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Abstract:

Purpose: Although the decision to adopt Industry 4.0 technologies is commonly strategical, the selection and
implementation of  technology are the responsibilities of  the tactical level management. The tactical level
management will also directly experience the impact of  adopting the technology towards the organizational
performances in their functional areas. The comparative survey study aims to measure the tactical level
management’s sense of  urgency of  the nine pillars in three plants of  a single manufacturing organization. 

Design/methodology/approach: The research methodology starts with a literature review to collect the
criteria appertaining to the pillars. Based on the 95 constituting criteria, the second step prepares and
conducts  a  questionnaire  survey  with  32  participants  on  three  sister  plants.  Next,  rough
BWM-CRITIC-TOPSIS ranks these plants at the pillar and criteria levels. The ranking method integrates
Best-Worst  Method  (BWM),  Criteria  Importance  Through  Intercriteria  Correlation  (CRITIC),  and
technique for order performance by similarity to ideal solution (TOPSIS). The top management discussed
and rendered insights into the results.

Findings: Results show that the high-mix and labor-intensive plant (Plant 1) has the highest urgency,
whereas the largely automated plant (Plant 3) has the lowest urgency to adopt the nine pillars. The findings
provide empirical evidence of  the effect of  the recent Industry 4.0 awareness programs in Plant 1 and
advanced infrastructure would lead to organization inertia (Plant 3) to aggressively pursue technological
change. The most urgent pillar is cybersecurity, and the least urgent pillar is additive manufacturing (AM),
outlining the concern over cyber threats when product information is increasingly integrated into the
supply chain and technology immaturity of  AM in production. 

Research limitations/implications: A  limitation  of  this  study  is  that  the  comparative  survey  only
focused on three plants and the tactical level management of  an organization. 

Originality/value: This study contributes to the knowledge of  Industry 4.0 readiness by being the first to
show  different  levels  in  the  sense  of  urgency  of  the  tactical  level  managements  on  the  relevant
technologies, which potentially affect the direction and the pace of  Industry 4.0 adoption.
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1. Introduction

The essence of  Industry 4.0 is to take advantage of  digitization to achieve improvements in terms of  automation
and operational efficiency, including effectiveness (Ślusarczyk, 2018). Various research initiatives examine and assess
different aspects of  Industry 4.0 adoption in organizations. Such initiatives include Reference Architectural Model
Industry 4.0 (RAMI 4.0) (Hankel & Rexroth, 2015), digital maturity and transformation study (Back & Berghaus,
2016), Industry 4.0 component model (Hoffmeister,  Festo & Co, 2015), Roadmap Industry 4.0 (Pessl,  Sorko &
Mayer, 2017), Acatech Industry 4.0 Maturity Index (Schuh,  Anderl, Gausemeier, ten Hompel & Wahlster, 2017),
SPICE-based Industry 4.0-MM (Gökalp, Şener & Eren, 2017), Smart Industry Readiness Index (SIRI) (Singapore
EDB, 2018), Industry 4.0 readiness assessment tool (Agca, Gibson, Godsell, Ignatius, Davies, C., & Xu, 2017), and
‘Pathfinder 4.0’ (Intechcentras, 2019). These initiatives define a set of  Industry 4.0 and organizational components,
and they are later assessed through suitable criteria commonly associated with the breadth and depth of  Industry
4.0 adoption.

The Boston Consulting Group (BGC) identified the nine pillars in Industry 4.0: additive manufacturing (AM),
cloud computing, augmented reality (AR), cybersecurity, Internet of  things (IoT), advanced simulation, universal
integration, big data, and autonomous systems. The research offers an alternative initiative, that is, to survey the
sense  of  urgency  at  the  tactical  level  toward  these  nine  pillars  in  the  different  plants  of  a  medical  device
manufacturing  organization.  The  survey  provides  critical  insights  from  the  position  of  the  tactical  level
management.  Although  the  decision  to  adopt  Industry  4.0  is  commonly  strategical,  the  selection  and
implementation of  technology are the responsibilities of  the tactical level management. In addition, the tactical
level management will directly experience the impact of  the adoption to the organization’s performances at their
functional areas. They are also the overseers to the operational level, where the Industry 4.0 technology affects the
daily operational routines. Nechkoska (2015) defined the tactical managerial role, which includes how to achieve the
expectation by utilizing what is given and following certain governing principles in the current context of  the
organization and environment. Therefore, as a leader (Day, 1999), the sense of  urgency toward Industry 4.0 will be
critical in any of  the related initiatives. Kotter (1995, 2008) noted that the sense of  urgency motivates the change
process and greater participation of  individuals in an organization. This sense drives for a sustained and lasting
organizational  change  organization  (Baxter,  2002).  Managers  with  a  sense  of  urgency  would  listen  and
communicate the vision with their subordinates.

The research methodology is based on a comparative survey study and divided into three stages. The first stage
identifies the criteria of  each pillar through a literature review of  205 journals. Approximately 10 to 12 criteria were
selected for each pillar. These criteria are measurable elements in each pillar and relate to features and performances
of  the organization’s operation. Nechkoska (2015) commented that tactical management operates in a complex
adaptive  system  and  needs  to  maintain  a  sense-and-respond  system  that  is  adaptable  to  the  changes  and
unpredictability. Sado (2014) stressed the dependency of  a tactical plan on how its implementation affects the
continuity of  operation and other functions of  management. This finding motivates the research to underline the
criteria instead of  pillars to gauge the sense of  urgency among tactical level personnel. The reason is that the criteria
would be their primary consideration in the decision making of  any technology (pillar) adoption and hence the
urgency of  the technology. The second stage develops a questionnaire and carries out the survey. Finally, the third
part relates to analysis with two objectives. The first one is to identify the urgency of  pillars or criteria in these
plants individually.  The second aim is to compare and rank the results between these plants, representing the
urgency of  individual plants to adopt the technology. The findings from the analysis are then reviewed by the focus
group consisting of  senior management personnel.

Considering that participants in the survey are of  different departments and backgrounds, their knowledge and
judgment of  certain pillars and criteria may vary and reflect their functional perspectives. Additionally, precisely
defining their knowledge is difficult. In this premise, we adopt rough BWM-CRITIC-TOPSIS proposed by Zhang,
Fang and Song (2019). The ranking method integrates Best-Worst Method (BWM), Criteria Importance Through
Intercriteria Correlation (CRITIC), and technique for order performance by similarity to ideal solution (TOPSIS).
BWM, CRITIC and TOPSIS are well-known multi-criteria decision-making (MCDM) methods and have been
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applied widely in different problems (Sadjadia & Karimi, 2018; Palczewski & Sałabun, 2019; Pamučar, Ecer, Cirovic
& Arlasheedi, 2020; Kumar, Saxena & Garg, 2021; Krishnan, Kasim, Hamid & Ghazali, 2021). 

