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Abstract:

Purpose: Polarization voltage of  the lithium-ion battery is an important parameter that has direct

influence on battery performance. The paper aims to analyze the impedance characteristics of

the lithium-ion battery based on EIS data.

Design/methodology/approach: The  effects  of  currents,  initial  SOC  of  the  battery  on  charge

polarization voltage are investigated, which is approximately linear function of  charge current.

The change of  charge polarization voltage is also analyzed with the gradient analytical method

in the SOC domain. The charge polarization model with two RC networks is presented, and

parts of  model parameters like Ohmic resistance and charge transfer impedance are estimated

by both EIS method and battery constant current testing method.

Findings: This paper reveals that the Ohmic resistance accounts for much contribution to battery

total polarization compared to charge transfer impedance.

Practical  implications: Experimental  results  demonstrate  the  efficacy  of  the  model  with  the

proposed  identification  method,  which  provides  the  foundation  for  battery  charging

optimization.
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Originality/value: The paper  analyzed the impedance characteristics of  the lithium-ion battery

based on EIS data, presented a charge polarization model with two RC networks, and estimated

parameters like Ohmic resistance and charge transfer impedance.
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1. Introduction 

Lithium-ion batteries have been the subject of significant research and development in recent

years and become a promising alternative for power units in hybrid electric vehicles (HEV) and

electric vehicles (EV) due to their high nominal voltage, high energy density, long life and none

memory effect. As one of power supplies, the performance of lithium-ion batteries will have

direct  effects  on  the  driving  performance  and  operating  economy  of  the  vehicle.  It  was

reported  that  battery  charging  contributed  more  to  capacity  fading  compared  to  battery

discharging (Dubarry,  Svoboda, Hwu, &  Liaw,  2007a,  2007b).  It  is  therefore necessary to

investigate the charging characteristics and associated affect factors of the battery.

The lithium-ions migrate from positive to negative electrode during charging, embedding in

porous electrode material in a process known as intercalation  (Linden  &  Reddy, 2002). The

polarization voltage representing the change of cell voltage from its open-circuit voltage will

appear during the charge and discharge state. From electrochemistry point of view,  Ohzuku

Yamato, Kawai and Ariyoshi (2008) reported the steady-state polarization measuring method

of a lithium-ion cell and demonstrated its efficacy (Ohzuku et al., 2008). Nakayama,  Iizuka,

Shiiba et al., (2011)  reported the electrochemical model with a two-phase system of LiFeO4

and  FePO4to  describe  the  battery  polarization  profiles (Nakayama et  al.,  2011).  Nyman,

Zavalis, Elger Behm and  Lindbergh (2010)  reported the cell  polarization profiles at various

states of charge (SOC) and suggested the mass transport by diffusion mainly contributed to

the total polarization (Nyman et al., 2010). The chemical parameters and detailed knowledge

of the battery construction and material properties are however normally unavailable, which

bring difficulty in estimating polarization voltage of the battery in practical application. In this

respect, the present study aims to investigate the characteristics of charge polarization voltage

for large lithium-ion battery based on both electrochemistry impedance spectroscopy (EIS)

measurement data and battery charge testing results, analyze the effects of initial SOC and

charge current on charge polarization voltage and their relationships, and establish the charge

polarization voltage simulation model as the basis of battery charging optimization.
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2. Battery charge polarization voltage characterization

2.1. Experimental details

The sample cell used in this study is LiMn2O4 battery with the nominal capacity of 90 Ah. The

test  bench  of  the  EIS  and  battery  external  performance  are  shown  in  Figure  1(a)  and

Figure 1(b), respectively. The external electronic load EL300with one-quadrant potentiostats

shown in Figure 1(a) was used to satisfy the current requirement since the internal resistance

of the sample battery was tiny and the high current was needed to get required incremental

voltage  value.  The  EL300potentiostats  has  the  maximum current  of  100A,  which  can  be

operated in both potentiostatic and galvanostatic modes.

The Arbin battery testing system was used to carry out the battery charge and discharge test.

The testing system is capable of charging and discharging the battery at a maximum rate of

200A.  The  battery  was  placed  in  the  temperature  thermostat  to  be  kept  at  a  specified

temperature environment during test. 

