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Abstract:

Purpose: Medical  resources  scheduling  affects  the  medical  institution’s  operation  cost,

customer satisfaction and medical service quality.  Therefore, a lean arrangement of  medical

resources order and shipment is quite necessary and important. In this paper, we propose two

optimal models for medical resources order and shipment in community health service centers

(CHSCs),  with  a  dual  emphasis  on  minimizing the  total  operation cost  and improving the

operation level in practice.

Design/methodology/approach: The first planning model is a deterministic planning model

(DM). Systematically,  it considers  constraints  including the  lead  time  of  the  suppliers,  the

storage  capacity  of  the  medical  institutions,  and  the  integrated  shipment  planning  in  the

dimensions  of  time  and space.  The  problem is  a  multi-commodities  flow problem and is

formulated as a mixed 0-1 integer programming model. Considering the stochastic demand, the

second model is constructed as a stochastic programming model (SM). A solution procedure is

developed to solve the two models and a simulation-based evaluation method is presented to

compare the performances of  the proposed models. 

Findings: The main contributions of  this paper include the following two aspects: (1) most

research on medical resources allocation studies a static problem taking no consideration of  the

time evolution and the time-varying demand. In this paper, time-space network technique is

adopted to depict the logistics situation in CHSCs from both time and space dimensions. (2)
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the logistics plans in response to the deterministic demand and the time-varying demand are

constructed as a 0-1 mixed integer programming model and a stochastic integer programming

model, respectively. The optimal solutions can not only minimize the total operation cost, but

also improve the order and shipment operation in practice. 

Originality/value: Generally, medical resources in CHSCs are purchased by telephone or e-

mail. The important parameters in decision making, i.e., order/shipment frequency and order

quantity, are manually determined by the decision maker based upon his/her experience. The

planned schedules may not be efficient or feasible to satisfy all demands since a large portion of

customer requests are uncertain and time-varying. The proposed methods in this paper could

be effective in solving the problems in actual operations.

Keywords: time-space network; time-varying demand; scheduling; medical resources

1. Introduction

Last year, we conducted a research on medicine supply chain situation in CHSCs in Nanjing,

China, by using the questionnaire survey method. The result shows that most CHSCs currently

in this city do not use any electronic purchase systems or decision support systems to help

optimize  the  ordering  and  scheduling  work.  Medical  resources  are  always  purchased  by

telephone  or  e-mail.  The  important  parameters  in  decision  making,  i.e.,  order/shipment

frequency  and  order  quantity,  are  manually  determined  by  the  decision  maker  based  on

his/her experience. The planned schedules may not be efficient, or may not be feasible to

satisfy all demands since a large portion of customer service requests in CHSCs are uncertain

and time-varying (Li  & Yu,  2011).  The result  of  the questionnaire survey motivates us to

improve the situation and to develop a systematic  planning approach that  takes all  these

factors into consideration. 

In line with our survey, CHSC purchases medical resources from its upstream authorities, the

District  Center  for  Disease  Control  and  Prevention  (DCDC),  and  DCDC  imports  medical

resources from the pharmaceutical companies (the suppliers). A lead time is required for the

supplier, to produce the required medical resources. Similarly, a lead time is required for the

DCDC to check the quality of medical resources. Generally, a compacted scheduling of medical

resources order  and shipment  can not only efficiently  reduce the  operation cost,  but  also

promote the medical service quality. However, to the best of our knowledge, although many

studies have focused on medical resources scheduling, few of them consider the problem of

medical resources scheduling problem in CHSCs with uncertain demands, lead time, as well as

capacity constraint.
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In this paper, we consider the medical resources scheduling problem in CHSCs with time-varying

demand, the lead time of supplier, the capacity constraint. Meanwhile, the scheduling problem

integrates the shipment planning in the dimensions of time and space. The rest of this paper is

organized as follows. Section 2 is the literature review. The modeling approach is introduced in

Section 3. Section 4 presents the solution algorithm and the evaluation method. In Section 5,

numerical tests are performed. Finally, we conclude in Section 6.

