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Abstract:

Purpose: This research proposed dependent sampling plan incorporating mixed acceptance criteria for 
entrance  quality  control  of  corn  kernels,  a  primary  material  in  the  feed  manufacturing  industry. 
Mathematical models are involved in determining the alternative sampling plan based on allowable risk 
levels commonly applied in acceptance sampling practices.

Design/methodology/approach: New inspection plans are proposed in this research paper to assist 
manufacturers  check  product  quality  more  effectively.  The  plans  are  developed  using  mathematical 
methods and ensure that they meet specific requirements for quality. Each plan is evaluated by an objective 
scale which takes into account the risk for producers (α) as well as consumers (β), total inspection time and 
whether it is cost-effective using benefit cost ratio (BCR). Moreover, the adoption of  a decision-making 
method is carried out to consider the expenses of  inspection, the amount spent on those inspections, and 
the  chances  for  desired  quality  level.  This  approach  will  help  industries  to  choose  a  practical  and 
economical quality inspection strategy.

Findings: This new framework increases the entrance quality control at PT XYZ feed mill as it saves 
72.06% of  inspection time and has a very high benefit–cost ratio of  9.59. Using the principal component 
analysis (PCA), the research further demonstrates that one can reduce the number of  corn-quality criteria 
without losing critical defect information. The sampling plan increases the efficiency of  inspection without 
compromising the quality, in the presence of  low producer and consumer risk (2% and 4% respectively) 
choice of  the sampling model.

Research limitations/implications: The practical implementation of  the study is rapid and economical, 
which becomes the interest of  most companies to handle their incoming raw material quality inspection. 
Even though its application is currently limited to corn kernels inspection, future research could extend 
this approach to other types of  raw materials inspection used in the feed manufacturing industry.

Originality/value: Majority of  the earlier research has only examined sampling strategies in terms of 
allowable  risk.  By  including  resource  utilization,  this  research  successfully  created  a  more  thorough 
framework that provide more balanced and useful method for implementation.
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1. Introduction
The feed manufacturing industry in Indonesia is part of  the livestock sector that has superior potential for national 
economic growth. It is recorded that in 2024, this sector was able to provide revenue of  around IDR 357 trillion 
with a growth prospect of  4.66%, dominated by poultry commodities (BPS-Statistics Indonesia, 2024). This is 
influenced by the livestock sector’s perceived stability in cash flow circulation, which is reinforced by its use as  
collateral, the value of  which is largely unaffected by inflation (Maiangwa, 2013). According to the Soedjana (2005), 
Indonesia’s livestock industry is a vital tool for carrying out national initiatives meant to provide fair nutritional 
sufficiency in every area. Consequently, livestock feed consumption has risen significantly to support the sustained 
supply of  livestock products, both nationally and even multinationally with its main suppliers known to be on the 
island of  Java (BPS-Statistics Indonesia, 2024). 

To sustain this growth the national livestock feed production should remain productive while maintaining the price 
stability, availability, and compliance with product quality regulations. Nevertheless, numerous feed manufacturing 
facilities  still  experience problems with a  quality  management system (QMS),  particularly  with respect  to raw 
material received that may greatly impact the quality of  a final product (Rana, Siriwardena & Hasan, 2009). This 
challenges is more significant with multinational companies which are subjected to stringent production and safety 
standards. As the quality of  raw materials directly impacts subsequent processes, inefficient inspections followed for 
the inbound materials can intensify operational costs, delays in production, and quality deviations.

The  acceptance  sampling,  as  a  statistical  mechanism  to  assist  quality  assurance  for  incoming  raw  materials 
inspection, has been popular among practitioners (Yan, Liu & Dong, 2016). When applied appropriately, it offers 
potential reduction to inspection time and cost by exposing aceptable and reliable decision accuracy (Heizer, Render 
& Munson, 2017). Yet, most of  the literature on the acceptance sampling focuses on quality–specifically regarding 
decision errors (Pavlovic & Vistica, 2012) –with little attention to operational efficiency and resource utilization. 
The previous research have largely focused on single-criteria sampling plans, giving much preference to variable 
characteristics than attribute-based inspections due to their quantitative nature and reduced subjectivity (Pearn & 
Wu, 2006; Wu & Pearn, 2007; Yen & Chang, 2009; Aslam, Yen, Chang & Jun, 2014; Balamurali & Usha, 2015;  
Kurniati, Yeh, & Wu, 2015). Despite the importance of  the attribute characteristics in some inspection scenarios 
(Duarte & Saraiva, 2008; Afshari & Gildeh, 2017; Aslam, 2019a; Fernandez, 2019), the combination between both 
variable and attribute characteristics in a sampling plan design appears not to be a common practice. In addition, 
growing  emphasis  on  resource  utilization  underscores  the  disconnect  between  theoretical  sampling  plan 
development and practical  inspection needs,  as  high quality standards are not always consistent with efficient 
resource use (Farooq, Kirchain, Novoa & Araujo, 2017).

However, when the allocation of  single acceptance sampling is indeed inconclusive about the inspection results and 
the verification requirement,  the availability of  a single acceptance sampling in practice may not be sufficient 
(Kurniati et al., 2015). Although yielding a second sample from the same lot possesses the potential to enhance 
decision reliability (provided that the statistical unbiasedness is maintained) (Yen, Aslam, Chang, Sherwani, Ahmad 
& Jun, 2019), there is a lack of  sufficient study into the dependent mixed sampling plan that focuses on joint 
consideration of  inspection efficiency and the practical constraints of  modern industrials; which can thus improve 
economic  performance  in  a  more  comprehensive  way.  In  response,  this  paper  proposes  a  dependent  mixed 
sampling plan (DMSP) that incorporates new inspection methods to improve the incoming material inspection 
efficiency  through  balancing  quality  expectations  with  inspection  time  and  resource  utilization  in  the  feed 
manufacturing industry. 

2. Literature Review
2.1. Acceptance Sampling in Quality Control

Acceptance sampling is the recommended approach for quality control, particularly in situations where a 100% 
inspection is considered ineffective or expensive for the business. Because samples are evaluated rather than the 
entire  lots,  this  approach  offers  advantages  in  terms  of  time,  cost,  and  decreased  risk  of  product  damage 
(Montgomery, 2013). Furthermore, it facilitates the growth of  business which frequently requires cooperation with 
external  parties.  These  relationships,  whether  with  suppliers,  vendors,  or  consumers,  are  typically  based  on 
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contractual agreements that define clear expectations for product quality. Under these agreements, it is the vendor’s 
responsibility to ensure that every lot of  delivered products satisfies the established requirements. The buyer, on the 
other hand, is also responsible for examining the quality in accordance with the specifications and deciding whether 
the lots should be accepted or rejected, based on the sample taken (Kurniati et al., 2015).

Acceptance sampling involves two fundamental types of  risk that are closely related as shown in Figure 1. The first 
is producer’s risk also known as α or type I error, which is the likelihood/possibility of  mistakenly rejecting a lot 
that genuinely satisfies the necessary quality standards. This risk is linked to the acceptance quality level (AQL), 
which defines the highest defect rate generally acceptable to consumers. Meanwhile, the likelihood/possibility of 
mistakenly accepting a lot that does not meet the requirements is known as the consumer’s risk, also known as β or 
type II error. This has to do with the lot tolerance percentage defective (LTPD), which is the lowest quality level  
that customers usually reject (Pavlovic & Vistica, 2012). These two allowable risks define the expected performance 
of  the inspection process for incoming material (Montgomery, 2013).