BWM is a multi-criteria decision-making method, which uses a pairwise comparison to determine the weights of
criteria (Amiri & Emamat, 2020). Although BWM requires less comparison data, the comparisons are consistent,
and the results are reliable (Rezaei, 2016). BWM only executes reference comparisons and employs a 1–9 scale to
perform the pairwise comparisons. As BWM does not execute secondary comparisons, the procedure is much
easier, more accurate, and less redundant (Guo & Zhao, 2017).

Diakoulaki, Mavrotas and Papayannakis (1995) proposed CRITIC to determine objective weights for criteria (Adalı
& Işık, 2017). The objective weights obtained by CRITIC consider the conflict between criteria pair and contrast
intensity of  each criterion. The contrast intensity shows the difference between the criteria. Standard deviation is
used to measure contrast intensity. Meanwhile, the conflict between criteria pairs can be measured by correlation
coefficient (Zhang et al., 2019). 

TOPSIS  is  a  multi-attribute  decision-making  technique  used  for  ranking  and  selection  of  several  externally
determined alternatives through distance measures (Shih,  Shyur & Lee, 2007). TOPSIS can incorporate relative
weights of  criterion importance. Consequently, TOPSIS is attractive in that limited subjective input is needed from
decision makers and applicable to cases where inter-criterion comparison is infeasible (Kumar et al., 2021). TOPSIS
is quite close in accuracy except when equal weights were applied (Olson, 2004). Zavadskas, Mardani, Turskis, Jusoh
and Nor (2016) presented that TOPSIS is the second most popular method among MCDM approaches. TOPSIS is
relatively  easy  to  implement  and  understandable  and  provides  a  well-structured  analytical  systematic  process.
TOPSIS is useful for qualitative and quantitative data and provides large flexibility in the definition of  the choice
set. A number of  criteria can be applied during the decision process.

In MCDM, ranking involves identifying and ordering the priority (preference) of  a given choices by assessing their
relative importance using a set of  criteria. MCDM methods assign weights to individual criteria for better and more
accurate decision making (ranking). Assigning weights to qualitative criteria can be affected by decision maker
preference  and  may  vary  considerably  (Mareschal,  1998).  In  view  of  this,  Rough  BWM-CRITIC-TOPSIS
determines the proper integrated weight of  the selected criteria in Industry 4.0 assessment. In the method, objective
weighting  is  generated  purely  from mathematical  computation,  and  subjective  weighting  relies  on  the  expert
knowledge and judgment of  the participants. Objective weighting is appropriate for the study of  depriving reliable
subjective weights (Deng, Yeh & Willis, 2000). From another perspective, subjective weights reflect the subjective
judgment or intuition of  the participant carrying sufficient, selective, or insufficient knowledge or experience. This
integration  mitigates  the  shortage  that  occurs  in  either  a  subjective  or  objective  approach.  The  method  is
programmed in Microsoft Excel. The results are discussed with the top management after the analysis.

This paper is further organized as follows. Section 2 presents the literature review, which includes the nine pillars of
Industry  4.0.  Section  3  shows  the  selection  of  criteria.  Section  4  introduces  BWM-CRITIC-TOPSIS  and its
implementation steps. Section 5 presents the organization and plant profiles. Sections 6 and 7 present the results
and discussion, respectively. Finally, Section 8 concludes the study.

2. Nine Pillars of  Industry 4.0
AM refers to fabrication that uses a 3D CAD file, slices it to different thicknesses as a geometry of  each layer, and
orders the fabrication setup to deposit a layer regarding that geometry. AM has wide industry applications, for
example, biomedical materials, disease models, medical instruments (Zadpoor & Malda, 2017), and aerospace part
(Herzog,  Seyda, Wycisk & Emmelmann, 2016). AM perfectly fits into the numerical design and manufacturing
chain. Weller,  Kleer and Piller (2015) presented AM technology’s opportunities into technological and economic
characteristics. The technological characteristics of  AM are high manufacturing flexibility, less scrap, and no tools
and molds necessary. The economic characteristics include acceleration and simplification of  product innovation,
reduction  of  assembly  work,  and  lowering  barriers  to  market  entry.  Research  noted  that  AM technology  is
environmentally  and  ecologically  promising  (Bikas,  Stavropoulos  & Chryssolouris,  2016)  and  fully  automated
(Weng, Zhou, Lin., Senthil & Wu, 2016). From another perspective, the challenges of  AM include the speed and
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cost of  production and intellectual property issues. Moreover, post-processing and the support structure materials
cannot  be  recycled  (Ford  & Despeisse,  2016).  Seifi,  Salem,  Beuth,  Harrysson  and Lewandowski (2016)  also
presented that missing quality standards and the presence of  residual stress can limit AM’s use in high-value or
mission-critical  applications.  Tofail,  Koumoulos,  Bandyopadhyay,  Bose,  O’Donoghue  and  Charitidis (2018)
presented that the considerations to invest in AM are the costs, the comparative benefits of  AM over conventional
manufacturing of  the same part, and the rate at which such benefits occur. Watson and Taminger (2018) considered
part complexity (as AM may be the preferred to produce a highly complex part), material property requirements,
time (lead and manufacturing time), and material usage. Hällgren,  Pejryd and Ekengren (2016) suggested that
industries, where performance prevails over the part cost and series volumes are low, are more likely to adopt AM.

Cloud computing is Internet network-based computing allowing users to access their resources remotely around the
world  (Nandgaonkar  &  Raut,  2014).  Its  components  include  client,  cloud  network,  and  cloud  application
programming interface (Gupta,  Beri,  Behal,  Gupta, Beri & Behal,  2016). The major cloud service models are
infrastructure-as-a-service,  platform-as-a-service,  and  software-as-a-service  (Patel  &  Viradiya,  2016).  The
deployment models could be either public, private, community, and hybrid models, with each presenting a different
level of  security (Rashid & Chaturvedi, 2019). Cloud servers can store information, manage, and process a large
volume of  data because of  their higher reliability, broad network access, fault tolerance, and on-demand usage
(Gupta et al., 2016).  These features provide advantages, such as cost-saving, mobile storage, scalability, anytime
anywhere access, energy-saving, and better security (Sether, 2016; Xue & Xin, 2016). Cloud vendors provide their
clients with platform back updata and the ease to recover their lost data anytime (Nandgaonkar & Raut, 2014).
Coghlan (2016) presented that cloud computing is used for supporting production processes, enabling design and
prototyping,  and improving  supply  chain  management.  From another  perspective,  cloud computing  is  largely
unstandardized and is subjected to accounts hacking (Xue & Xin, 2016), data breach, application program interface
issues, and malicious insiders (Islam, 2017). When these incidents happen, cloud service providers often take no
liability (Alzahrani, 2016). Other concerns of  cloud computing include vendor lock-in, integration issues, unclear
return of  investment (ROI), compliance, legacy integration, immature technology, and lack of  features (Xue & Xin,
2016).