2. Literature Review

Numerous studies have focused on medical resources scheduling, including medicine ordering,

shipment  and  medical  resources  allocation.  We  briefly  introduce  them  in  the  following

paragraphs.

Initially, a most related empirical study is provided by Dib, Sun, Zhu, Wei and Li (2010). They

investigated 58 community health centers and surveyed 372 residents randomly about their

satisfaction towards these centers in Dalian, China. They suggested that the medicine supply

chain for the  community health centers should be improved and the superior departments

support to the community health centers should be augmented. 

In the second place, theory research with the topic of medical resources scheduling have been

conducted  by  many  experts.  For  example,  Duintjer  Tebbens,  Pallansch,  Alexander  and

Thompson  (2010)  proposed  a  mathematical  framework  for  determining  the  optimal

management  of  a  vaccine  stockpile  over  time.  Sun,  DePuy  and  Evans  (2014)  built

mathematical models to optimize the patients' allocation considering two objectives related to

patients’  cost  of  access to  healthcare services:  (1) minimizing the total  travel  distance to

hospitals; and (2) minimizing the maximum distance a patient travels to a hospital. Moreover,

the  models  can  help  decision  makers  to  predict  a  resources  shortage  during  a  pandemic

influenza outbreak. Savachkin and Uribe (2012) presented a simulation optimization model to

generate dynamic strategies for distribution of limited mitigation resources, such as vaccines

and antivirals, over a network of regional outbreaks. The model can redistribute the resources

remaining from previous allocations in response to changes in the pandemic progress. Vlah

and Rui (2012) addressed the issue of scheduling medical treatments for resident patients in a

hospital  as  a  multi-objective  binary  integer  programming  (BIP)  model  and  three  types  of

heuristics were proposed and implemented to solve it. Rottkemper, Fischer and Blecken (2012)

designed a mixed-integer programming model for distribution and inventory relocation under

uncertainty in humanitarian operations. Rachaniotis, Dasaklis and Pappis (2012) presented a

resources scheduling model in  epidemic control  with limited resources. The objective is  to

minimize the total amount of the infected people in a certain time horizon by relocating the

available resources over several regions. Dasaklis, Pappis and Rachaniotis (2012) suggested
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several  future  research  directions  and  defined  the  roles  of  logistics  operations  and  their

management may play in assisting the control of epidemic outbreaks. 

Thirdly, as to the variability and uncertainty characteristics of the demand, Holte and Mannino

(2013) presented that a major difficulty in medical resources allocation stems from the fact

that such an allocation must be established several months in advance, and the exact number

of patients for each specialty is an uncertain parameter. They modeled the uncertain problem

as  adjustable  robust  scheduling  problem  and  developed  a  row  and  column  generation

algorithm to solve it. Beraldi, Bruni and Conforti (2004) considered the inherent uncertainty in

emergency medical services and developed a stochastic programming model with probabilistic

constraints,  which  aims  to  decide  the  location  of  the  service  sites  and  the  amount  of

emergency vehicles  to  be assigned to  each site.  Zhang and Jiang (2014) presented a bi-

objective robust program to design a cost-responsiveness efficient emergency medical services

(EMS) system under uncertainty. The proposed model simultaneously determined the location

of EMS stations, the assignment of demand areas to EMS stations, and the number of EMS

vehicles at each station to balance cost  and responsiveness. Nikakhtar and Hsiang (2014)

considered uncertain situations such as epidemic diseases that could affect the patient flow in

a healthcare system by developing a discrete-event simulation model for a local community

health clinic in Lubbock, Texas. To tackle the uncertain nature of emergency department and

improve the resources management, Xu, Wong and Chin (2014) used self-organizing map, k-

means, and hierarchical methods to group patients based on their medical procedures, and

then  discussed how the  resulting  patient  groups  can  be  used  to  enhance  the  emergency

department resources planning. 