Figure 1. Allowable Risk Reflected in Operating Characteristic Curve 
(Dimicic, Bahovec & Kurnoga, 2006)

In general, acceptance sampling plans are classified based on the type of  data they manage. The plan is classified as 
attribute-based if  the quality data cannot be quantified numerically.  In the meantime, variable-based sampling 
includes  data  that  can  be  measured.  The  choice  between  the  two  depends  largely  on  the  type  of  quality  
characteristics found in the product being examined. Thus, the first step in putting into practice a sampling strategy 
suited to a particular industrial issue is frequently choosing between attribute-based and variable-based sampling 
(Schilling & Dodge, 1969). For instance, Fernández (2019) developed an attribute-based sampling framework using 
defect count data over a period that was combined with a binomial distribution using realistic nonlinear integer 
programming. In a similar vein, Duarte and Saraiva (2008) proposed an optimization-based approach using Poisson 
distribution,  which they  discovered  to  be  more  successful  for  quick  screening  and large  lots.  Aslam (2019a) 
addressed ambiguity  and uncertainty  in  quality  inspection by introducing a  neutrosophic  statistical  method in 
attribute-based sampling. These studies demonstrate how adaptable attribute-based sampling.

Similarly, the development of  variable-based sampling plans has also been explored. For example, by Pearn and Wu 
(2006) and Wu and Pearn (2007), who introduced a more adaptive approach by linking acceptance sampling with  
process capability analysis. This combination provides a more adaptive and responsive quality control system by 
allowing  the  level  of  inspection  thoroughness  to  be  changed  in  response  to  the  actual  performance  of  the 
production process.  Based on this idea,  Balamurali  and Usha (2015),  and Kurniati  et  al.  (2015),  extended the 
concept  by  incorporating  resubmitted  lots  into  multiple  sampling  plans.  Several  other  researchers  have  also 
examined how different sampling plans can be applied flexibly to meet the specific needs and preferences of 
relevant  stakeholders  (Olorunniwo  &  Salas,  1982;  Soundararajan  &  Arumainayagam,  1990;  Eichwede  & 
Krumbholz, 2001; Carot, Jabaloyes & Carot, 2002; Balamurali, Park, Jun, Kim & Lee, 2005; Balamurali & Jun, 2007; 
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Cheng & Chen, 2007; Sloan, 2007; Aslam et al., 2014; Liu & Cui, 2015b; Afshari & Gildeh, 2017; Fallah & Seifi,  
2017; Duarte & Granjo, 2019).

Sampling Type

Criteria 

Attribute Variable Mixed

Single Sampling 
Plan

(Borget, Laville, Paci, Michiels, 
Mercier, Desmaris et al., 2006; 
Duarte & Saraiva, 2008; 
Vijayaraghavan, Rajagopal & 
Loganathan, 2008; White, 
Johnson & Creasey, 2009; Jozani 
& Mirkamali, 2010; Griego & 
Henry, 2011; Liu & Cui, 2013, 
2015a; Aslam, 2019a; 
Fernandez, 2019)

(Arizono, Kanagawa, Ohta, Watakabe & 
Tateishi, 1997; Carot et al., 2002; Pearn & 
Wu, 2006; Wu & Pearn, 2007; Chen, Li & 
Lam, 2007; Yen & Chang, 2009; Duarte & 
Saraiva, 2010, 2013; Negrin, Parmet & 
Schechtman, 2011; Wang, 2016; Aslam, 
2019b)

(Li, Pu & Xiang, 2011; 
Wang & Lo, 2016)

Double 
Sampling Plan

(Olorunniwo & Salas, 1982; 
Soundararajan & 
Arumainayagam, 1990; 
Eichwede & Krumbholz, 2001; 
Cheng & Chen, 2007; Sloan, 
2007; Liu & Cui, 2015b; Afshari 
& Gildeh, 2017; Duarte & 
Granjo, 2019)

(Carot et al., 2002; Balamurali et al., 2005; 
Krumbholz & Rohr, 2006; Balamurali & 
Jun, 2007; Chen et al., 2007; Aslam et al., 
2014; Balamurali & Usha, 2015; Kurniati 
et al., 2015; Seifi & Fallah, 2017; Fallah & 
Seifi, 2017; Yen, Aslam, Chang, Sherwani, 
Ahmad & Jun, 2019; Sriverdi & 
Balamurali, 2024)

(Schilling & Dodge, 
1969; Li et al., 2011; 
Aslam, Azam & Chi, 
2013; Steland, 2015; 
Wang, Tamirat, Lo & 
Aslam, 2017; Balamurali, 
Aslam, Ahmad & Jun, 
2020)

Table 1. Development of  an Acceptance Sampling Plan

As shown in Table 1, most of  the acceptance sampling studies focus on a single type of  quality criterion, either  
variable or attribute, based on the type of  product being inspected. While mixed sampling plans have already been 
presented  in  the  literature,  their  application  remains  quite  restricted,  particularly  in  industrial  contexts  where 
inspection procedures involve multiple heterogeneous quality characteristics.  Furthermore, the literature mainly 
focuses  on statistical  effectiveness  through producer’s  and consumer’s  risks  while  operational  aspects  such as 
inspection time efficiency and economic feasibility are rarely incorporated into the sampling plan design. 

However,  in  reality,  manufacturers—particularly  those  in  the  feed  industry—regularly  encounter  complicated 
inspection criteria which combine quantitative measurements and qualitative judgments. This will cause suboptimal 
quality decisions as less critical criteria will be ignored also or all may be treated uniformly to reduce effort of 
inspection. The related gap indicates a need for an integrated sampling framework that not only accommodates 
mixed quality criteria but also explicitly considers resource utilization and operational performance. This present 
study addresses this gap by proposing a dependent mixed sampling plan enhanced with dimensionality reduction 
and multi-objective optimization.

2.2. Dependent Mixed Sampling Plan Development

Initially, the mixed sampling plan was introduced by Bowker and Goode (1952) based on acceptance sampling by 
variables and by attributes. The application of  the variables-attributes scheme in a mixed sampling plan tends to 
provide the advantage of  minimizing sample size while still providing the same level of  protection in terms of  
quality. This approach also provides positive benefits from the psychology of  inspectors by still providing relief 
through lot inspection for the second sample or chance (Wang et al., 2017). It was not until later that Schilling  
and Dodge (1969) develop this theory by recognizing independent and dependent mixed sampling plans. An 
independent plan maintains stochastic independence between the probabilities of  the variables sampling scheme 
and the attributes sampling scheme. Meanwhile, a dependent plan considers that the probabilities of  the variables 
sampling scheme and the attributes sampling scheme are dependent on each other (Wang et al., 2017).

By simultaneously satisfying the following two non-linear equations based on probability of  acceptance Pa formula 
in  Equation  (1)  (Schilling  &  Dodge,  1969),  which  meet  the  requirements  of  two  points  on  the  operating 
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characteristic (OC) curve, the dependent mixed sampling plan (DMSP) parameters can be obtained, with reference 
to the operating procedure depicted in Figure 2.

Figure 2. Operating Procedure for Dependent Mixed Sampling Plan

(1)

Where:

Pa : Probability of  acceptance

x̄  : Sample mean

A : Acceptance limit on sample mean 

n1 : The first sample size number inspected

n2 : The second sample size number inspected

c1 : The maximum limit of  defect required at the first sample inspection

c2 : The maximum limit of  defect required at the second sample inspection

i : Number of  defects found in the first sample i = d1

j : Number of  defects found in the second sample j = d2
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Supposing that,

Z ∼ N(0,1) (2)

(3)

A = USL – kσ or LSL + kσ (4)

Equation (3) represents the value of  x̄  under standard normal distribution curve with parameters as described in 
Equation (2). Adding the description of  the A value according to Schilling and Dodge (1969), then Equation (1) 
can be re-ecosystemized through detailed descriptions as shown in Equations (5) to (10).