Dini and Dalle-Mura (2015) defined AR as an innovative human–machine interaction that adds virtual components
in a real-world environment. AR renders additional information textual, visual, and/or auditory for a specific task
(Fraga-Lamas,  Fernández-Caramés, Blanco-Novoa & Vilar-Montesinos, 2018). AR improves reliability, flexibility,
speed, safety, adaptability, and new technology (Stoltz,  Giannikas, McFarlane, Strachan, Um & Srinivasan, 2017).
AR  technology  has  been  tested  in  real  industrial  settings,  such  as  training  (Makris,  Karagiannis,  Koukas  &
Matthaiakis, 2016; Martinetti,  Rajabalinejad & van Dongen, 2017; Mourtzis,  Xanthi & Zogopoulos, 2019), shop
floor  information visualization (Michalos  et  al.,  2016),  maintenance-assembly-repair  (Fraga-Lamas et  al.,  2018;
Mourtzis, Zogopoulos & Vlachou, 2017), picking assistance in a warehouse (Puljiz, Gorbachev & Hein, 2018; Stoltz
et al., 2017), human–robot collaboration (Michalos, Karagiannis., Makris, Tokçalar & Chryssolouris, 2016), products
inspection, and building monitoring (De Pace, Manuri & Sanna, 2018). AR is used to monitor operation and modify
the production plan (Wang,  Yew, Ong & Nee, 2020). AR improves communication through the development of
interactive and context-aware instructions for assembling products (Bottani & Vignali, 2019). Mobile AR techniques
can filter and provide relevant information to the operators at  the workplace to assist  in making time-critical
decisions (Whyte & Broyd, 2015). Stoltz et al. (2017) identified the factors of  using AR in warehouse operations,
including software challenges, hardware limitation, acceptance, and cost. AR technologies are yet to be realized for
tracking all kinds of  environments with reasonable cost and sufficient accuracy (Ishii, 2017). Similarly, Syberfeldt,
Holm, Danielsson, Wang and Brewster (2016) asserted that AR is affected by lighting conditions and not precise
enough for industrial applications. In addition, the affordable goggles and batteries in the market still cannot be
used for a long period. Even with the improved ergonomics, many open issues are related to the visual perception
of  the mixed information (real plus virtual) (Masoni, Ferrise, Bordegoni, Gattullo, Uva, Fiorentino et al., 2017).

Siers  (2018)  defined  cybersecurity  as  the  process  of  protecting  information  from  unauthorized  access,  use,
disclosure,  disruption,  modification,  or  destruction.  With  the  increased  connectivity  and  use  of  standard
communication protocols, cybersecurity threats increase dramatically (Vaidya,  Ambad & Bhosle, 2018). The risks
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associated with any attack depend on three factors: threats (who is attacking), vulnerabilities (the weaknesses they
are attacking),  and impacts (what  the attack does)  (Zarreh,  Saygin,  Wan, Lee & Bracho, 2018b).  Clim (2019)
presented that the risk scenarios in an industrial setting include a vast range of  cyber-attacks, including malicious
programs causing machine malfunction and destruction. An organization invested in cybersecurity would secure the
details of  the employees, secure the flow of  information within and outside the organization, and protect the
system from hacking (Gurusamy & Hirani, 2018). Nevertheless, adoption of  cybersecurity is expensive, and the
economic returns on investments are often unpredictable (Conteh & Schmick, 2016).

IoT  consists  of  smart  machines  interacting  and  communicating  with  other  machines,  environments,  and
infrastructures  (Sharma  &  Tiwari,  2016;  Bahga  &  Madisetti,  2016).  IoT-enabling  technologies  include  5G,
radio-frequency identification, sensors, low power and energy harvesting, robotics, sensor networks, and machine-
type communication (Chaouchi & Bourgeau, 2018). Reka and Dragicevic (2018) presented the advantages of  IoT,
including instant data access for quick decision making, cost-effective for day-to-day activities, uniformity of  tasks,
and process transparency over the entire machine to machine (M2M) communication. IoT is being adopted for
manufacturing applications, such as remote machine diagnostics (Soldatos,  Gusmeroli, Malo & Di Orio, 2016),
manufacturing automation, and supply chain management (Witkowski, 2017), oxygen and toxic gas levels (Sharma
& Tiwari, 2016), energy consumption (Shrouf  & Miragliotta, 2015), and overall equipment effectiveness (OEE)
(Hwang,  Lee, Park & Chang, 2017). The characteristics of  IoT are participants, autonomous process, scalability,
event sharing, semantic sharing, interconnectivity, and flexible structure (Reka & Dragicevic, 2018).

Naderi,  Mohammadi and Nouri-Koupaei (2016) defined computer simulation as a comprehensive method for
process design, manufacturing system study, and complex systems analysis. This simulation permits the transfer of
the planning state to finally verify and validate the model (Uhlemann,  Lehmann & Steinhilper, 2017). Advanced
simulation allows scenario optimization and what-if  analysis (Fakhimi & Mustafee, 2019). The simulation tool can
model the entire product and production lifecycle aiming to reduce the corresponding costs and effort (Biermann,
Bleckmann,  Schumann & Iovkov,  2016).  This  tool  helps  shorten development  cycles,  improve the  quality  of
products, reduce costs, and greatly facilitates knowledge management (Rodič, 2017). Advanced simulation helps to
optimize flexible manufacturing system (FMS), for example, the allocation of  a service provider (Naderi et al.,
2016),  dispatching (Freitag & Hildebrandt,  2016),  machine choices,  and messaging protocols  (Nagadi,  Rabelo,
Basingab,  Sarmiento,  Jones  & Rahal,  2018).  Motlagh,  Azimi.,  Amiri  and Madraki (2019)  presented  advanced
simulation challenges. First, users need to develop a clear procedure to collect data and determine uncontrollable
parameters.  Advanced simulation  needs  multiple  assumptions  regarding  the  parameters  and cannot  accurately
reflect real-world problems. Full-featured and large-scale simulations involve considerable run time and powerful
and expensive computer processing units (Xu, Huang, Chen & Lee, 2015). Simulation software tools usually offer
only  dedicated application object  libraries,  instead of  the broad field of  manufacturing (Mourtzis,  Doukas &
Bernidaki, 2014).