In summary, the time-varying demand in CHSCs, with multiple medical resources types and

the optimal scheduling of ordering and shipment are highly correlated with each other. It is

difficult  to  use the traditional  integer  programming techniques  to  formulate  and efficiently

solve this type of problem. On the other hand,  the time-space network method has been

popularly employed to solve scheduling problems, which provides a natural and efficient way to

represent multiple conveyance routings with multiple commodities in the dimensions of time

and space. Although the resulting model scale is generally enlarged due to the extension in the

dimension of time, complicated time-related constraints can normally be easily modeled for

realistic problems, particularly in comparison with the space network models (Yan, Lin & Lai,

2013). Coupled with the development of efficient algorithms, the time-space network models

(usually  formulated as multiple  commodity  network flow problems)  can be  effectively  and

efficiently solved (Kliewer, Mellouli & Suhl, 2006; Yan, Lin & Chen, 2014; Yan, Shih & Shiao,

2008; Yan, Tang & Fu, 2008). Therefore, time-space network technique could be suitable to

solve the medical resources scheduling problem in CHSCs. 
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3. Modeling Approach

In  this  section,  we  discuss  the network  structure  and  mathematical  formulation  for  the

planning  of  logistical  support  in  CHSCs.  A  time-space  network  framework is  employed  to

denote  the  medical  resources  order  and  shipment  scheduling.  Based  on  the  time-space

network, a deterministic planning model (DM) is developed to address the issue of knowing the

demand in CHSCs in advance. A stochastic planning model (SM) is then presented to address

the issue of stochastic demand in actual operations. In what follows, we will first introduce the

time-space network that serves as the basis for our mathematical formulations.

3.1. Network Structure

The  time-space  network  of  logistical  support  in  CHSCs  denotes  the  potential  order  and

shipment of the medical resources within a certain period and space locations, as shown in

Figure 1. The vertical axis represents the supplier, the district center for disease control and

prevention (DCDC) and the CHSCs, while the horizontal  axis stands for the duration of time.

Each node denotes the different department at a specific time. The shorter the time interval is,

the more accurate the decision-making is. Three types of arcs are defined below.

Figure 1. Time-space network of medical resources flows

(1) Ordering arc

An ordering arc (see (a-b) in Figure 1) represents  an order from the DCDC to the

supplier, or an order from the CHSC to the DCDC. While an ordering arc exists, an

ordering cost is incurred no matter when the order takes place, and how many medical

resources are purchased. Note that order operation is always completed by telephone or
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e-mail in practice, thus there is no physical flow on the ordering arc. The arc flow, which

is a binary variable, denotes whether an order is placed or not. The arc flow’s upper

bound is one, indicating that an order takes place. Intuitively, the arc flow’s low bound

is zero. 

(2) Shipment arc

A shipment arc (see [c-d] in Figure 1) represents medical resources are delivered from

the supplier to the DCDC or from the DCDC to the CHSC. The cost for the shipment arc

is also comprised of two parts,  which are the constant cost that is incurred whenever

the  shipment takes place and regardless of the  quantity of medical resources,  and a

variable cost represented by  travel distance, carry  hours used, meals etc, which is in

proportion  to the  quantity  of  medical  resources  shipped. Since  the  shipment  arc

connects different depots, the arc flow’s upper bound is the capacity of the DCDC or the

CHSC, and the arc flow’s low bound is zero. 

(3) Holding arc

A holding arc (see [e-f] in Figure 1) represents the holding of medical resources at

DCDC or CHSC. The arc cost denotes the inventory cost incurred by holding medical

resources, which is in proportion to the stored quantity of medical resources on the arc.

Therefore, the arc flow’s upper bound is also the capacity of the node (DCDC or CHSC),

and the arc flow’s low bound is zero.

3.2. The Deterministic Planning Model (DM) 

Before introducing the model’s formulation, the notations and symbols are listed below: 

Sets

Ak: Set of all arcs in the kth layer of the time-space network.

Nk: Set of all nodes in the kth layer of the time-space network.

K: Set of the kth layer of the time-space network.

H: Set of all holding arcs in the time-space network.
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Parameters

: arc (i, j) cost in the kth layer of the time-space network; if the arc is a ordering arc, the arc

cost is the ordering cost; if the arc is a shipment arc, the arc cost is the shipment cost; if the

arc  is  a  holding  arc,  the  arc  cost  is  the  inventory  cost  incurred  by  holding  the  medical

resources.