(5)

(6)

(7)

(8)

(9)

(10)

By following this approach where k is the critical distance / value as a reference for accepting the variable sampling 
plan,  we  can  formulate  the  first  stage  (optimistic  scenario)  of  the  DMSP flow as  shown in  Equation  (10). 
Therefore, the development then proceeds to capture the probability of  acceptance value for the second stage (a 
combination of  the moderate and pessimistic scenario). The mathematical modelling continues through the second 
stage of  the DMSP until finally the final expression presented in Equation (13).

(11)

(12)
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(13)

The function Pn1(i, x̄  > A) represents dependency during the first sampling stage n1, which has exactly i defects and 
the mean of  the variable quality characteristic exceeds the acceptance threshold defined by the Upper Specification 
Limit  (USL).  This  limit  is  determined  according  to  the  standard  operating  procedures  (SOP)  and  historical 
acceptance data from the company under research.  Equation (13) can then be used as the basis  for iterative 
calculations using the adjusted probability of  acceptance function obtained from the DMSP that adhere to the 
allowable levels of  Producer’s Risk (α) and Consumer’s Risk (β). Afterward, the DMSP parameters (n1; k; c1; n2; c2) 
can be obtained by satisfying Equation (14) and (15) simultaneously, with the sample size n1  and n2 should be as 
small as possible.

(14)

and

(15)

The solution steps for the two equations above can be taken through substitution operations with reference to the 
statistical error risk and threshold determination (AQL and LTPD) according to company standards, which also 
adjusts the probabilistic level of  i defects through Equation (16) and (17) to obtain an approximation of  the 
dependency of  the variable and attribute characteristic decisions in the calculation.

For i = 0,

(16)

For i > 0,

(17)

From a practical inspection perspective, Equations (14–17) define the minimum sample sizes and acceptance limits 
that guarantee the required equilibrium between producer’s and consumer’s risks. Parameters  n1  and c1 define the 
first-stage acceptance effort, allowing rapid acceptance of  high-quality lots. While n2 and c2 provide a validation step 
when the initial inspection is inconclusive. This structure allows inspectors to avoid unnecessary second sampling 
for clearly acceptable lots, thereby reducing inspection time without increasing decision risk.
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But, these equations contain a complex integral so that the calculation can be completed by the application of 
appropriate methods of  numerical integration to the integrand between the indicated limits (Schilling & Dodge, 
1969). Values of  Fn(ZU – z̄ ) may be obtained by interpolation from the tables of  F(u) of  Grubbs (1950) to arrive at 
the functional values.

3. Proposed Framework
The proposed framework from the problem identification to the optimal sampling plan selection is illustrated in 
Figure  3.  The  first  phase  (Subsection  3.1)  develops  feasible  DMSP  alternatives  through  integrated  criteria 
identification, dimensionality reduction using Kendall Tau correlation and PCA as detailed in Equations (18–25), 
and  the  generation  of  the  risk-based  sampling  plans  by  satisfying  the  formulations  in  Equations  (14–17)  to 
determine  the  optimum DMSP parameters  (n1;  k;  c1;  n2;  c2)  that  balance  statistical  soundness  and  practical 
feasibility. The second stage (Subsection 3.2) involves evaluation and selection of  the optimal alternative through 
normalization and goal programming based on the desired quality level, incorporating operational efficiency and 
economic considerations as formulated in Equations (26–40),  which are discussed in detail  in the subsequent 
section.

Figure 3. Framework for DMSP Development in Acceptance Sampling

3.1. Developing Alternative Parameter of  DMSP

The first part of  the proposed framework explains about the development of  alternative parameters based on 
DMSP approach. This stage consists of  several flows with details as follows:

3.1.1. Identification of  Inbound Material Quality Control Criteria

Selecting one production raw material type as the primary focus of  incoming material is advised as a first step in 
integrating the DMSP framework into the entrance control  or  acceptance sampling process.  To ascertain the 
primary causes of  the suboptimal quality of  livestock feed products produced, root cause analysis techniques like 
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fishbone diagrams, FMEA, or other 7 Quality Tools (Mahto & Kumar, 2008; Jamil, Khan, Hegab, Sarfraz, Sharma, 
Mia et al., 2019) can be used. The benefits will be more substantial if  the DMSP approach is applied to the primary 
raw materials that result in quality issues.

3.1.2. Determining the Crucial Quality Characteristics

The  description  of  the  specifications  required  in  controlling  inbound  materials  in  line  with  the  contractual 
agreement between the supplier and the company needs to be done. The quality criteria of  the associated raw 
materials are reflected in these specifications, which are subsequently mentioned in the SOP for the entrance 
control  operations that  are conducted.  In addition,  each criterion is  categorised according to the category of 
variables that have specific units of  measurement (countable) and attribute categories that do not (accountable) 
(Yen et al.,  2019).  To identify important quality attributes,  the principal  component analysis (PCA) method is 
utilised. This approach can be defined as popular multivariate statistical method for reducing data dimensions while 
preserving as  much information and significant  characters  as  possible  in  the associated data  is  this  approach 
(Jolliffe, 2002). Therefore, the ability to capture the variance of  the distribution of  defects in the entire product lot 
can be maintained even if  quality characteristics are reduced as a reference for inspection. Table 2 provides a visual 
representation of  the research’s data structure.

No. Cr1 Cr 2 Cr 3 Cr 4 ·  ·   · CRn

1 Cr11 Cr12 Cr13 Cr14 ·   ·   · Cr1n

2 Cr21 Cr22 Cr23 Cr24 ·   ·   · Cr2n

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

·
·
·

.

.

.

m Crm1 Crm2 Crm3 Crm4 ·   ·   · Crmn

Table 2. Research Data Structure

Where:

m : Total amount of  data collected

n : Classification of  quality characteristics per data

Crmn : The m-th data for the classification of  n-th type quality characteristics

To support the inspection criteria reduction step through PCA, it would be better if  a correlation analysis between 
quality  characteristics  is  conducted.  This  is  intended to  show whether  the  reduced/eliminated criteria  can be 
represented proportionally to the criteria that are still used. The Kendall Tau-type B approach was chosen because it 
considers the high possibility of  finding an initial data distribution that is not close to normal and prevents bias 
from finding data with the same value (ties) (Puth, Neuhauser & Ruxton, 2015). Data sourced from the context of  
agriculture or the livestock sector are often far from normal distribution due to the dependence on uncontrolled 
natural factors (Mowers, Bucciarelli, Cao, Samac & Xu, 2022). The mathematical equation used in the correlation 
test step with the Kendall Tau-type B approach can be seen in Equation (18) and for interpretation of  the results 
we can refer to Table 3.

(18)

Where:

τb : Kendall Tau correlation test coefficient value

P : The number of  data pairs that have the same order (concordant pairs)

Q : The number of  data pairs that have different orders (discordant pairs)
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T1 : The number of  data pairs with the same value (ties) in the 1st variable

T2 : The number of  data pairs with the same value (ties) in the 2nd variable

Strength Pearson Spearman Kendall

Negligible 0,00 0,00 0,00

Weak 0,10 0,10 0,06

Moderate 0,40 0,38 0,26

Strong 0,70 0,68 0,49

Very Strong 0,90 0,89 0,71

Table 3. Interpretation of  Correlation Coefficients from Pearson, Spearman, and Kendall Approaches

Meanwhile, Equations (19) through (25) provide an explanation of  the PCA application flow.