Integrated manufacturing enables effective coordination of  all  components (Chen,  2017). As the basis of  the
cyber-physical system, three levels of  manufacturing integration are vertical integration, horizontal integration, and
end-to-end integration (Hamdaoui & Bouayad, 2019; Chukalov, 2017). Vertical integration connects all elements in
the product life cycle within an organization. Horizontal integration occurs between the company with its suppliers
and partners. End-to-end integration covers M2M integration on the factory floor, customer integration (e.g., to
obtain real-time feedback), and finally product-to-service integration to monitor the condition of  the product in
use.  Manufacturing  integration  increases  the  flexibility  of  organizations  on  the  IT  level  and  manufacturing
environments (Wieland,  Hirmer, Steimle, Gröger, Mitschang, Rehder et al., 2016). Specifically, vertical integration
widens  product  range  and  sharing  of  components  among  different  products  (Adkins  &  Patil,  2015).  Data
integration  eliminates  manual  data-mapping  errors  and  streamline  business  processes.  Enterprise  integration
facilitates information flows, systems interoperability, organization’s efficiency, and knowledge sharing among any
kind of  organization (Varela, Putnik, Manupati, Rajyalakshmi, Trojanowska & Machado, 2019; Bernardo, Farrero &
Casadesús, 2016; Chansombat, Pongcharoen & Hicks, 2019). System integration enables a defective material to be
detected early to minimize waste (Campion, 2017).
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Big data refers to a large bulk of  data that cannot be dealt with by traditional data-handling techniques (Mukherjee
& Shaw, 2016). A big data value chain starts from data generation followed by data collection, data transmission,
data processing, and data storage and ends with data analysis (Bhadani & Jothimani, 2016). Big data analytics help
enterprises understand their business environments, customers’ behavior and needs, and their competitors’ activities
(Vassakis, Petrakis & Kopanakis, 2018). Specifically, big data obtain insights, patterns, correlations, and associations,
which could not be understood through traditional small data (Jeble & Patil, 2018). Big data improves existing
capabilities, for fault detection, predictive maintenance (Moyne & Iskandar, 2017), and automating decision-making
tasks (Müller,  Fay & vom Brocke, 2018). Kapil,  Agrawal and Khan (2016) explored a rather complete list  of
characteristics of  big data for efficient handling, which will be used as the criteria. Moktadir, Ali, Paul and Shukla
(2019)  dissected barriers  of  using  big  data  analytics  into technology-related,  expertise  and investment-related,
data-related, and organization-related.

The autonomous system is automated transporters, processes, and robots developed to support the operation in
industrial enterprises, reduce human errors, gain high productivity with minimum cost, and deploy solutions that
could  be  adjusted  because  of  needs,  adaptable  production  schedule,  effective  execution,  or  scalable  model
(Fitzgerald & Quasney, 2017; Joggerst, Knoll, Hoppe, Wendt & Groche, 2018; Fernandes, Martins & Carmo-Silva,
2018; Lu & Hasan, 2018; Truong, Ngo, Nguyen, Nguyen & Kim, 2019). EPSRC (2015) proposed a taxonomy so
that automation providers and customers can define their current standing and expectation in the short, medium,
and long terms. The taxonomy consists of  six levels on two dimensions, which are the role of  the human and the
scope of  automated tasks. Bauer,  Schumacher, Gust, Seidelmann and Bauernhansl (2019) presented a model to
describe and characterize autonomous production by five stages focusing on 12 features, such as manufacturing
cell, material, and information flow. According to Bahrin, Othman, Azli and Talib (2016), autonomous systems are
built  in a greater range of  capabilities that focus on intelligence, safety, flexibility,  versatility, and collaboration.
Autonomous production needs to be reliable to prevent rework, scrap, and accidents (Fox, 2018) and be trusted by
consumers (Shahrdar, Menezes & Nojoumian, 2018). Britton (2017) asserted that autonomous systems may equally
be subjected to risks of  system failure, human–system interaction breakdowns, and social disruptions.

3. Criteria of  the Pillars
205 literatures were obtained through a paper search from two scientific publication databases, namely Sciendirect
and Scopus, using the key terms directly associated to the pillars. These literatures were briefly screened through
and priority was given to works related to technology reviews. The following criteria for the pillars were then
extracted from the remaining literatures (55 papers). Repeating or similar criteria were removed. The criteria must
fulfill the following conditions: (1) measurable, (2) affects operations, and (3) specific to pillar technology. The
criteria were screened to remove redundancy while maintaining generality and relevancy. They are listed below and
numbered based on the sequence of  appearance in the questionnaire.

AM (P1)

i. C1-Manufacturing flexibility: expresses the objects that can be produced in any random order without
cost penalty (Weller et al., 2015).

ii. C2-Material  usage:  represents  the  amount  of  material  required  to  produce  the  product  (Watson  &
Taminger, 2018)

iii. C3-Production cost: represents the total cost of  AM machine cost, material cost, and labor cost (Tofail et
al., 2018).

iv. C4-Production time: represents the criteria to measure the speed of  production, which includes lead and
manufacturing time (Watson & Taminger, 2018).

v. C5-Product quality: represents the measure of  the percentage of  rejection rate (Ford & Despeisse, 2016).

vi. C6-Environmentally and ecologically promising: represents the environmental impact of  the production
process (Bikas et al., 2016).
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vii. C7-Material property requirements: includes the thermal field, dimensional stability, and residual stresses
as these factors significantly affect the safety of  the final product (Bikas et al., 2016).

viii. C8-Product volume: represents the quantity of  product produced (Hällgren et al., 2016).

ix. C9-Energy efficiency: represents a measure of  the energy conservation in the production process (Ford
& Despeisse, 2016).

x. C10-Automation: represents the process that requires no human involvement, and the equipment can be
unattended (Weng et al., 2016).

Cloud computing (P2)

i. C11-Cost  efficiency:  represents  the  ability  to  achieve  the  desired  outcome  with  a  small  amount  of
investment (Nandgaonkar & Raut, 2014).

ii. C12-Flexible  with  demand:  represents  the  availability  to  withdraw  the  resources  when  no  more
requirements at any point of  time (Nandgaonkar & Raut, 2014).

iii. C13-Availability: a measure of  the availability of  cloud services to the users which allows users to access
their resources anytime, anywhere (Alzahrani, 2016).

iv. C14-Mobility: represents the ability to access resources anywhere on the globe (Nandgaonkar & Raut,
2014).

v. C15-Agility: represents the ability to adapt quickly to respond to the changes in a business environment
(Xue & Xin, 2016).

vi. C16-Reliability:  the  criteria  to  measure  the  ability  of  cloud  computing  in  maintaining  data  integrity
(Alzahrani, 2016).

vii. C17-Improve supply chain management: represents the increase in the collaboration between customers
and suppliers (Coghlan, 2016).

viii. C18-Contribution  to  design  and  prototyping:  expresses  the  increase  in  the  ability  to  manufacture
customized products (Coghlan, 2016)

ix. C19-Greener manufacturing: a measure of  the sustainability of  cloud computing (Varghese & Buyya, 2018).

x. C20-Scalability: represents the ability to adjust the resources based on the changes of  business needs (Xue
& Xin, 2016). 

xi. C21-Speed of  bandwidth: the ratio of  the amount of  data transfer to the time taken to transfer the data
(Nandgaonkar & Raut, 2014).