: arc (i, j) flow's upper bound in the kth layer of the time-space network.

: arc (i, j) flow's lower bound in the kth layer of the time-space network.

umij: storage capacity (DCDC or CHSC)for the holding arc (i, j) flow.

: the supply or demand of medical resources at node  i in the  kth layer of the time-space

network;  if   ≥ 0,the  supply  of  medical  resources;  if   <  0,  the  demand  of  medical

resources; at the time slot for beginning dispatching, the supply at the DCDC and the CHSC

equals to its storage capacity.

Decision variables

: arc (i, j) flow in the kth layer of the time-space network.

Based on the notations, the mathematical formulation of DM can be formulated as follows: 

(1)

(2)

(3)

(4)

(5)

The objective function (1) minimizes the sum of the operation cost, including the ordering cost,

the shipment cost and the holding cost. Constraint (2) is the flow conservation constraint for

each node in the time-space network. Constraint (3) is the capacity constraints. Constraint (4)

guarantees that  all  arc  flows are within their  bounds.  Constraint  (5) ensures that  all  flow

variables are integers. 
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Since all  constraints and cost functions in this optimization  model are linear, the  proposed

multi-commodity flow problem is formulated as a mixed 0-1 integer programming model. The

optimal result can be put to practical use if we can identify the demand at each node in the

time-space network in advance. However, a large part of the demand for medical resources are

stochastic  and are  difficult  to  be accurately  forecasted,  which make the planned medicine

scheduling unable to satisfy all those demands that suddenly pop up. Therefore, we need to

improve the model to make it more realistic and practical.

3.3. The Stochastic Planning Model (SM)

The network structure  of the SM is  the same to the network of the DM, except that  the

demand at each node in the time-space network is uncertain. It is worth mentioning that only

the normal stochastic demand is considered in this work. Large-scale disruption of the demand

which may be caused by some unexpected public health incidents (i.e., SARS) goes beyond our

research scope. To formulate the SM, we set more notations and symbols as follows in addition

to those already introduced.

Set

: the set of stochastic situations.

Parameters

(): the stochastic supply or demand for medical resources at node i in the kth layer of the

time-space  network;  if   ≥ 0,the  stochastic  supply  of  medical  resources;  if   <  0,  the

stochastic  demand  of  medical  resources;  at  the  time  slot  for  beginning  dispatching,  the

stochastic supply at the DCDC and the CHSC is still set to be its storage capacity.

E(): Excepted cost of the logistics arcs with the stochastic demand.

Decision variables

(): arc (i, j) flow in the kth layer of the time-space network with the stochastic situation .
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Based on the notations, the SM can be formulated as follows:

(6)

(7)

(8)

(9)

(10)

Similarly,  the  objective  function  (6)  minimizes  the  excepted  value  of  the  operation  cost.

Constraint (7) is the flow conservation constraint for each node in the time-space network.

Constraint (8) is the capacity constraint with stochastic demand. Constraint (9) guarantees

that all arc flows with stochastic demand are within their bounds. Constraint (10) ensures that

all  flow  variables  with  stochastic  demand  are  integers.  Since  all  decision  variables  are

time-varying  with  the  stochastic  demand,  the  proposed  problem  can  be  processed  as  a

stochastic  integer  programming  model.  The  optimal  result  would  be  more  realistic  and

practical.

4. Solution Procedure and Evaluation Method

In this section, we will discuss how to solve the proposed models and how to evaluate them

based on a simulation method. 

4.1. Solution Procedure

The DM is formulated as a mixed 0-1 integer programming model and it can be solved within a

reasonable time, by using the mathematical tool MATLAB, coupled with the optimal software

CPLEX 12.4. The SM is formulated to depict the stochastic demand at each time point, and the

model is constructed as a stochastic integer programming model. Given the demand for each

node in the time-space network, the SM can be solved as a deterministic planning model.

