1 306.3 63.1 78.0 .906

2 745.6 307.1 65.5 17.0 .922

3 745.2 305.5 64.1 86.0 .934

4 744.8 307.3 62.9 24.0 .935

5 744.3 304.6 64.9 30.0 .937

6 742.7 303.8 64.5 35.0 .981

7 750.8 307.8 63.4 82.0 .983

8 751.0 310.1 64.7 54.0 .998

9 745.2 302.9 65.0 41.0 1.003

10 744.3 308.5 64.8 57.0 1.011

11 747.0 305.3 67.2 44.0 1.029

12 752.5 309.7 66.6 48.0 1.040

13 748.2 306.5 65.0 74.0 1.042

14 741.1 303.0 63.1 70.0 1.043

15 742.8 305.2 60.6 61.0 1.046

16 750.6 310.1 67.1 46.0 1.057

17 749.9 303.7 67.6 45.0 1.060

18 740.8 307.0 62.6 28.0 1.072

19 749.3 311.9 61.6 87.0 1.075

20 758.3 308.9 63.3 1.0 1.086

21 755.0 309.4 69.4 40.0 1.087

22 755.8 310.4 61.9 68.0 1.088

23 751.8 305.3 67.8 37.0 1.089

24 758.5 310.1 66.1 69.0 1.098

25 749.7 302.6 68.2 47.0 1.141

26 753.5 309.9 59.9 73.0 1.141

27 751.6 307.6 59.7 60.0 1.143

28 747.4 304.2 61.9 63.0 1.149

29 754.3 304.7 66.9 12.0 1.157

30 747.0 308.7 59.7 83.0 1.176

31 759.1 308.4 67.7 32.0 1.193

32 743.5 300.4 65.1 6.0 1.216

33 759.0 310.5 68.4 18.0 1.247

34 740.4 306.6 60.8 26.0 1.250

35 745.4 299.7 67.4 14.0 1.262

36 750.2 312.6 59.5 71.0 1.267

37 740.3 303.1 66.5 16.0 1.279

38 743.6 311.0 61.6 22.0 1.298

39 748.6 301.9 71.5 7.0 1.498

40 761.8 312.6 65.9 66.0 1.526

41 755.2 299.3 64.0 15.0 1.768

Table 4. LOF result of  wire 0.9mm/ 304
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The average M01, M02, and M03 characteristics of  the selected wires in the warp direction are combined with all
possible setting of  machine parameters to create a scoring dataset. This dataset is then employed for ML to predict
the %STD value. Subsequently, suitable parameters for the wires in that batch are selected based on the examples
that yield high %STD values.

5.4. Selecting Machine Parameters Using ML Techniques

Setting  machine  parameters  in  the  wire  mesh  process  is  divided  into  two  parts:  the  training  phase  and  the
deployment phase, as shown in Figure 9.

Figure 9. Framework of  data flow in wire-mesh’s machine parameters setting with ML

5.4.1. Training Phase

To achieve the most accurate models, parameters related to each model type were adjusted using the grid search
method. Details of  these adjustments are provided in Table 5. For example, the hyperparameter adjusted for the
decision tree is the maximal depth, which specifies the length of  the longest path from the tree root to a leaf. In this
context, the max depth was adjusted from 0 to 26, increasing by 1 each time (a total of  27 runs). It was found that
the most suitable value was max depth = 2.

Figure 10 shows a surface plot of  GBT grid search results, where the number of  trees, maximal depth, and learning
rate are plotted on x, y and z axis, while the error rate is displayed by color. From the image, it can be observed that
using a low number of  trees, maximal depth, and learning rate results in a relatively high error rate, and the point
where the lowest error rate occurs is when the number of  trees is 90, the maximal depth is 7, and the learning rate
is 0.1.

Figure 11 presents an overview of  the results comparing different ML models. The bar graph on the left shows the
relative error values for each model, with GBT achieving the lowest relative error at 18.0 %. On the right, the bar
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graph shows the training time for each model, highlighting DT as the fastest to build. Despite its speed, DT has the
highest relative error. Since model training can be performed offline before production begins, this study prioritizes
predictive error over training time. Therefore, GBT was selected over DT due to its lower error metrics.