AR (P3)

i. C22-Human–robot collaboration: AR acts as an interface to allow users to interact with the robots. This
criterion represents the user’s ability to understand the robot’s intentions (De Pace et al., 2018).

ii. C23-Workspace visualization: represents the ability to monitor the production operation and modify the
production plan (Wang et al., 2020).

iii. C24-Training: represents the knowledge acquisition and transition from skilled experts to new technicians
(Martinetti et al., 2017).

iv. C25-Flexibility: a measure of  the number of  tasks that can be performed by using AR and the possibilities
to shift  from mass production to mass customization (Uva,  Gattullo,  Manghisi,  Spagnulo,  Cascella  &
Fiorentino, 2018)

v. C26-Ergonomics: a measure of  the affordability of  using the AR technology (Masoni et al., 2017).

vi. C27-Performance: a measure of  the accuracy of  the AR technology in production operation (Ishii, 2017).
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vii. C28-Data  security:  represents  the  ability  of  the  AR  technology  to  protect  user’s  privacy  against
unauthorized access (De Pace et al., 2018). 

viii. C29-Cost: represents hardware and software cost for AR implementation (Stoltz et al., 2017).

ix. C30-Safety: represents the degree of  safety when using the AR technology (De Pace et al., 2018).

x. C31-Speed: a measure of  how much information can be accessed by the operator in a specific time period
(Makris et al., 2016).

Cybersecurity (P4)

i. C32-Reliability: represents the ability to protect the system from hacking (Gurusamy & Hirani, 2018). 

ii. C33-Data security: represents the ability of  organizations in protecting their information to prevent data
breaches (Siers, 2018).

iii. C34-Cost: includes the amount of  money needed to maintain a defense mechanism (Zarreh, Saygin, Wan,
Lee & Bracho, 2018a).

iv. C35-Prevention mechanisms: represents the adoption of  the robot to identify and detect any misuses and
send out reminders. (Pan & Yang, 2018).

v. C36-Economic returns: a measure of  the rate of  return for the investment (Conteh & Schmick, 2016).

vi. C37-Impact of  cyber-attack: a measure of  how cyber-attack affects the OEE of  the organization (Zarreh,
Wan, Lee, Saygin & Al Janahi, 2018). 

vii. C38-Education and training: represents the training that needs to be provided to the employee to raise
their awareness about social engineering attack (Conteh & Schmick, 2016).

viii. C39-Availability: represents the availability of  the data and systems to authorized parties when they are
needed (Siers, 2018).

ix. C40-Integrity: represents the data and systems that are not altered without authorization (Siers, 2018).

x. C41-Safety, health, and environment: represents the incidents of  injuries and accidents caused by cyber
threats (Zarreh, et al., 2018).

IoT (P5)

i. C42-Interconnectivity: represents the interconnection of  objects and people in the manufacturing industry
(Reka & Dragicevic, 2018)

ii. C43-Automation  control:  represents  less  human  control  on  day-to-day  activities  and  can  maintain  a
transparent process over the entire M2M communication (Reka & Dragicevic, 2018).

iii. C44-Performance: represents the scalability, availability, and response time of  the system (Čolaković &
Hadzialic, 2018).

iv. C45-Technical concerns: represents the ability to store a huge amount of  data for analysis and further final
storage (Razzaq, Gill, Qureshi & Ullah, 2017).

v. C46-Contribution to logistics and supply chains management: expresses the improvement in the carriage
of  goods and the accuracy in tracking and tracing the object (Witkowski, 2017).

vi. C47-Security and privacy issues: represents the security of  the information stored. The information might
be opened for hackers and unauthorized concerns when many appliances are connected dynamically (Reka
& Dragicevic, 2018).

vii. C48-Ubiquitous computing: represents those engineers at multiple locations will be able to access and use
resources in a “cloud” through thin clients to conduct engineering activities (Lu & Cecil, 2016).

viii. C49-Energy consumption: a measure of  the amount of  energy used in the production (Reka & Dragicevic,
2018).
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ix. C50-Proactive  Maintenance:  represents  the  ability  to  predict  when a  breakdown will  occur  based on
historic records and past service requests (Soldatos et al., 2016).

x. C51-Interoperability: represents the ability to exchange the acquired data and make use of  information
(Hwang et al., 2017)

xi. C52-Data collection: represents the ability to collect data and process the data either locally or send the
data to centralized servers or cloud-based application back-ends for processing (Bahga & Madisetti, 2016).

Advanced simulation (P6)

i. C53-Cost: includes the operating cost, installation cost, maintenance cost, and cost of  the hardware, such
as the powerful CPUs which are required for the simulation with complex processes and high product
demand (Mourtzis et al., 2014). 

ii. C54-Usability: a measure of  the degree of  ease of  use of  the simulation software (Yu, 2018).

iii. C55-Reliability: a measure of  how accurately simulation reflects real-world production problems (Motlagh
et al., 2019).

iv. C56-Processing time: a measure of  how long it takes to run the simulation (Xu et al., 2015)

v. C57-Analysis: represents the ability to perform any what-if  analysis and compare the optimized scenarios,
all without affecting the operative environment (Fakhimi & Mustafee, 2019).

vi. C58-FMS optimization:  expresses the use of  simulation in calculating the optimal number of  service
providers according to the facilities and service time per unit (Naderi et al., 2016).

vii. C59-Process design: represents the ability in studying and designing manufacturing processes (Biermann et
al., 2016) 

viii. C60-Production planning and control: expresses the ability to automatically develop improved dispatching
rules specifically for control problems (Freitag & Hildebrandt, 2016).

ix. C61-Performance evaluation:  represents  the  evaluation  of  the  performance of  the  machine,  product,
process chain, and factory in simulation (Alvandi, Li & Kara, 2017).

x. C62-Verification and validation: represents the use of  simulation to verify and validate new strategies and
procedures in manufacturing (Kikolski, 2016).

xi. C63-Decision support:  represents the ability  of  the simulation in helping organizations to make wise
decisions based on quantitative data analysis (Aqlan, Ramakrishnan & Shamsan, 2017).