Step #1: Data Centering 

(19)

Where:

X : Original data matrix (m features x n samples)

X̄  : Mean of  each column (feature)

Step #2: Forming Covariance Matrix

(20)

Where:

C : Covariance matrix of  size m x m

n : Total sample data

Step #3: Performing Eigen Decomposition (Eigen Value & Eigen Vector)

(21)

(22)

Where:

C : Covariance matrix of  size m x m

vi : Eigenvector, determines the direction of  the i-th principal component

λi : Eigenvalue, explains variance in each principal component

I : Identity matrix of  size m × m

Step #4: Ordering Principal Components (PC)

(23)
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From the largest to the smallest value, the  λi sorting is carried out. Afterward, the  q components (PC) for the 
dimension reduction step are determined (e.g.  q = 2 or 3) in an iteration until a total variance captured between 
70% and 90% according to the “rule of  thumb” is reached (Jolliffe, 2002).

Step #5: Transforming to the New Space

(24)

Where:

Z : New data projection matrix in principal component space

Vq : Eigenvector matrix of  the 1st to qth principal components (m × q)

Step #6: Calculating the Variance Proportion (optional)

(25)

This formulation calculates the proportion of  variance explained by the i-th PC to the total variance.

3.1.3. Evaluation of  the Existing Sampling Plan

The main focus of  the evaluation is to determine the quality level applied in the SOP entrance control of  the  
related company, represented by AQL and LTPD. These two parameters will ultimately determine the sampling 
policy’s  acceptable  risk  from the  perspectives  of  the  producer  (α)  and  the  consumer  (β).  The  value  of  the 
proportion of  defects when the Pa value is at 95% (1-α) in relation to the general tolerance limit for α = 5% is  
generally used in the industrial world to determine the AQL. According to the general tolerance limit for β = 10%, 
the LTPD value is the percentage of  defects when the Pa value is at 10% (Serdar, Cihan, Yucel & dan-Serdar, 2020). 
This value was selected as the industry standard to strike a balance between sensitivity and practicality in the 
sampling process, according to the same reference source.

3.1.4. Development of  Proposed Sampling Plan

Following the successful collection of  all necessary parameters, the development of  the DMSP is carried out,  
taking into account the importance of  inspecting the characteristics of  the variable data first. The inspection  
step sequence also consists  of  2 (two) stages,  where it  can be started with variable criteria first  and then 
continued  with  attribute  criteria  or  vice  versa.  This  depends  on  the  main  objective  focus  of  the  party  
implementing the procedure (Schilling & Neubauer, 2017). Generally, when inspection considerations based 
on variable criteria are prioritized, it will focus on the level of  precision of  inspection results with product  
characteristics  that  have strict  specification standards.  On the other  hand,  when inspection considerations  
based on attribute criteria are prioritized, the inspection procedure is more focused on the efficiency of  the  
process series that can take place faster. The second step sequence (which prioritizes attribute criteria as initial  
screening,  followed  by  validation  using  variable  criteria)  is  actually  more  recommended  considering  the  
condition that potential defect in product lots tends to be high and can be identified more easily based on  
existing historical data (Arul & Edna, 2011). The alternative formulation will follow the non-linear equation as  
described in Equation (14) to (17). Following the common practice with the value variations respectively as  
follows (1% ≤ α ≤ 5%) and (1% ≤ β ≤ 10%), with a value increase range (stepping) of  1% so that a total of 
fifty DMSP alternatives can be obtained.

3.2. Choosing the Optimal Sampling Plan

The proposed framework flow is continued in the second part related to the selection of  the most relevant DMSP 
alternative  as  a  compromise  solution  between evaluation  in  terms  of  quality  (represented  by  allowable  risk), 
inspection time efficiency, and benefit-cost ratio for its economic prospects. The optimization approach is based on 
goal programming to meet a number of  objectives of  maximizing or minimizing evaluation parameters that are 
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multi-objective by measuring deviations from predetermined targets  simultaneously  (Ignizio,  1978).  This  stage 
consists of  two main flows with details as follows:

3.2.1. Parameter Evaluation per Alternative

Each alternative will be further evaluated based on the three aspects that have been explained so far, namely quality, 
time, and cost. The involvement of  time and cost parameters is one of  the innovations in this proposed framework, 
which is rarely done in the previous research. With the known values of  α and β of  each alternative, we need to  
calculate for other parameters with the efficiency process using Equation (26), while for BCR it is further described 
using Equation (27) to (39).

Process Efficiency 

(26)

Where:

To : Total decision making time under existing conditions

T’ : Total decision making time under improvement conditions

With this equation, all possible efficiency processes can be calculated (both for optimistic, moderate, and pessimistic 
scenarios), which will be explained further in the explanation of  the mathematical equation for measuring benefits 
and costs over a period of  one year of  operations.

Benefit #1 - Minimize Production Waiting Time by Receiving Raw Materials

(27)

Where:

%So : Percentage of  stock out from inventory

When there is a deficit between raw material shipments and intake (based on Monte Carlo simulation)

%C1 : Percentage of  occurrence of  optimistic case in DMSP

When there is a reduction in inspection time at most significant possibilities (based on Monte Carlo simulation)

%C2 : Percentage of  occurrence of  moderate case in DMSP

When there is a reduction in inspection time at moderate possibilities (based on Monte Carlo simulation)

T0 : Total inspection time on existing condition

T1 : Total inspection time on improvement condition at optimistic scenario

T2 : Total inspection time on improvement condition at moderate scenario

P/M : Production capacity per minute (in kg)

Wp : Livestock feed product weight per sack (in kg)

Rpp : Livestock feed product price per sack (in Rupiah) 

X̄  : Average corn kernel shipment per day (in truck unit)

β1
' : Consumer’s risk value at condition C1

β2
' : Consumer’s risk value at condition C2

This equation represents time efficiency under optimistic and moderate scenarios, expressed in monetary terms 
based on the revenue generated from production output.
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Benefit #2 - Minimize Labor Salary Allocation from RM Receiving Procedure 

RM Raw Material

(28)

Where:

N̅  : Average total QC operators per day (in people)

%C1 : Percentage of  occurrence of  optimistic case in DMSP

When there is a reduction in inspection time at most significant possibilities (based on Monte Carlo simulation)

%C2 : Percentage of  occurrence of  moderate case in DMSP

When there is a reduction in inspection time at moderate possibilities (based on Monte Carlo simulation)

T0 : Total inspection time on existing condition

T1 : Total inspection time on improvement condition at optimistic scenario

T2 : Total inspection time on improvement condition at moderate scenario

X̄  : Average corn kernel shipment per day (in truck unit)

Rpg : QC operator salary allocation per minute (in Rupiah)

This  equation  represents  labor  cost  efficiency  calculated  from working  time  under  optimistic  and  moderate 
scenarios, expressed in monetary terms based on the revenue generated from production output.

Benefit #3 - Minimize Downtime Due to Raw Material Specification Problems

(29)

Where:

%Ci : Percentage of  occurrence of  each possible case in DMSP

Optimistic Case (C1); Moderate Case (C2); Pessimistic Case (C3) based on Monte Carlo simulations

βi
' : Consumer’s risk value of  each possible case in DMSP

Optimistic Case (C1); Moderate Case (C2); Pessimistic Case (C3) based on Monte Carlo simulations

β0 : Consumer’s risk value at existing condition 

TD : Average of  downtime based on inbound material factor (in minute per day)

P/M : Production capacity per minute (in kg)

Wp : Livestock feed product weight per sack (in kg)

Rpp : Livestock feed product price per sack (in Rupiah)

This equation represents the calculated availability optimization of  production downtime under optimistic and 
moderate scenarios, expressed in monetary terms based on the revenue generated from production output.