ML algorithm Hyper parameter

Grid search
Optimal

valueRange Step

Decision Tree Maximal depth 0-26 1 2

Random Forest
Number of  trees 0-140 40 100

Maximal depth 0-7 1 7

Gradient Boosted 
Trees

Number of  trees 0-150 60 90

Maximal depth 0-7 1 7

Learning rate 0.001-0.100 0.001 0.100

Table 5. Setting of  the grid search values to find the best parameters

Figure 10. Surface plot of  GBT grid search result

However, it is worth noting that even the model with the lowest error (GBT) still has a relatively high error rate.
This can be attributed to the inherent complexity of  the production process, the large number of  influencing
variables,  and  limitations  in  the  factory’s  data  collection  capabilities,  which  restricted  the  ability  to  gather
comprehensive input data. Despite these challenges, consultation with factory management confirmed that an error
in this range is considered acceptable for operational decision-making. This demonstrates that there is room for
further enhancement through expanded data collection. The current model provides practical value and meaningful
performance gains for the factory’s needs. 

Figure 11. Overview comparison between ML algorithms
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Table  6  shows  the  averages  performance  metrics  for  the  ML models,  with  standard  deviations  indicated  in
parentheses. It can be observed that GBT is the model with the lowest error, whether measured by RMSE, relative
error, absolute error, or squared error. Additionally,  this model has low variability (as seen from the standard
deviation values) and the highest correlation of  results. This makes GBT the best-performing model among all the
models compared.

ML algorithm

Performance measurements of  held-out test set

RMSE Relative error Absolute error Squared error Correlation

Decision Tree 0.21 (±0.006) 19.8 % (±0.6) 0.21 (±0.006) 0.044 (±0.003) 0.000 (±0.000)

Generalized Liner Model 0.205 (±0.006) 19.5 % (±0.6) 0.205 (±0.006) 0.042 (±0.002) 0.227 (±0.027)

Deep Learning 0.195 (±0.005) 18.9 % (±0.6) 0.195 (±0.005) 0.038 (±0.002) 0.366 (±0.041)

Random Forest 0.195 (±0.005) 18.8 % (±0.6) 0.195 (±0.005) 0.038 (±0.002) 0.394 (±0.029)

Gradient Boosted Trees 0.187 (±0.005) 18.0 % (±0.5) 0.187 (±0.005) 0.035 (±0.002) 0.459 (±0.020)

Table 6. The average and standard deviation of  performance metrics on held-out test set

5.4.2. Deployment Phase

After obtaining the wire-mesh process ML model from the previous steps, the next step is to create a dataset for
prediction. For this prediction dataset, two types of  data will be used. The first part consists of  mechanical test data
for incoming raw materials in the new wire batches. The second part involves generating combinations of  all
possible machine setups from the 12 related variables, as listed in Table 7. The total number of  records that can be
generated is 11,648,000 records (5×5×4×1×3×4×8×8×5×7). The specified levels are determined by experts from
the factory.

Parameter
Number
of  levels 1 2 3 4 5 6 7 8 9 10 11 12 13

B01 5 1 2 3 4 5

B02 5 1.5 2 2.5 2.8 3

B03 4 1 2 3 4

W01 13 1 2 3 4 5 6 7 8 9 10 11 12 17

W02 4 30 40 50 60

W03 8 7800 8000 8200 8400 8600 8800 9000 9200

W04 8 330 334 338 342 346 350 354 358

W05 5 -10 -5 0 5 10

W06 7 -20 -10 0 10 15 20 70

Table 7. Possible setting of  wire-mesh’s machine parameters

Figure  12 shows the influence of  each variable on the response, derived from applying the Local Interpretable
Model-agnostic Explanations (LIME) technique to the GBT model. Among all factors, weaving speed had the
highest positive impact, indicating a strong association with increased yield in the dataset. Other variables with
notable  negative  impacts  included  weaving  time,  warp  offset  yield,  warp  elongation,  and  weaving  tension,
suggesting that higher values of  these factors were linked to reduced yields. Several additional factors, such as
beaming  station,  warp  tensile,  weaving  back  roll  level,  and  weaving  loom  number,  showed  smaller  positive
contributions to yield. The results highlight the complex nature of  the production process and underscore the
importance of  closely monitoring and optimizing the most influential parameters. 
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However,  the  surprising  positive  effect  of  weaving  speed  warrants  further  investigation,  since  in  most
manufacturing processes, increasing production speed usually leads to more defects. This could be due to various
reasons. Firstly, it may be influenced by specific data characteristics or external factors not directly controlled within
the process. Secondly, the data used to construct the model may have been collected during periods when the speed
was below the optimal range,  so increasing the speed could have moved the system into a better-performing
window. Additionally, using historical data may introduce bias; for example, higher speeds may have only been used
with wire from manufacturers with higher standards, which already tend to produce higher yields.