Universal integration (P7)

i. C64-Vertical integration: represents the connection of  all of  the elements that are included in the product
life cycle within an organization (Chen, 2017).

ii. C65-Horizontal integration: represents a company that is closely integrated with its suppliers and partners
(Chen, 2017).

iii. C66-End-to-end integration: includes machine-to-machine integration and integrates customers into the
manufacturing system and product-to-service integration (Chen, 2017).

iv. C67-Integration of  products: expresses the ability to offer a wider product range and also achieve greater
sharing of  components among different products (Adkins & Patil, 2015).

v. C68-Integration of  competencies: represents the capability integration to deliver superior products with
the best available skills (Adkins & Patil, 2015).

vi. C69-Integration of  management systems: represents the combination of  the business components into
one system to improve the organization’s efficiency (Bernardo et al., 2016).
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vii. C70-Data integration: represents the combination of  the data from different resources and provides users
with a unified view (Xiang, Yin, Wang & Jiang, 2018).

viii. C71-System integration: represents the combination of  the different subsystems into one system. System
integration meets lean manufacturing and propels the manufacturer toward continuous improvement for
the benefit of  the plant (Campion, 2017).

ix. C72-Integrated monitoring system: represents the combination of  all individual control systems into a
single computer-controlled system. Monitoring data will be automatically acquisitioned and processed by
dedicated applications and devices operating (Oborski, 2016).

x. C73-Integrated production and preventive maintenance scheduling: The integration of  production and
maintenance  aims  to  minimize  total  costs,  which  include  the  tardiness  and  earliness  penalty  costs,
component and assembly holding costs, preventive maintenance costs, and set-up, production, transfer,
and production idle time costs (Chansombat et al., 2019).

Big data (P8) (Kapil et al., 2016) 

i. C74-Versatility: represents the ability of  big data to be flexible enough to be used differently for a different
context.

ii. C75-Verbosity: represents the redundancy of  the information available at different sources.

iii. C76-Volume: a measure of  the quantity of  collected and stored data.

iv. C77-Velocity: a measure of  the transfer rate of  data between its source and destination.

v. C78-Value: represents the business value to be derived from big data.

vi. C79-Variety: expresses different types of  data, such as pictures, videos, and audio, arriving at the receiving
end.

vii. C80-Veracity: represents the data quality. Accurate analysis of  captured data is virtually worthless if  not
accurate.

viii. C81-Validity:  represents  the  correctness  or  accuracy  of  data  used  to  extract  results  in  the  form of
information.

ix. C82-Volatility: big data volatility means the stored data and how long is useful to the user.

x. C83-Variability: data arrive constantly from different sources. Variability is the criteria to measure how
efficiently it differentiates between noisy and important data.

xi. C84-Viscosity: a time difference between the event that occurred and being described.

xii. C85-Virality: represents the rate at which the data are broadcast/spread by a user and received by different
users for their use.

Autonomous systems (P9)

i. C86-Efficiency: represents the ability to improve productivity and manufacturing resources utilization as a
result of  technology advances (Fernandes et al., 2018)

ii. C87-Robot behavior: a measure of  how the autonomous systems react to the inputs (Helle,  Schamai &
Strobel, 2016).

iii. C88-Delivery speed: a measure of  the rates of  picking, packing, sorting, and labeling of  items (Fitzgerald
& Quasney, 2017).

iv. C89-Functional efforts and expertise: represents the expertise required in the organization to communicate
with the autonomous systems (Fitzgerald & Quasney, 2017).

v. C90-Robustness: represents the ability to overcome or withstand hazardous environments (Wong,  Yang,
Yan & Gu, 2018).
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vi. C91-Safeguards: a measure of  the safety of  the technologies. Sufficient assurances have to be provided
before an autonomous system is allowed to operate in a shared environment with people (Dennis, Fisher,
Slavkovik & Webster, 2016). 

vii. C92-Level of  automation: measures the degree of  maturity of  the technology (EPSRC, 2015).

viii. C93-Investment: represents the amount of  money that needs to be invested (Fitzgerald & Quasney, 2017).

ix. C94-Reliability: measure of  how long a machine performs its intended function. Autonomous production
needs to be reliable to prevent rework, scrap, and accidents. Outputs from reliable production systems
consistently conform to performance requirements (Fox, 2018).

x. C95-Capabilities: represents the ability of  the autonomous system to complete tasks intelligently, with the
focus on safety, flexibility, versatility, and collaboration (Bahrin et al., 2016).

4. Rough BWM-CRITIC-TOPSIS
The proposed method consists of  two phases. First, the rough BWM and CRITIC methods are used to calculate
the integrated weight considering the subjective and objective weight. Second, the rough TOPSIS method is used to
evaluate and rank the plants. Figure 1 shows the research framework.

Figure 1. Research framework
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4.1. Phase I Rough BWM Method to Determine the Subjective Weight

Step 1: Determine the set of  decision criteria. The survey respondents are requested to decide the set of  criteria
C = {C1, C2, …Cn} for Industry 4.0 maturity evaluation, where n is the amount of  criteria.

Step 2: Determine the best (most urgent) criterion and the worst (least urgent) criterion. Experts are requested to
identify the best criterion and the worst criterion from the criteria set.

Step 3: Determine the preference of  the best criterion over all the other criteria. The preferences of  the best criterion
are scored comparing with the other criteria. The preferences are scored from 1 to 9 (1: equally urgent … 9: is
extremely more urgent).

Step 4: Determine the preference of  the worst criterion over all the other criteria. The preferences of  other criteria
are scored compared with the worst criterion. The preferences are scored from 1 to 9 (1: equally urgent … 9: is
extremely more urgent).

Step 5: Calculate the subjective weights, Wsj. To obtain the optimal weights, we need to solve the following linear
programming model.

Min ξ

Subject to

|WB – aBjWsj| ≤ ξ, for all j

|Wsj – ajWWW| ≤ ξ, for all j

ΣWsj = 1

Wsj ≥ 0, for all j

where WB is the weight for the best criterion, WW is the weight for the worst criterion, j is the number of  criterion,
aBj is the preference score of  best criterions with respect to the other criteria, ajW is the preference score of  other
criteria with respect to the worst criterion, Wsj is the weight for the particular criterion, and ΣWsj is the sum of  all of
the weights.

4.2. Rough CRITIC Method to Determine Objective Weight 

Step 1: Normalize the decision matrix. 

(1)

where Xij is the particular value of  itself, Xj
worst is the worst value for the criterion, and Xj

best is the best value for the
criterion.

Step 2: Calculate standard deviation, σj for each criterion.

Step 3: Determine the symmetric matrix of  n x n with element  r jk,  which is the linear correlation coefficient
between the vectors xj and xk.

Step 4: Calculate the measure of  the conflict created by criterion j with respect to the decision situation defined by
the rest of  the criteria by using the following formula:

(2)

Step 5: Determine the quantity of  the information, Cj, in relation to each criterion by using the following:

(3)
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Step 6: Determine the objective weights, Woj, by using the following:

(4)

Step 7: Compute the integrated weights by combining the subjective and objective weights

(5)

where 

Wj represents the comprehensive weight of  each criterion, Wsj represents the subjective weight, and Woj represents
the objective weight.