Benefit #4 - Minimize Lost Opportunity from Rejected Good Quality RM

RM Raw Material 

(30)
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Where:

%Ci : Percentage of  occurrence of  each possible case in DMSP

Optimistic Case (C1); Moderate Case (C2); Pessimistic Case (C3) based on Monte Carlo simulations

%So : Percentage of  stock out from inventory

α0 : Producer’s risk value in existing conditions

αi
' : Producer’s risk value of  each possible case in DMSP

Optimistic Case (C1); Moderate Case (C2); Pessimistic Case (C3) based on Monte Carlo simulations

Wm : Average weight of  corn kernel shipment per truck (in kg)

X̄  : Average corn kernel shipment per day (in truck unit)

Wp : Livestock feed product weight per sack (in kg)

Rpp : Livestock feed product price per sack (in Rupiah)

This equation represents the level of  risk of  error in the decision to reject a lot of  raw material  shipments,  
expressed in monetary terms based on the revenue generated from production output.

Benefit #5 - Minimize Fumigation Costs for Possible Flea Outbreaks

(31)

Where:

%Ci : Percentage of  occurrence of  each possible case in DMSP

Optimistic Case (C1); Moderate Case (C2); Pessimistic Case (C3) based on Monte Carlo simulations

β0 : Consumer’s risk value at existing condition

βi
' : Consumer’s risk value of  each possible case in DMSP

Optimistic Case (C1); Moderate Case (C2); Pessimistic Case (C3) based on Monte Carlo simulations

Wm : Average weight of  corn kernel shipment per truck (in kg)

RpF : Fumigation procedure cost per kg (in Rupiah)

X̄  : Average corn kernel shipment per day (in truck unit)

This equation represents the cost efficiency of  the frequency of  fumigation activities for flea outbreaks under 
optimistic and moderate scenarios, expressed in monetary terms based on the revenue generated from production 
output.

Benefit #6 - Minimize Silo Draining Costs for Possible Fungal Outbreaks

(32)

Where:

%Ci : Percentage of  occurrence of  each possible case in DMSP

Optimistic Case (C1); Moderate Case (C2); Pessimistic Case (C3) based on Monte Carlo simulations

βi
' : Consumer’s risk value of  each possible case in DMSP

Optimistic Case (C1); Moderate Case (C2); Pessimistic Case (C3) based on Monte Carlo simulations

β0 : Consumer’s risk value at existing condition

S : Average silo draining agenda per year
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RpF : Fumigation procedure cost per agenda (in Rupiah)

This equation represents the cost efficiency of  the frequency of  silo draining activities for fungal outbreaks under 
optimistic and moderate scenarios, expressed in monetary terms based on the revenue generated from production 
output.

Benefit #7 - Minimize Lost Due to Extra Processing Procedures

(33)

Where:

%Ci : Percentage of  occurrence of  each possible case in DMSP

Optimistic Case (C1); Moderate Case (C2); Pessimistic Case (C3) based on Monte Carlo simulations

β0 : Consumer’s risk value at existing condition

βi
' : Consumer’s risk value of  each possible case in DMSP

Optimistic Case (C1); Moderate Case (C2); Pessimistic Case (C3) based on Monte Carlo simulations

k : Beta conversion factor to %defect

This refers to the %defects in the final product which is not absolutely equal to the Beta.

P/Y : Production capacity annually (in kg)

Wp : Livestock feed product weight per sack (in kg)

Rpp : Livestock feed product price per sack (in Rupiah)

RpE : Extra processing procedure cost per kg (in Rupiah)

This equation represents the reduction in the frequency of  extra processing of  production rejects under optimistic 
and moderate scenarios, expressed in monetary terms based on the revenue generated from production output.

Benefit #8 - Minimizing Maintenance Costs from Raw Material Constraints

(34)

Where:

%Ci : Percentage of  occurrence of  each possible case in DMSP

Optimistic Case (C1); Moderate Case (C2); Pessimistic Case (C3) based on Monte Carlo simulations

βi
' : Consumer’s risk value of  each possible case in DMSP

Optimistic Case (C1); Moderate Case (C2); Pessimistic Case (C3) based on Monte Carlo simulations

β0 : Consumer’s risk value at existing condition

RpM : Maintenance cost per agenda (in Rupiah)

This equation represents the cost efficiency of  the frequency of  maintenance activities for machine breakdowns 
under optimistic and moderate scenarios,  expressed in monetary terms based on the revenue generated from 
production output.

Calculation of  Total Benefit 

(35)
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Where:

Bi :Total nominal money to be obtained from the i-th benefit (in Rupiah)

Next, the calculation steps are carried out for all costs that may arise from the sampling plan update, which are 
divided into normal cost and probabilistic cost. For cost components that are not affected by the probability of  risk 
from the application of  sampling (normal cost) related to all cost allocations to make changes to tools in dividing  
areas to adjust the total samples to be inspected and also related to the implementation of  training programs with 
an estimated allocation of  2 x 180 minutes for socialization of  the entrance control procedure update based on the 
results of  this research. Meanwhile, for cost components that are affected by the probability of  risk from the 
consumer’s risk side (probabilistic cost) related to the opportunity cost lost from production output due to the 
possibility of  additional inspection time that hinders the raw material intake procedure, the value of  which will vary 
according to the alternative sampling plan. This is because the total implementation of  these activities greatly 
affects the level of  quality of  raw materials received from a series of  raw material inspection procedures which 
raises the risk of  the possibility of  type-II errors. The details can be seen as follows:

Cost #1 - Implementation of  Training Program of  Entrance Control Procedure

(36)

Where:

N̅ p : Total target participants of  training program (in people)

Rpk : Consumption price per participant (in Rupiah)

RpL : Total electricity consumption (in Rupiah)

RpM : Speaker service fees (in Rupiah)

This equation represents the total cost that must be incurred as an initial investment in the form of  training 
activities to improve workers’ understanding that is directly related to the entrance quality control process at the 
relevant company.

Cost #2 - Sample Area Division Tools Adjustment Cost

(37)

Where:

Box : Sample area division box price (in Rupiah)

A' : Total area of  iron plate per alternative (in cm2)

RpA : Iron Plate Price per cm2 (in Rupiah)

Ser : Welding tools service costs (in Rupiah)

This equation represents the total cost that must be incurred as an initial investment in the form of  division tools 
adjustment activities (through the metal welding process) required to facilitate the proposed sampling plan as a 
solution to the related problem situation.

Cost #3 - Costs (Lost) Incurred Due to Possible Additional Inspection Time

(38)
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Where:

%C3 : Percentage of  occurrence of  pessimistic case in DMSP

When there is a reduction in inspection time at pessimistic possibilities (based on Monte Carlo simulation)

T' : Total inspection time on improvement condition at pessimistic scenario

T0 : Total inspection time on existing condition

P/M : Production capacity per minute (in kg)

X̄  : Average corn kernel shipment per day (in truck unit)

Wp : Livestock feed product weight per sack (in kg)

Rpp : Livestock feed product price per sack (in Rupiah)

β3
' : Consumer’s risk value at condition C3

This  equation represents  the  total  cost  that  must  be  sacrificed  by  the  company  when there  is  an  additional 
inspection time that may occur with a certain level of  probability regarding the proposed sampling plan as a 
solution to the related problem situation.

Calculation of  Total Cost

(39)

Where:

Ci : The additional nominal amount of  money that will be required for the i-th cost (in Rupiah)

Once the total benefit and total cost per alternative are known, the next step is to calculate the Benefit Cost Ratio 
(BCR) using the adjusted equation as in Equation (39).

(40)

Where:

r : Latest bank interest rates

n : Total period (annually)

This equation represents the comparison between the level of  benefits obtained and the investment costs incurred, 
where positive values are preferred and higher values indicate better performance.