Therefore, the solution procedure for the SM is described as follows:
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Procedure for the SM:

Input: Initial parameters in the SM and the distribution function of demand.

Output:  The optimal scheduling and the  operation cost of the medical resources order and

shipment for the DCDCs and the CHSCs.

Begin

Initialization, set C as the number of simulation times, c = 1, 2, …, n;

c  1;

while (not termination condition) do

1.  Randomly  generate  the  demand  for  each  CHSC  in  the  time-space  network

according to the distribution function;

2. Solve the mixed 0-1 integer programming model by using the MATLAB compiler,

coupled with CPLEX 12.4 ;

3. Record the optimal schedules and the operation cost.

c  c +1;

end

4. Calculate the average operation cost as the final result.

5. Output optimal scheduling and the operation cost. 

End

4.2. Evaluation Method

In practice, a classic order strategy, the (t, S) strategy, has always been adopted to manage

the medicine inventory in both CHSC and DCDC. That means, the CHSC and the DCDC will

import medical resources with a fixed time interval. The purpose of the order is to keep the

stock of medical resources at a certain level. Herein, we address it as the actual operations of

medical resources scheduling and we abbreviate it as AOM. Similarly in the SM, demand for
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each node in the time-space network is randomly generated. The first difference between the

AOM and the SM is the order quantity, which is equal to the capacity of the node minus the

available quantity of medical resources when decision making. The second difference between

these two models is the fixed time interval, which is set to be two weeks. Similarly, the AOM

can be solved by using the above solution procedure.

The performances of the DM, the SM, and the AOM are evaluated via a simulation test. We first

use the average demand of the historical demand data to complete the DM calculation. Next

we randomly  generate  the  stochastic  demand data  based on the  average demand with  a

certain standard deviation, and input them into the SM and then solve it. After that, we fix the

ordering time interval and adopt the (t, S) strategy to complete the AOM calculation. Finally,

we compare the DM, the SM and the AOM with statistical results.

5. Numerical Tests

To test how well the models may be applied in the real world, we performed numerical tests

using operating data from 5 CHSCs in Nanjing, China, with reasonable simplifications. The

tests were performed on a personal computer equipped with a Intel (R) Core (TM) 3.10 GHz

CPU and 4.0 Gb of RAM in the environment of Microsoft Windows 7.

5.1. Parameters Setting 

This numerical example focuses on the scheduling of logistical support for medical resources

order and shipment in CHSCs. The planning period is set to be half a year (26 weeks). Lead

time of the supplier is set to be 2 weeks, and lead time of the DCDC is 1 week. Each layer of

the time-space network, which represents a kind of the medicine, involves 1 supplier, 1 DCDC

and 5 CHSCs. The historical data of the order quantity for each kind of vaccines in the past

years, from January 2011 to June 2013, was collected when we conducted the questionnaire

survey in the CHSCs in Nanjing, China. For example, the historical data of  influenza vaccine

during these years in a CHSC is shown in Figure 2. According to the historical data, we can

calculate the average demand for each kind of vaccines at each week. The standard deviation

of the stochastic demand is set to be 10. In practice, the decision makers can adjust these

parameters according to the actual situation.
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Figure 2. Historical data of influenza vaccine

5.2. Test Results

As  introduced  above,  we  use  the  AOM  to  simulate  the  actual  operation  of  the  medical

resources order and shipment, and we present two other methods, the DM and the SM, to

address with different demand situations. DM is designed to deal with the scheduling when

demand at each time point is preset in advance, and SM is proposed to complete the planning

when demand is uncertain. The performances of these three methods are shown in Table 1.

The objective value of the SM (638087.2) is the smallest one, which is 35.4% lower than the

operation cost of the AOM (987950.1). Similarly, the objective value of the DM is 643167.5,

which is 34.8% lower than the cost of the AOM and only 0.78% lower than the value of the

SM. It can be observed that both of the two proposed methods are superior to the empirical

operations in actual operations, and the performance of the DM is a little inferior to the SM.

This result is quite suitable and meaningful for the actual operations.