4.3. Rough TOPSIS to Compute Ranking

Step 1: Compute the normalized rough matrix by using the following:

(6)

Step 2: Compute the weighted normalized rough matrix by multiplying the integrated weights, Wj to XX̄ ij.

Step 3: Determine the ideal (best) value, Vj
+ and the ideal (worst) value, Vj

–.

For beneficial criteria, a highest value is desired (maximum value = ideal best value, minimum value = ideal worst
value).  For  non-beneficial  criteria,  the  lowest  value  is  desired  (minimum value  =  ideal  best  value,  maximum
value = ideal worst value).

Step 4: Calculate the Euclidean distance from the ideal best and worst by using the following equations:

(7)

(8)

Step 5: Determine the relative closeness of  the plants, ci, and rank the plant

(9)

5. Questionnaire Design and the Organization Profiles

Three sections exist in a questionnaire form. The first section is about plant numbers. The second part assesses the
urgency of  individual criteria of  a pillar to the organization’s operations. Scaled questions are used in the second
section–responses are graded on a continuum (rate the urgency of  the criterion on a Likert scale of  1 to 9, with 9
being the most urgent criterion). A brief  description of  each pillar and criterion in the questionnaire is given. The
questionnaire form is developed in a Google form and distributed to the three manufacturing plants through email.
Each plant would have at least three respondents to participate in the survey. The criteria for the respondents are
that they must be holding a managerial and works more than five years in the organization. This category of
personnel would involve in mid-term decision making. Additionally, they have a corporate view of  the organization,
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including organization strategy and long-term decision making. The Google form application presents the survey
results in the form of  a spreadsheet.

The survey is conducted in a manufacturing organization producing medical products. Three plants in Malaysia
under the organization are selected for the study. These manufacturing plants are located within one manufacturing
site. Each of  the reviewed plants had a size of  each between 500 and 1,000 employees. Considering the product
portfolio and their respective production volumes manufactured in the individual plants, their productions differ
from each other. Plant 1 produces mainly small lot sizes with a high variation of  products. Overall demands are
relatively stable, whereas, within the product portfolio, the plant faces considerably varying demands that require
high  flexibility  in  production.  The  architecture  of  the  production,  therefore,  follows  a  “job  shop  discrete
manufacturing  type.”  Plant  2  focuses  on  a  high  production  volume with  a  mid-size  variety.  Considering  the
requirements of  the products, its production flow follows a “repetitive discrete manufacturing architype.” Finally,
Plant 3 is a plant with a high volume and very low flexibility as product variety is also very low. The plant is highly
automated with a considerably low percentage of  manual work contents. The manufacturing architype follows the
principle of  “repetitive process manufacturing.” All plants are running independently from one another but are
connected through main central functions, such as Production Planning or Logistics.

6. Results
We obtained 15 respondents from Plant 1, 10 from Plant 2, and seven from Plant 3. Ten sessions of  rough
BWM-CRITIC-TOPSIS were performed, following the procedures outlined in Section 4. These sessions include
the ranking of  plants following the overall emphasis of  pillars, rankings plants in accordance with each pillar. For
each  session,  results  were  presented  in  two  tables.  The  first  table  shows  the  computation  of  four  steps  in
BWM-CRITIC-TOPSIS, and the second table shows distance, closeness coefficient, and the rank of  each plant.
Finally, we also obtained descriptive statistics of  pillars (Table 21) and criteria (Table 22) at the organization level.

Criteria Subjective
weight

Plant 1 Plant 2 Plant 3 Cj Objective
weight

Integrated
weight

Vj
+ Vj

–

Cpt at. Step 1 Step 2 Step 3 Step 4

P1 0.0498 1.0000 0.6548 0.0000 0.7552 0.0641 0.0280 0.0191 0.0119

P2 0.1480 1.0000 0.5953 0.0000 0.7008 0.0595 0.0772 0.0463 0.0425

P3 0.0682 1.0000 0.8146 0.0000 0.9996 0.0848 0.0507 0.0338 0.0210

P4 0.1831 1.0000 0.0000 0.0000 1.2664 0.1075 0.1725 0.1009 0.0989

P5 0.1372 1.0000 0.2632 0.0000 0.7812 0.0663 0.0797 0.0481 0.0445

P6 0.0946 1.0000 1.0000 0.0000 1.4403 0.1222 0.1013 0.0625 0.0495

P7 0.1175 1.0000 0.0000 0.8823 4.3034 0.3652 0.3762 0.2229 0.2073

P8 0.1067 1.0000 0.5612 0.0000 0.6789 0.0576 0.0539 0.0342 0.0276

P9 0.0949 1.0000 0.7328 0.0000 0.8572 0.0727 0.0605 0.0385 0.0295

Note: Cpt at = compute at.

Table 1. Computation of  rough BWM-CRITIC-TOPSIS for the nine pillars

Plant d – d + Closeness coefficient Rank

Plant 1 0.0281 0.0000 1.0000 1

Plant 2 0.0191 0.0169 0.5310 2

Plant 3 0.0138 0.0234 0.3717 3

Table 2. Distance, closeness coefficient and the rank of  each plant (the nine pillars)
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Criteria Subjective
weight

Plant 1 Plant 2 Plant 3 Cj Objective
weight

Integrated
weight

Vj
+ Vj

–

Cpt at. Step 1 Step 2 Step 3 Step 4

C1 0.0832 1.0000 0.6410 0.0000 0.4043 0.1243 0.1072 0.0670 0.0553

C2 0.1102 1.0000 0.1470 0.0000 0.3115 0.0957 0.1093 0.0661 0.0612

C3 0.1293 1.0000 0.3571 0.0000 0.1611 0.0495 0.0664 0.0421 0.0351

C4 0.0930 1.0000 0.2232 0.0000 0.2270 0.0698 0.0673 0.0446 0.0345

C5 0.1293 1.0000 0.2976 0.0000 0.1768 0.0543 0.0728 0.0461 0.0387

C6 0.1061 1.0000 0.7353 0.0000 0.6010 0.1847 0.2032 0.1247 0.1066

C7 0.0911 1.0000 0.4545 0.0000 0.1844 0.0567 0.0536 0.0349 0.0269

C8 0.0839 1.0000 0.0000 0.1485 0.8277 0.2544 0.2213 0.1462 0.1152

C9 0.0796 1.0000 0.4779 0.0000 0.1993 0.0613 0.0506 0.0339 0.0242

C10 0.0944 1.0000 0.3658 0.0000 0.1606 0.0494 0.0484 0.0308 0.0254

Note: Cpt at = compute at.