Figure 12. the influence of  each variable on the response, derived from applying the LIME technique to the GBT model

Table 8 shows the results of  forecasting %STD using GBT. These forecasts have been sorted and filtered to display
only combinations that have a yield of  greater than 90 %. The results are arranged in descending order based on
the %STD. Engineers then consider selecting the most suitable machinery and parameters, taking into account the
following key factors:

• Machine Availability:  Machine availability  plays a crucial  role in  reducing production downtime and
increasing  operational  efficiency.  We  select  beaming  and  loom  machines  with  the  highest  current
availability, the fewest failures and repairs, and the most consistent operation. 

• Capabilities and Limitations of  the Beaming and Loom Machines: Each beaming and loom machine
has different capabilities, such as width, length, and speed, required to meet customer specifications. The
predicted machines must be able to accommodate these varying requirements.

• Manpower: The skills and availability of  personnel significantly influence operational efficiency and the
effective utilization of  the machines, which may, in turn, impact the final results. For example, if  the regular
operator  of  a  required  loom  is  absent,  the  replacement  operator  should  have  equivalent  skills  and
experience to maintain consistent performance.

• Production Settings Affecting Quality and Efficiency: When yields are equal, we may consider using
higher beaming or weaving speeds to increase production rates, as this allows for faster processing.

• Production Settings Affecting Machine Longevity: Similarly, if  yields remain constant, we may opt for
lower beaming or weaving tension. Reduced tension minimizes stress on the machine, decreasing the risk
of  excessive wear and helping to prolong the machine’s lifespan.
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Table 8. Examples of  prediction results for a set of  new incoming wire

After obtaining the suitable parameters, they were then tested in the actual process by conducting a total of  12
beam tests. Figure 13 illustrates the machine setup for the testing, with Figure 13a) showing the arrangement of
wires in the warp direction according to the values obtained from LOF. Figure 13b) illustrates the machine setup
for beaming, with three relevant variables: beaming tension (B01), beam speed (B02) and beaming station (B03).
Figure 13c) illustrates the adjustment of  the weaving machine, which involves a total of  six variables: weaving speed
(W01), weaving tension (W02), weaving back roll level (W03), weaving front roll level (W04), weaving time (W05)
and weaving loom number (W06). Figure 13d) shows the inspection area after the weaving process. The quality
control  inspector  checked  for  major  blemishes  in  each  roll  through visual  inspection  and measured the  wire
properties in accordance with the quality control inspection record.

Process  control  and  monitoring  were  applied  to  critical  points.  This  step  ensures  that  each  stage  of  the
manufacturing process experimentation is controlled in accordance with the chosen prediction results. Beaming
tension, beaming speed, weaving speed, weaving tension, weaving timing, weaving front roll level, and weaving back
roll level were all controlled and monitored. During deployment, all processes related to quality or experimental
results  are subject to process control  and performance monitoring with hourly,  shift,  and daily  reports.  After
successfully  setting  up the  system,  we implemented  the  new system with  a  new set  of  incoming  wire  of  a
0.9mm/304 wire mesh product, totaling 12 beams, and the results are shown in Table 9. The experimental result
shows that the average yield of  beam lot no. 5 is the lowest at 70.2 %, while beam lot no. 10 has the highest yield at
97.3 %. The overall average is 91.3 %, which surpasses the company’s KPI target of  90 %.

In comparing the %STD values obtained from the prediction using GBT with those derived from the actual
production process (in Table 9), some differences are evident. In this regard, the %error has been calculated based
on the discrepancy between the two values. CP defects were found in beam lot no. 1, 4, and 5. Both CP and HP
defects were found in beam lot no. 5, while OF defects were found in beam lot no. 3. The defects that occurred
directly affected productivity, especially in the beam lot no. 5, where two types of  defects occur, causing the yield to
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be the lowest of  all beams at 70.2 %. Given the data from Table 9, we calculate the confidence level equals to 4.19.
Therefore, the 95 % confidence interval for the population means is approximately (87.11, 95.49), which means
that the average of  the population falls within this interval.