(a)

(b)

Figure 1. (a) EIS test bench for large lithium-ion cell; (b) Schematic diagram of battery testing system
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2.2. Characteristic analysis of EIS

Electrochemical impedance spectroscopy (EIS) is a measuring method in frequency domain. It

investigates the electrode system by measuring impedance spectroscopy in a wide range of

frequency, which can get more information about dynamic and electrode interface structure

than other  conventional  electrochemical  methods  (Nyman  et  al., 2010;  Shi,  2001;  Cao  &

Zhang, 2002). When the equivalent circuit model is given a sinusoidal input current signal on a

certain angular frequency, the external of the measuring circuit will get a voltage signal of the

same  angular  frequency;  we  call  the  frequency  response  function  of  the  circuit  model

“equivalent circuit impedance”. Cells’ electrode reaction is quite complicated, when a sinusoidal

perturbation input is flowing in the cell system, change response conditions of dynamic factors

such as the electrode potential and the concentration of substance near the electric double

layer will affect the impedance spectrum analysis. It is found that when the electrode response

and disturbance are approximately linear with the linear conditions, it can be described using

the equivalent circuit model in the corresponding frequency range.

To  study  the  battery  electrode  dynamics,  impedance  spectroscopy  technology  is  used  to

measure the frequency response from 0.1Hz to 10 kHz of a LiMn2O4 battery. It is suggested

that  a  capacitive  reactance arc  similar  to  the electric  double  layer  capacitor  is  existed  in

impedance spectroscopy analysis; the information is therefore obtained about the change of

electrode reaction interface and electrode interface dynamics.

By  testing  the  impedance  spectroscopy  of  LiMn2O4battery  at  various  SOC,  impedance

spectrograms are gotten on the complex plane of different points of 3%, 10%, 20%, 30%,

40%,  50% and  60%as  shown in  Figure 2.  Each  point  is  measured  three  times  at  room

temperature to decrease the testing error since the impedance of the 90Ah battery is very

small. The battery electrode reaction rate is higher, it performs as a capacitive reactance arc

consisted of electric double layer capacitor and polarization resistance in parallel from 2Hz to

300Hz,  while at  lower frequency the diffusion impedance spectroscopy which presents  the

diffusion process is not obvious. This suggests that new batteries’ impedance characteristic is

mainly determined by electrochemical polarization resistance Rpa and battery Ohmic internal

resistance RΩ.

Figure 2. EIS of LiMn2O4 battery at various SOC
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The fitting results of the RC first-order circuit model are shown in Table 1. The Rpa gotten by

fitting in this frequency range mainly contains electrochemical polarization resistance resulted

from electrode reaction rate, therefore, the fitting result contributes to analyze establishment

and  the  regression  rate  of  battery  polarization  accurately.  The  RpaQY  signifies  the  time

constant of charge transfer polarization, which reflects the polarization reaction rate of the

battery at this SOC point.

Figure 3 shows the relationship between Rpa/RpaQY and different SOC points. When the SOC

is at the low side, Rpa is higher. By experiment we find that in the range of 0%-10% the

polarization  voltage  produced  at  the  beginning  of  the  charge  is  higher,  in  the  range  of

10%-30% the  polarization  voltage produced is  stable,  in  the range of  40%-60% the Rpa

decreases gradually, and the polarization reaction rate is increased, which means in this range

the electrochemical polarization degree is lower.

SOC/% 3 10 20 30 40 50 60

RΩ/mΩ 1.32 1.33 1.35 1.36 1.33 1.31 1.29

QY 43.38 34.39 26.97 26.19 28.62 29.35 29.95

Qn 0.76 0.81 0.84 0.85 0.86 0.88 0.90

Rpa/mΩ 0.59 0.41 0.40 0.41 0.34 0.30 0.26

RpaQY 25.5 14.2 10.8 10.8 9.8 8.9 7.9

Table 1. EIS test data based model parameters as a function of SOC

Figure 3. Relation between Rp\RpQY and different SOC points

2.3. Effects on charge polarization voltage

State of charge

When connected to a charger, the terminal voltage of the battery can be expressed as:

t OC o pV V IR V= + + (1)
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Where VOC represents open-circuit cell voltage, IRO denotes Ohmic loss of the battery concerned

with contact resistance, electrolyte resistance, I expresses battery charge current, Vp describes

the polarization voltage in respect of mass transport or concentration polarization and charge

transfer or activation polarization of the battery. The open-circuit voltage can be obtained by

measuring the terminal voltage after the battery left in an open circuit condition for a long time

when got to  steady state.  The Ohmic resistance Ro could be got through battery voltage

response  data  at  pulse  current.  And  the  polarization  voltage  can  be  calculated  based  on

Equation (1).

Figure 4. (a) Battery charge polarization voltage variation with SOC; (b) Incremental 

charge polarization voltage as a function of SOC

Figure 4(a) and (b) reports the charge polarization voltage and incremental charge polarization

voltage changing with SOC. In this experiment, the battery was first charged with a constant

current  of  C/3  until  the  battery  voltage  reached  the  maximum charge  voltage,  then  was

charged at maximum voltage till the current dropped to 5A.From the data in  Figure  4, it is

seen that the polarization voltage is dramatically increasing till the battery SOC arrives around

5%, and then drops fast into a relatively steady state after about 10 % nominal capacity of the

battery was recharged, which the incremental polarization voltage appears “valley” shown in

Figure 4(b). The polarization voltage of SOC ranging from 0% to 10% is much higher that of
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after 10% SOC, which is also demonstrated by EIS results shown in  Table 1. From 10% to

80%  SOC,  the  polarization  voltage  fluctuates  within  10  mV.  The  polarization  voltage  is

gradually going up between 80% and 90% SOC, suggesting that the polarization of the battery

at this period is raising, and then maintains high level and does not increase till fully charged

since the battery was charged at constant voltage and the current was gradually decreased. It

is inferred that two fields which are from 0% to 10% SOC and from 80% to 100% SOC need to

be charged at low current and not suitable for fast charging.

Figure 5(a) and (b) illustrates the battery charge polarization voltage and its initial polarization

level  at  various  initial  SOC.  It  is  found  that  the  charge  polarization  voltage  response

characteristics of SOC ranging from 10% to 70% is similar to over damping dynamic system

that  the voltage starts fast  increasing and then maintains nearly constant,  which is  much

different  from  that  of  0%  SOC  shown  in  Figure 4(a).  In  addition,  the  steady  value  of

polarization voltage for various initial SOC differs from each other, especially for initial SOC of

10% and 60%; the difference arrives around 10mV. It is indicated that the charge polarization

is affected by battery initial SOC. The effects of SOC on charge polarization voltage therefore

need to be considered in modeling.

Figure 5(a) Charge polarization voltage characteristics at various initial SOC; (b) Initial polarization level

vs. initial SOC (the battery was charged at the rate of C/3)

Charge current

The polarization voltage versus SOC profile at different charge current is reported in Figure 6.

It  is  apparent  that  the  polarization  voltage  increases  with  charge  current  increasing  as

expected. To further investigate the relationship of the polarization voltage and charge current

of the battery, the data in  Figure 6 was extracted at a specified SOC point, and then the

polarization voltage would be obtained at different currents, which is illustrated in  Figure 7.

From Figure 7, it is shown that the polarization voltage is an approximately linear function of

charge current, and the values are also related with battery SOC as described in detail  in

previous section. 
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Figure 6. Polarization voltage vs. SOC profile at different charge currents. (a) initial SOC = 10%; 

(b) initial SOC = 40%

Figure 7. Polarization voltage vs. charge current profile

3. Modeling and simulation

3.1. Model formulation

The equivalent  circuit  model,  the neural  network  model  and the simplified electrochemical

model are most widely used in battery simulation. The equivalent circuit model based on the

battery working principle describes the performance characteristics of the battery with circuit

network, and it is suitable for many types of batteries. The RC network model is the most

representative. From the above characteristic analysis, the establishment of the polarization

voltage，with exponential function change rule is consistent with the structure characteristics

of the circuit  model.  Polarization voltage consists  of  concentration polarization voltage and
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electrochemical polarization voltage. So it is reasonable to use the second order RC model to

simulate  the two parts  of  polarization  effects  respectively.  The equivalent  circuit  model  is

shown in Figure 8.