Planning method DM SM AOM

Average objective value
Average solution time (s)
Gap (%)
Difference in  the total cost between
other methods and the AOM

643167.5
834.44

34.8%

638087.2
314.38

35.4%

987950.1*
N/A

0.0

Table 1. Comparison of different methods

It is worth mentioning that out-of-stock situation occurred during the AOM test (we use the

symbol * to label it). A shortage of the third kind of medical resources was appeared at the 7 th

week and the 25th week, with a quantity of 3 and 6, respectively. However, this phenomenon

does not occur in both the DM and the SM. The reason is that both the order time and order

quantity in these two models are decision variables and would be systematically optimized,
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while both the order time and order quantity in AOM are pre-set. As introduced in Section 1, if

the important parameters, such as order/shipment frequency and order quantity, are manually

determined by the decision maker based on his/her experience, the planned schedules may

not be efficient, or may not be at all feasible to satisfy all demands since a large portion of

customer service requests in CHSCs are uncertain and tine-varying.

5.3. Sensitivity Analysis

To understand  the  influence  of  stochastic  demand on the  solution,  we  perform sensitivity

analysis of the change of demand to the operation cost. The proposed models in Section 3

provide several key parameters that may affect the final result, i.e., the average demand of

medical resources in each planning week, the standard deviation setting, and the capacity of

DCDC and CHSC, etc. The sensitivity analyses of these parameters are shown as follows.

To detect the influence of the average demand on the final solution, the value of it is adjusted

with four different values (-20%,-10%, 10% and 20%). The results are shown in Table 2. The

total operation cost is increasing along with the growth of the average demand, regardless of

which  planning  method  is  used  as  a  basis  (from -24.00% to  24.41%,  from -24.58% to

24.67%, and from -13.73% to 10.79%, respectively). This suggests us that the higher the

average demand of medical resources, the higher the operation cost. If the decision makers

can find a way to reduce the average demand, i.e., informing people to prevent the epidemic

by  using  internet,  radio  and  television,  and  thus  reduce  the  actual  demand  of  medical

resources, the total operation cost can be reduced. 

Ratios(%) -20 -10 +10 +20

DM
Objective value
Solution time (s)
Gap (%)
Before vs. After

SM
Objective value
Solution time (s)
Gap (%)
Before vs. After

AOM
Objective value
Solution time (s)
Gap (%)
Before vs. After

Gap (%)
DM vs. AOM
SM vs. AOM

488835.5
273.16

-24.00%

481252.5
617.25

-24.58%

852267
N/A

-13.73%

42.64%
43.53%

566242.5
630.48

-11.96%

588244
130.23

-7.81%

917423.5
N/A

-7.14%

38.28%
35.88%

721369
406.02

12.16%

748945.5
157.19

17.37%

1043610*
N/A

5.63%

30.88%
28.24%

800174.5
120.80

24.41%

795494
69.33

24.67%

1094520*
N/A

10.79%

26.89%
27.32%

Table 2. Sensitivity analysis with the change of average demand
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It can also be observed that the difference between the DM and the SM is negligible, no matter

what the average demand is. However, difference between the DM and the AOM decreases

from 42.64% to 26.89%, and it varies from 43.53% to 27.32% when it is compared between

the SM and the AOM. This result suggests that the proposed two methods produce better

planned results, especially when the average demand is lower. 

Value 8 9 11 12

SM
Objective value
Solution time (s)
Gap (%)
Before vs. After

AOM
Objective value
Solution time (s)
Gap (%)
Before vs. After

Gap (%)
Difference in the total cost 
between SM and AOM

640302
329.98

0.35%

985927.5
N/A

-0.20%

35.06%

644415
535.19

0.99%

985668
N/A

-0.23%

34.62%

657644.5
720.34

3.06%

993108
N/A

0.52%

33.78%

668352
987.69

4.74%

1001154*
N/A

1.34%

33.24%

Table 3. Sensitivity analysis of the standard deviation

To investigate the influence of standard deviation on the final solution, we test four values of

the standard deviation (8, 9, 11 and 12). As the standard deviation increases, the stochastic

demand can be generated in a larger range. The results are shown in Table 3. The operation

cost is increasing along with the standard deviation, whatever in SM or AOM. The difference in

the operation cost between the SM and the AOM decreases from 35.06% to 33.24% as the

standard deviation increases. Although there are only small differences among these objective

values (from 0.35% to 4.74% and from -0.20% to 1.34%, respectively), more time is required

to solve the problem as the standard deviation increases (from 329.98 sec to 987.69 sec in

SM). This suggests that the more stable of the demand, the lower of the operation cost and

the better of the solution performance.