a) Arranging the wire according to LOF result b) Setting up the beaming process

c) Setting up the weaving process d) Quality inspection

Figure 13. Machine setup and quality inspection of  the 12 testing beam

Table 9. Actual %STD vs prediction Results of  12 beams 
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To understand the underlying cause of  the error, we examined the production data and found that the diameter of
some wires after weaving, specifically at the point where the effect of  beam lot no. 5 occurred, was smaller than
that of  the adjacent wires. Normally, the rate of  diameter reduction after weaving is in the range of  5 to 10 percent.
However, in some tanks where beam lot no. 5 produced HP, the diameter reduction rate after weaving reached 15
percent, resulting in an unusually high amount of  HP waste. The rate of  diameter reduction after weaving depends
on how well the wire manufacturer controls the parameters and consistency of  the cold drawing process, which is
not directly controlled in the wire weaving process.

While the overall error metrics are low, the acceptability of  residual errors must be carefully considered, especially
when larger errors indicate potential assignable causes in the process. In cases like beam lot no. 5, residual errors
serve as indicators of  underlying production issues and highlight the value of  using predictive models as diagnostic
tools for process improvement.

6. Conclusion

This research introduces novel DDQI approaches to address defects problems by analyzing existing production
data with ML along with data visualization and correlation analysis. The goal is to establish a predictive model for
production yield and process settings. During the creation of  the master database, data and information were
collected from various processes.  The key emphasis  in database creation lies in ensuring the  correctness  and
accuracy of  data for each process, which is traceable throughout every production step.

Once the master database is complete, correlation analysis is conducted to identify insignificant factors. Association
rules may also be employed to investigate relationships between defects. Insignificant factors are then excluded
from the master database, retaining only significant factors for constructing the training dataset used to train the
prediction model. In the prediction model training process, multiple data mining and ML algorithms are utilized,
and the best  algorithm is  chosen.  The subsequent step involves  generating a new dataset  by  combining new
inspection data with all levels of  controllable factors in production settings. These combinations are then applied to
the best prediction model. The production process settings associated with the highest yield records are chosen for
implementing  the  actual  production  process.  Resource  availability,  such  as  machines  and  equipment,  is  also
considered when selecting process settings.

To demonstrate the framework, we utilized a case study involving the stainless-steel woven wire mesh process. The
master database encompassing a total of  38 factors. After screening factors through visualization and correlation
analysis, 12 factors remained. These were employed to develop ML models for predicting production yield, with the
GBT model chosen based on the lowest error. New incoming wire inspection data were used to group wires with
similar  mechanical  properties  to  minimize  variation.  Inspection  data  were  then  combined  with  all  possible
production parameter settings to generate a scoring dataset for the GBT. The actual implementation on 12 beam
lots resulted in actual yields ranging from 70.2 % to 97.3 %, with an average yield of  91.3 %. This demonstrates a
significant improvement in production yield.

The proposed DDQI framework can be applied with relatively low cost and minimal disruption to the process, as it
makes use of  existing data in the database and requires no additional experimentation. It can be implemented in any
manufacturing process,  even when the  process  is  operating at  its  maximum capacity.  The DDQI determines
parameter settings based on empirical evidence rather than subjective opinion, making the decision-making process
more reliable. Moreover, it employs ML, with the ability to model complex patterns and relationships that may be
challenging to capture using traditional quality control methods. This feature makes it suitable for processes with
advanced technology and intricate relationships. The model exhibits high adaptability,  allowing it  to cope with
dynamic environments. If  the nature of  the process changes, the model can be retrained with new data. Therefore,
the DDQI can be used to optimize processes, reduce waste, and enhance overall efficiency with relatively low cost
and minimal process disruption. 

Although the main objective of  the case study company, which is to reduce defective products, has been achieved,
the performance of  the GBT model with a relative error of  18% indicates that there is still room for improvement.
This could potentially be achieved by collecting additional relevant data to better capture the complexity of  the
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production process, as well as by expanding the analysis to include other types of  ML models. Additionally, the
current approach estimates all parameters simultaneously, which may not fully exploit the sequential nature of  the
process. It may be beneficial to divide the process into distinct stages and estimate parameters in process-specific
groups. This stage-wise approach may help reduce the prediction burden on the ML model and potentially reduce
error metrics.

The DDQI is applicable across all manufacturing industries. However, it is crucial to note that the master database
should consist  of  all  factors potentially  impact quality  performance but only significant factors to the quality
characteristic of  interest should be selected for model building. The inclusion of  insignificant factors may impact
training time and error metrics. Ultimately, the model can only be as good as the data used to train it.
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