Figure 8. Equivalent circuit model of the battery

Based on Kirchhoff’s Law, the model can be described by the following equation:
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The initial polarization voltage Upa (0), Upc (0) is equal to 0 after the battery was kept in an

open circuit condition for a long time. The charge current I can be regarded as constant with

time interval, and  Equation (3) can be further simplified. The polarization voltage Up is the

sum of Upa, Upc. The simplified equation can be expressed by:
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3.2. Identification of parameters

The model parameters of Ro, Rpa, Rpc, Cpa, Cpc need to be identified to simulate the charge

polarization voltage dynamics. The Ohmic resistance Ro is significantly influenced by battery

temperature. Ro can be regarded as constant at a specified temperature during the charging

and discharging process. The dc internal  resistance can be achieved by measuring battery

terminal  voltage  response  at  a  certain  charge  current  since  it  performs  pure  resistance

behavior. As for the Rpa, Rpc, Cpa, Cpc identifications，some rules can be found from the Up

formula,  in  which the constant part  equals the sum of the coefficients of  two exponential

functions.  The  constant  is  divided  into  two  parts ， one  is  high  frequency  components

expressing charge transfer polarization,  the other  is  low frequency  components describing

mass transport polarization. According to time constant  τ = RC, the parameters of Rpa, Rpc,

Cpa, Cpc can be identified based on nonlinear least square method. The model parameters are

listed in Table 2.

SOC/% 10 20 30 40 50 60 70

Ro/mΩ 1.38 1.41 1.41 1.38 1.36 1.38 1.41 

Rpa/mΩ 0.31 0.31 0.29 0.31 0.37 0.35 0.31 

pa/s 25.19 76.74 122.23 140.28 84.02 158.29 139.59 

Rpc/mΩ 0.72 0.72 0.68 0.72 0.88 0.83 0.72 

pc/s 255.8 150.1 122.2 140.3 268.6 158.2 139.5 

Table 2. Constant current test data based model parameters as a function of SOC

Compared to the data in  Table 1, we can find that the values of parameter Rpa expressing

battery  activation  polarization  estimated by EIS  method and constant  current  method are

nearly the same, and both of them are around 0.3mΩ, which demonstrates the efficacy and

accuracy  of  both  methods.  It  is  concluded  that  large  lithium-ion  battery  can  also  be

characterized by EIS test with high current. It is noticeable that the proposed model can get

the  estimation  of  parameter  Rpc  describing  concentration  polarization  of  the  battery,

nevertheless,  EIS  test  could  not  illustrate  concentration  polarization  characteristics  in  this

experiment because of the frequency limit.

3.3. Validation

The Simulink model was established for simulating battery charge polarization. The initial SOC

was set to 20%, and the parameters were varying with SOC increase during the simulation.

The  simulated  and  experimental  polarization  voltage  is  illustrated  in  Figure 9(a),  and  the

estimate error is shown in Figure 9(b), respectively. It is found that the proposed model with

identified parameters can effectively simulate the charge polarization dynamics of the battery,

and  the  maximum  estimation  error  is  controlled  within  3.5mV,  satisfying  the  accuracy

requirement of the battery usage in electric vehicles.
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Figure 9. (a) The simulated and measured polarization voltage of the battery for constant charging

current; (b) The simulation error for the battery charge polarization model

4. Conclusions

The paper analyzes the impedance characteristics of the lithium-ion battery based on EIS data,

revealing  that  the  Ohmic  resistance  accounts  for  main  contributions  to  battery  total

polarization compared to charge transfer impedance. The charge polarization voltage of the

battery is involved with both initial SOC and operation current, and is approximately linear

function of charge current. The charge polarization model with two RC networks is presented,

and parts of model parameters are estimated by both EIS method and battery constant current

testing method,  which  has  nearly  the same results.  Experimental  results  demonstrate the

efficacy  of  the  charge  polarization  model  with  the  proposed  identification  method,  which

provides the foundation for battery charging optimization.
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