To investigate the influence of the capacity of the organizations on the performances of the

three different methods, we test four values of the parameters. As shown in Table 4, the

operation cost  decreases about 0.3% when the capacity  of  DCDC and CHSCs respectively

increases 10%, whatever in DM or SM. It can also be found that only small differences among

these objective values. However, 5% of the operation cost is increased when the capacity of

DCDC and CHSC is respectively increased 10% in the AOM. Moreover, difference between the

DM  and  the  AOM is  increased  from  39.01% to  47.00% as  the  value  of  ratio  increases.

Similarly, difference between the SM and the AOM is varied from 38.91% to 46.91%. This

suggests  us  that  the  capacity  of  the  medical  institutions  can  strongly  influence  the  total
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operation cost in our actual operations. However, when the proposed two methods are applied,

such influence can be decreased greatly.

Ratios(%) +10 +20 +30 +40

DM
Objective value
Solution time (s)
Gap (%)
Before vs. After

SM
Objective value
Solution time (s)
Gap (%)
Before vs. After

AOM
Objective value
Solution time (s)
Gap (%)
Before vs. After

Gap (%)
DM vs. AOM
SM vs. AOM

640790.5
110.81

-0.37%

641843
1034.36

0.59%

1050569
N/A

6.34%

39.01%
38.91%

639078
484.59

-0.64%

639906
524.64

0.29%

1099984
N/A

11.34%

41.90%
41.83%

637305
880.84

-0.91%

638134.5
145.02

0.01%

1149399
N/A

16.34%

44.55%
44.48%

635431
476.53

-1.20%

636508.5
442.52

-0.25%

1198814
N/A

21.34%

47.00%
46.91%

Table 4. Sensitivity analysis of the change ratio of capacity

6. Conclusion

 In this study, a time-space network technique is applied to formulate the medical resources

order and shipment scheduling in community health service centers. A deterministic planning

model is presented to depict medical resources order and shipment with a pre-ascertained

demand. A stochastic planning model is then developed to respond to the uncertain demand. A

solution procedure is  developed to efficiently solve the proposed models and a simulation-

based  evaluation  method  is  also  developed  to  compare  the  performances  of  the  models.

Numerical tests, relating to some health service departments’ operations, are performed to

evaluate the proposed models and the actual operations. The main contributions of this work

to the literature are as follows: 

(1) While most research on medical resources optimization studies a static problem taking

no consideration of the time evolution and especially the dynamic demand for such

resources (Sun et al., 2014; Liu & Liang, 2013; Liu & Zhao, 2012), the proposed models

in  our  work  integrate  time-space  network  technique,  which  can  find  the  optimal

scheduling of logistical  support  for  medical  resources order and shipment in  CHSCs

effectively. 

(2) The  logistics  plans  in  response  to  the  deterministic  demand  and  the  time-varying

demand are constructed as a 0-1 mixed integer programming model and a stochastic
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integer programming model, respectively. The optimal solutions not only minimize the

operation cost of the logistics system, but also can improve the order and shipment

operation in practice. 

Future research would be useful in the following directions. Initially, although it is reasonable

to  assume  that  the  government  can  ensure  the  adequate  supply  of  the  needed  medical

resources, out-of-stock situation could be a meaningful topic of future research. Secondly, we

did not consider shipment routing in this work. Actually, it would be more useful in application

if the model considers these two aspects. Certainly, the development of other models using

other methods for solving this type of problem and comparing the results with those of our

model could also be a direction of future research.
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