3.2.2. Alternative Solution Optimization of  DMSP

Referring to the objective of  research which is to optimize the entrance control procedure focused on the sampling 
plan, a goal programming approach is applied to select the most optimal solution from a number of  alternative 
solutions obtained in the previous stage. The application of  goal programming has been widely used in continuous 
improvement steps based on the lean approach (Karakutuk & Ornek, 2022). Regarding the mathematical function 
used in relation to the selection of  the optimal solution alternative that minimizes positive deviations (d i

+) and 
negative deviations (di

–) from the targets that have been validated with the observed company, it can be seen in 
Equation (41) to (45).

(41)
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Subject to:

(42)

(43)

(44)

 = 0 or 1 (45)

The notation c’ij represents the normalized value of  the j-th criterion on the 

i-th alternative, which can be calculated through Equation (46) for the function that focuses on minimizing the 
evaluation criteria (lower the better) and Equation (47) for the function that focuses on maximizing the evaluation 
criteria (higher the better).

(46)

and

(47)

Where:

cij : Original value of  the j-th criterion in the i-th alternative

c'
ij : Normalized value of  the j-th criterion on the i-th alternative

min (Xj) : The minimum value for all data in the j-th criteria column

max (Xj) : The maximum value for all data in the j-th criteria column

xi : Decision variables for selecting the i-th alternative

Tj : Target on each j-th criterion

dij 
+: The positive deviation value of  the i-th alternative against the target of  each j-th criterion

dij 
–: The negative deviation value of  the i-th alternative against the target of  each j-th criterion

4. Case Study
One of  the livestock feed factories in the Sidoarjo region of  East Java, Indonesia —referred to as PT XYZ— has  
tested this suggested framework. Inspections are carried out by this feed mill, particularly on shipments of  corn 
kernels, which account for 54–60% of  the total raw materials. The quality criteria of  the livestock feed products 
that are produced are used to determine the specifications of  the corn kernel itself. These criteria are closely related 
to the context of  feed nutrition,  physical  characteristics,  and the degree of  safety of  the feed’s consumption 
(particularly for cultivated livestock). The issue that results from the physical properties of  pellet products that 
prevent them from being compacted because of  their low water content is a straightforward illustration. Following 
an investigation by the company, it was found that the excessively dry maize kernel specifications were the source of 
the issue. Extreme weather conditions (such as excessive heat) may contribute to the shrinkage of  maize kernel 
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content if  they are not counterbalanced by the maize kernels’ specifications, which already call for a relatively low 
water content so that they will become drier after storage for a while.

Figure 4 provides more details on how the qualities of  maize kernels relate to the quality standards for livestock 
feed products. For the entrance control procedure at PT XYZ, it is known that the entire process is carried out 
without any activity that leads to damage to the corn kernel object itself. This indirectly leads to the fact that the  
entire series of  inspection procedures are non-destructive tests.

Figure 4. Elaboration of  Quality Characteristics of  Livestock Feed Products

As a result, the quality characteristics can be categorised to both countable and attribute criteria from the maize 
seed acceptance specification reference at PT XYZ, with specifics displayed in Table 4.

Variable Criteria Attribute Criteria

1. Weight (kg ~ ton) 1. Moldy Seed

% from total

2. Moisture (%) 2. Dead Seed

3. Aflatoxin (ppb) 3. Hollow Seed

4. Broken Seed

5. White Seed

6. Foreign Object (%)

7. Flea Plague

8. Odor

Table 4. Characteristics of  Corn Kernel Acceptance Inspection Quality Data

Assuming that all quality criteria are attribute-based, PT XYZ has only used one sampling strategy thus far. In 
Figure 4, where the acceptance number  c is one area and the number of  samples  n is four areas, the  Pa

ssp  (p,n,c) 
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model is applied using distinct tools. Stated differently, the lot is automatically rejected when the total reject area 
equals  two / half  of  the sample area division.  The quality level used by PT XYZ when accepting incoming  
materials is represented by AQL = 0.9760 and LTPD = 0.6795, which are in accordance with standard industrial  
practice (α = 5% and β = 10%). As a result, several sampling plan parameters can be summarised under the current 
circumstances at PT XYZ, as shown in Table 5.

Figure 4. Sampling Area used by PT XYZ

α β n c AQL LTPD

5% 10% 4 1 0.9760 0.6795

Table 5. Attributive Parameters of  Existing Sampling Plan

In addition to the previously provided data, each calculation step will include supporting information to provide 
better understanding in the analysis.

4.1. Identification of  Crucial Quality Characteristics

Table 6 illustrates how all of  PT XYZ’s entrance control data requirements can be summed up in a month of  
operational work by using the previously suggested framework.

No. CR1 CR2 CR3 CR4 CR5 CR6 CR7 CR8 CR9 CR10 CR11

1 43.1 14.1 52 3.3 0.4 1.2 2.9 3.2 3.1 Low Fresh

2 38.1 13.5 56 3.4 0.7 1.1 1.8 3.1 2.7 Low Fresh

3 38.7 12.8 62 3.7 0.7 0.7 1.7 3.0 2.8 Low Fresh

4 29.4 13.8 56 3.6 0.8 0.7 1.8 4.0 3.5 Low Fresh

5 21.8 13.2 40 2.9 1.4 1.1 3.9 4.8 2.5 Low Fresh
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527 29.9 13.5 60 3.7 0.8 1.1 1.8 3.3 2.4 Low Fresh

528 49.6 14.4 63 3.9 0.9 1.0 1.8 2.0 3.4 Low Fresh

529 27.7 13.4 53 3.7 1.4 1.1 2.4 3.9 2.2 Low Fresh

Table 6. Overview of  Historical Data on Corn Kernel Receipts at PT XYZ

Where:

Cr1 : Shipment weight per truck (in ton)

Cr2 : Moisture level (in %)

Cr3 : Aflatoxin level (in ppb)

Cr4 : Moldy seed level (in % from total)

Cr5 : Dead seed level (in % from total)

Cr6 : Hollow seed level (in % from total)
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Cr7 : Broken seed level (in % from total)

Cr8 : White seed level (in % from total)

Cr9 : Foreign object level (in % from total)

Cr10 : Flea plague level (High; Moderate; Low)

Cr11 : Odor (Fresh; Not fresh)

The Kendall Tau – type B method was used to test all of  the data for correlation in order to prevent bias from data 
ties using Equation (18).  Figure 5 displays one of  the results of  each correlation coefficient  τb as a heatmap, 
demonstrating that most of  the data have a high degree of  correlation. In other hand, the other highly correlated 
criteria will follow the decision proportionately when one of  the criteria passes the inspection, and vice versa.

Figure 5. Correlation Heatmap based on Kendall Tau – type B

These findings provide more evidence in favour of  using PCA to reduce the dimensions of  inspection criteria for 
acceptance sampling. Equation (19) to (25) is followed in the PCA calculation steps, which yield the results shown 
in Table 7. According to the summary of  the level of  influence represented by the eigenvalue parameter of  each 
quality criterion, the four Principal Components (PC) are factors that can explain data variance with a dominant 
majority proportion level (81.61%). This is more optimal in meeting the rule of  thumb in determining the optimal  
total PC when the percentage value of  the variance that is successfully captured is in the range of  70% to 90% 
(Jolliffe, 2002).

It is well known that the first PC parameter (PC1) has the greatest variance coverage when compared to the 
subsequent PCs (PC2, PC3, etc.), and that its value decreases as the number of  PCs taken into consideration in the 
PCA analysis step increases, as shown in Table 6. The level of  incremental deviation from the variance value to the 
increase in the total PC as a reference for identifying the determination of  crucial quality characteristics can be seen 
in Figure 6. 
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Eigenvalue Principal Component
RANK

PC - 1 PC - 2 PC - 3 PC - 4

(%Variance) 32.54% 25.27% 12.88% 10.92%

Variable

Weight (kg ~ ton) 0.41922023 0.28869525 0.13012427 0.00370937 3

Moisture (%) 0.38709888 0.40819696 0.29957439 0.16180093 1

Aflatoxin (ppb) 0.08112016 0.33027911 0.50583994 0.47306709 2

Attribute

Moldy seed 0.50198600 0.08704742 0.31793933 0.14533973 1

Dead seed 0.07945666 0.35809531 0.50150991 0.11503578 6

Hollow seed 0.13532164 0.06192332 0.35133817 0.83708458 5

Broken seed 0.06185561 0.56585009 0.28911105 0.05465138 4

White seed 0.34712814 0.41390769 0.10370621 0.09785697 2

Foreign object 0.51661307 0.09897531 0.25898363 0.04882637 3

Table 7. Recapitulation of  Loading Values and Variance Proportions

Figure 6. Total Explained Variance per Principal Component

Then, a number of  crucial criteria can be determined to represent each characteristic of  corn seed quality, namely 
as follows:

Variable Criteria
• Moisture level (%)

Attribute Criteria
• Moldy seed level
• White seed level
• Foreign object level

A combination of  absolute parameter loading values (coefficients in each eigenvector) and the overall percentage of 
variance in each PC is used to make the selection; the higher the value, the better the quality criteria relate to  
explaining variance or specific significant information about the original data. The outcomes are also consistent 
with several pieces of  data that operators at PT XYZ, the observation company, submitted as a kind of  field 
validation.
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4.2. Optimized Dependent Mixed Sampling Plans

The  implementation  stage  of  the  proposed  framework  continues  with  the  development  of  DMSP through 
calculation steps to fulfill the two non-linear mathematical problems in Equation (14) to (17). Then, also following 
the common practice with the value variations respectively as follows (1% ≤ α ≤ 5%) and (1% ≤ β ≤ 10%), with a 
value increase range (stepping) of  1% so that a total of  fifty DMSP alternatives can be obtained, as shown in 
Table 8.

A total of  fifty alternative DMSP were developed by varying producer’s and consumer’s risk levels across the 
configuration resulting in different sample sizes, acceptance limits, inspection time and economic performance. To 
facilitate interpretation, only those alternatives closest to the optimal solution are discussed, highlighting the main 
trade-offs between the efficiency of  inspection, the relative structure of  sampling and economic outcomes, while 
the complete set of  results is provided in Table 8 for reference. In particular, one of  the proposed alternatives show 
that sampling area redistribution (by doubling the number of  sampling points with constant the total sample weight 
~ ±200 g) allows second-stage inspection without any further resampling, which increases operational efficiency.

α β n1 k c1 n2 c2

0.01

0.01 8 0.561 2 2 3

0.02 3 0.805 2 8 3

0.03 2 0.930 2 9 3

0.04 2 1.100 1 9 4

0.05 4 0.410 2 4 2

0.06 4 0.465 2 3 2

0.07 2 1.033 1 8 4

0.08 2 0.869 1 8 4

0.09 2 0.756 1 8 4

0.10 2 0.527 1 9 4

0.02

0.01 5 0.609 2 5 2

0.02 6 0.492 1 2 3

0.03 5 0.378 0 4 4

0.04 3 1.170 2 4 2

0.05 2 0.798 2 6 2

0.06 4 0.310 1 7 1

0.07 2 0.770 1 5 2

0.08 3 0.405 1 8 4

0.09 3 0.371 1 6 3

0.10 3 0.380 1 7 4

0.03

0.01 8 0.964 2 2 3

0.02 3 0.930 1 7 3

0.03 4 0.477 1 8 2

0.04 3 0.624 1 5 2

0.05 2 0.711 2 8 2

0.06 3 0.432 1 9 2

0.07 2 0.580 2 9 2

0.08 3 0.451 1 2 1
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α β n1 k c1 n2 c2

0.09 2 0.484 1 9 2

0.10 3 0.275 1 9 1

0.04

0.01 5 0.600 1 3 1

0.02 2 1.030 2 8 2

0.03 4 0.476 1 9 1

0.04 4 0.425 0 2 2

0.05 3 0.499 1 4 1

0.06 3 0.431 1 6 1

0.07 3 0.387 1 8 1

0.08 4 0.780 1 4 4

0.09 2 0.620 1 3 1

0.10 2 0.474 1 4 1

0.05

0.01 4 0.707 1 8 2

0.02 2 0.992 1 9 2

0.03 4 0.994 1 3 2

0.04 5 0.780 1 2 3

0.05 3 0.480 1 8 1

0.06 2 0.897 1 3 1

0.07 2 0.640 1 4 1

0.08 4 1.800 1 4 4

0.09 3 0.340 0 2 2

0.10 4 1.900 1 2 3

Table 8. Possible DMSP Alternatives for Improvement Conditions

4.3. Advantages of  Proposed Sampling Scheme

The evaluation  stage  determines  the  degree  of  benefits  that  each  alternative  offers  to  the  business  process, 
particularly with regard to raw material quality control. In addition to the potential financial benefits from the total 
benefit to the cost within a year of  operation ahead, including the effect of  time value of  money from the current  
bank interest rate, the evaluation covers the area of  measuring performance efficiency based on expected time from 
decision making for each scenario (optimistic, moderate, or pessimistic). While conducting direct experiments on a 
total of  50 related alternatives, time and resource constraints led to the application of  hypothetical data based on 
interviews and simulated using Monte Carlo.

For process efficiency calculation, Equation (26) is referred to, while BCR utilizes Equation (40) with details of 
each benefit and cost obtained from Equation (27) to (39). All evaluation results in terms of  quality, time, and cost 
are then transformed based on min-max normalization referring to the target focus on each criterion. The outcome 
of  normalization using Equation (46) and (47) can be seen in Table 9. In order to ensure that the value is pertinent 
to the company’s goal, the target data itself  is established based on the outcomes of  the discussions with PT XYZ. 
Only then, based on optimisation steps using the Goal Programming approach as outlined in Equations (41) to 
(45), identification of  the most optimal alternative solution that strikes a balance between the three earlier-stated 
criteria and is pertinent to be implemented can be obtained.
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i-th
Alternative

Parameter

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

1 -3.00 1.00 0.99 0.99 1.00 1.00 0.32 0.00 0.00 0.27

2 -5.25 1.00 0.99 0.89 1.00 0.89 0.27 0.83 0.83 0.32

3 -2.50 0.56 0.49 0.77 1.00 0.78 0.27 0.85 0.99 0.62

4 -1.75 0.78 0.97 0.66 1.00 0.67 0.27 0.85 0.99 0.71

5 -3.75 0.56 0.98 0.55 1.00 0.56 0.61 0.67 0.67 0.40

6 -0.50 0.44 1.00 0.45 1.00 0.44 0.73 0.67 0.67 0.85

7 -2.75 0.33 0.98 0.33 1.00 0.33 0.40 1.00 1.00 0.41

8 -0.50 0.44 0.98 0.22 1.00 0.22 0.40 1.00 1.00 0.25

9 -2.00 0.11 0.99 0.11 1.00 0.11 0.40 1.00 1.00 0.33

10 0.25 0.00 0.98 0.00 1.00 0.00 0.27 0.85 0.99 0.24

... ... ... ... ... ... ... ... ... ... ...

46 -3.00 0.44 -0.01 0.44 0.00 0.44 1.00 1.00 1.00 0.11

47 -2.75 0.33 0.01 0.34 0.00 0.33 0.88 1.00 1.00 0.11

48 -8.75 0.33 0.00 0.21 0.00 0.22 0.61 0.67 0.67 0.06

49 -1.75 0.11 0.08 0.15 0.00 0.11 0.99 0.83 0.83 0.05

50 -7.25 0.11 0.00 0.00 0.00 0.00 0.85 0.67 0.67 0.00

Goal 1.00 1.00 0.99 0.99 1.00 1.00 0.79 0.55 0.98 1.00

Table 9. Parameter Data Normalization Results in Optimization Steps

Where:

X1 : Producer’s risk (α – alpha) in the optimistic case

X2 : Consumer’s risk (β – beta) in the optimistic case

X3 : Producer’s risk (α – alpha) in the moderate case

X4 : Consumer’s risk (β – beta) in the moderate case

X5 : Producer’s risk (α – alpha) in the pessimistic case

X6 : Consumer’s risk (β – beta) in the pessimistic case

X7 : Additional percentage for inspection time from the overall DMSP flow

X8 : Percentage of  process time efficiency from optimistic case

X9 : Percentage of  process time efficiency from moderate case

X10 : Benefit Cost Ratio (BCR)

Thus, we can obtain the optimization equation based on Goal Programming as follows:

(48)

subject to:

(49)

(50)
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(51)

(52)

(53)

(54)

(55)

(56)

(57)

(58)

(59)

(60)

(61)

According to the results of  the optimisation based on looping calculation, the 14th alternative sampling plan using 
the  PDMSP (p;  3;  1.17; 2;  4;  2) model is  the best option when taking into account all  of  the parameters.  This 
alternative  offers  the  best  trade-off  between  acceptable  levels  of  risk,  efficiency  of  inspection  time,  cost-
effectiveness. In particular,  it  keeps the producers’ and consumers’  risks relatively low, allows for a significant 
decrease  in  inspection time,  and has  the  highest  benefit–cost  ratio  of  all  feasible  options.  This  plan reduces 
inspection delays while not increasing the probability of  accepting nonconforming lots, making it a practically 
usable plan.

(a) (b)

Figure 7. Comparison of  OC Curve (a) and Bar-Chart (b) between Existing and Improved Condition
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As illustrated in Figure 7(a),  the suggestion of  a new sampling strategy in the improvement condition is also  
thought to be more optimal in terms of  Pa, which has a higher value for a low defect proportion level and 
progressively drops for a higher defect proportion level in comparison to the current condition. Regarding the 
producer’s risk at the AQL limit (shown by a green dotted line) and the consumer’s risk at the LTPD limit (shown 
by an orange dotted line), this is thought to be more optimal. Thus, it can be concluded that PT XYZ, particularly 
the Quality Control Department,  will  benefit  more greatly from the research’s suggestion of  a new sampling 
strategy.  Meanwhile,  the  bar  chart  in  Figure  7(b)  highlights  the  total  inspection  time  saved  through  the 
implementation of  the proposed DMSP model. This time savings can be accumulated across raw material rotation 
cycles, helping to reduce the risk of  idle time or stockouts and to minimize potential quality impacts on the final 
product within the company’s production process.

5. Discussion
As the decision-maker in the related case study, PT XYZ (particularly the QC department) can determine the 
necessary sampling plan for lot sentencing from Table 8. Similarly, several other feed producers might experience 
comparable  issues  with  their  acceptance  sampling  protocols.  The  selected  configurations  allow companies  to 
customize  acceptance  sampling  strategies  for  mutually  agreed  quality  levels  and  acceptable  risk,  a  common 
challenge faced by other manufacturers during incoming material inspection. Instead of  providing a standardized 
solution, the proposed framework offers support for flexible and context-based decision-making with alignment of 
operational priorities and supplier contracts.

Figure 8. Comparison between Sampling Plan Types

The results also highlight that a smaller sample size will be needed the higher the permissible risk value on both the 
producer and consumer sides. In other words, more sample data would be needed to support a more accurate 
decision if  we wanted to lower the possibility of  incorrectly classifying a good lot as bad or a bad lot as good 
(Kurniati  et  al.,  2015).  However,  the influence of  the dependency imposed between the first  and subsequent 
sampling  stages  (n1 and  n2)  is  the main reason why the variation in  sample  size  n in  this  instance  does  not 
consistently match the standard theory. This finding should not be interpreted as proof  that the quality of  the 
accepted lot is diminished by the use of  DMSP. The acceptance probability (Pa) under the DMSP approach is 
generally superior to other sampling plans, as illustrated in Figure 8. especially when Pa stays relatively high and the 
defects proportion p is low. Nevertheless, Pa will decrease in raw material acceptance as p rises (Montgomery, 2013). 
Additionally,  the semi-curtailed inspection principle presents a promising opportunity to increase lot  decision-
making time efficiency (Schilling & Dodge, 1969).

The standard values of  α = 2% and β = 4% were used to visualise the OC curve in Figure 8, which represents 
the best possible solution based on optimisation that was already completed in the earlier steps instead of  using 
an  industry-wide  practice  that  are  considered  to  balance  between  sensitivity  and  practicality  in  sampling 
procedures (Serdar et al., 2020). This demonstrates that every decision must have trade-offs and that, even when 
a choice is  not ideal  from every evaluation point of  view,  this  is  what must be sacrificed in order to yield 
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pertinent benefits. For instance, if  a minimum sampling plan risk level is desired, the inspection process will take 
longer because a larger total sample size is needed. This consequence is also tied to the financial side and will  
provide  different  optimum solutions  because  each  company  has  its  own unique  business  processes  and  is  
certainly  required  to  focus  on  profit  in  the  sustainability  of  future  development. Accordingly,  the  selected 
alternative PDMSP (p; 3; 1.17; 2; 4; 2) can be suggested as a baseline for implementing a dependent mixed sampling 
plan at PT XYZ.

Despite  these  contributions,  several  limitations  should  be  acknowledged.  First,  the  framework  is  validated 
through a single case study in the feed manufacturing industry, which can limit the generalizability of  the results  
in any other industry or raw material categories with different characteristics. Second, key operational parameters 
related to inspection time and cost were estimated based on simulation results and expert judgment rather than 
long-term empirical measurements, which may introduce estimation bias. Lastly, it was assumed that the external 
factors—market  price  fluctuations,  as  well  as  supplier  behaviour—would  remain  constant  throughout  the 
evaluation period while the fluctuations in these factors might impact economic performance and stability of  the  
chosen sampling plan in practice.

6. Conclusion
In summary, this research proposes a dependent mixed sampling plan (DMSP) framework, for controlling the 
quality of  incoming materials in livestock feed production by utilizing PCA-based criteria that incorporate variable 
and attribute data. The framework improves resource utilization, enables semi-constrained inspection potential, and 
allows practitioners to flexibly determine acceptable sampling risk levels  (α and  β)  based on particular quality 
agreements with suppliers. The short-term challenges of  the DMSP can all be addressed by feed manufacturers 
through restructuring the inspection process, minimizing the raw material intake lead time, and ensuring production 
continuity without major investments in infrastructure.  While  the previous studies have focused more on the 
statistical risk controlling aspect of  acceptance sampling design, this research extends the acceptance sampling 
design by integrating inspection efficiency and economic feasibility into the acceptance sampling problem, making 
the developed decision-supporting tool more relevant for practice. 

Nevertheless, the framework currently requires sequential evaluation stages to integrate time efficiency and benefit-
cost considerations in a mathematical equation for generating different alternative sampling plans. Further research 
may address this limitation by developing goal programming models that directly select the best alternative while 
including  additional  evaluation  factors,  such  as  supplier  performance,  the  degree  of  inspection  rigor,  and 
sustainability considerations, as well as extending the framework to other critical raw materials in livestock feed 
production.
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