Table 3. Computation of  rough BWM-CRITIC-TOPSIS (AM)

Plant d – d + Closeness coefficient Rank

Plant 1 0.0429 0.0000 1.0000 1

Plant 2 0.0170 0.0344 0.3304 2

Plant 3 0.0046 0.0397 0.1039 3

Table 4. Distance, closeness coefficient and the rank of  each plant (AM)

Criteria Subjective
weight

Plant 1 Plant 2 Plant 3 Cj Objective
weight

Integrated
weight

Vj
+ Vj

–

Cpt at. Step 1 Step 2 Step 3 Step 4

C11 0.0754 0.3201 1.0000 0.0000 1.8449 0.0948 0.0779 0.0464 0.0439

C12 0.0911 0.0000 1.0000 0.1861 3.7552 0.1930 0.1915 0.1166 0.1065

C13 0.1078 1.0000 0.5000 0.0000 1.7791 0.0914 0.1073 0.0626 0.0613

C14 0.1078 1.0000 0.7353 0.0000 1.2552 0.0645 0.0757 0.0450 0.0419

C15 0.1045 0.5000 1.0000 0.0000 1.3346 0.0686 0.0781 0.0478 0.0422

C16 0.1078 0.4500 1.0000 0.0000 1.4529 0.0747 0.0877 0.0527 0.0486

C17 0.0964 1.0000 0.1388 0.0000 3.3479 0.1720 0.1806 0.1091 0.1012

C18 0.0624 1.0000 0.8163 0.0000 1.1623 0.0597 0.0406 0.0254 0.0201

C19 0.0706 1.0000 0.6452 0.0000 1.4097 0.0724 0.0557 0.0341 0.0296

C20 0.0849 0.7000 1.0000 0.0000 1.0425 0.0536 0.0496 0.0297 0.0272

C21 0.0915 0.9834 1.0000 0.0000 1.0774 0.0554 0.0552 0.0344 0.0263

Note: Cpt at = compute at.

Table 5. Computation of  rough BWM-CRITIC-TOPSIS (cloud computing)

Plant d – d + Closeness coefficient Rank

Plant 1 0.0142 0.0109 0.5646 2

Plant 2 0.0162 0.0071 0.6942 1

Plant 3 0.0019 0.0178 0.0958 3

Table 6. Distance, closeness coefficient and the rank of  each plant (cloud computing)
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Criteria Subjective
weight

Plant 1 Plant 2 Plant 3 Cj Objective
weight

Integrated
weight

Vj
+ Vj

–

Cpt at. Step 1 Step 2 Step 3 Step 4

C22 0.0767 0.9939 1.0000 0.0000 0.9143 0.1079 0.0771 0.0496 0.0320

C23 0.0895 1.0000 0.5682 0.0000 0.4135 0.0488 0.0407 0.0267 0.0196

C24 0.1249 1.0000 0.0000 0.2000 2.0125 0.2376 0.2763 0.1695 0.1526

C25 0.0861 1.0000 0.6633 0.0000 0.4276 0.0505 0.0405 0.0257 0.0203

C26 0.0789 1.0000 0.6000 0.0000 0.4117 0.0486 0.0357 0.0228 0.0179

C27 0.0977 1.0000 0.6349 0.0000 0.4173 0.0493 0.0449 0.0291 0.0217

C28 0.1249 1.0000 0.0000 0.0909 1.7198 0.2030 0.2361 0.1460 0.1305

C29 0.1049 1.0000 0.9322 0.0000 0.7623 0.0900 0.0879 0.0551 0.0418

C30 0.1222 1.0000 0.8000 0.0000 0.5470 0.0646 0.0735 0.0459 0.0367

C31 0.0941 1.0000 0.9722 0.0000 0.8445 0.0997 0.0874 0.0555 0.0390

Note: Cpt at = compute at.

Table 7. Computation of  rough BWM-CRITIC-TOPSIS (AR)

Plant d – d + Closeness coefficient Rank

Plant 1 0.0391 0.0001 0.9973 1

Plant 2 0.0289 0.0235 0.5513 2

Plant 3 0.0037 0.0372 0.0897 3

Table 8. Distance, closeness coefficient and the rank of  each plant (AR)

Criteria Subjective
weight

Plant 1 Plant 2 Plant 3 Cj Objective
weight

Integrated
weight

Vj
+ Vj

–

Cpt at. Step 1 Step 2 Step 3 Step 4

C32 0.0472 1.0000 0.3572 0.0000 1.9940 0.0637 0.0289 0.0172 0.0163

C33 0.1164 1.0000 0.5263 0.0000 2.1952 0.0702 0.0784 0.0469 0.0435

C34 0.1164 1.0000 0.9706 0.0000 3.5846 0.1146 0.1280 0.0824 0.0544

C35 0.1164 0.9750 1.0000 0.0000 3.7340 0.1193 0.1333 0.0811 0.0684

C36 0.0220 1.0000 0.6928 0.0000 2.5778 0.0824 0.0174 0.0117 0.0075

C37 0.1164 1.0000 0.0000 0.4117 2.2369 0.0715 0.0799 0.0504 0.0421

C38 0.1164 0.3999 0.0000 1.0000 5.6381 0.1802 0.2013 0.1187 0.1140

C39 0.1164 1.0000 0.1041 0.0000 2.0249 0.0647 0.0723 0.0443 0.0402

C40 0.1164 0.6000 0.0000 1.0000 4.9105 0.1569 0.1752 0.1026 0.0995

C41 0.1164 1.0000 0.0000 0.5002 2.3931 0.0765 0.0854 0.0503 0.0483

Note: Cpt at = compute at.

Table 9. Computation of  rough BWM-CRITIC-TOPSIS (cybersecurity)

Plant d – d + Closeness coefficient Rank

Plant 1 0.0326 0.0031 0.9130 1

Plant 2 0.0302 0.0111 0.7316 2

Plant 3 0.0066 0.0319 0.1723 3

Table 10. Distance, closeness coefficient and the rank of  each plant (cybersecurity)
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Criteria Subjective
weight

Plant 1 Plant 2 Plant 3 Cj Objective
weight

Integrated
weight

Vj
+ Vj

–

Cpt at. Step 1 Step 2 Step 3 Step 4

C42 0.1015 0.1200 0.0000 1.0000 6.1679 0.1247 0.1410 0.0868 0.0781

C43 0.1003 0.6002 0.0000 1.0000 4.3267 0.0875 0.0978 0.0567 0.0561

C44 0.1058 0.4668 0.0000 1.0000 4.6758 0.0946 0.1115 0.0654 0.0634

C45 0.0871 1.0000 0.3947 0.0000 3.6126 0.0731 0.0709 0.0445 0.0377

C46 0.0839 1.0000 0.7857 0.0000 4.7829 0.0967 0.0904 0.0553 0.0473

C47 0.1058 1.0000 0.0000 0.0000 3.4949 0.0707 0.0833 0.0499 0.0472

C48 0.0677 0.9524 1.0000 0.0000 5.8363 0.1180 0.0890 0.0554 0.0429

C49 0.0445 1.0000 0.8036 0.0000 4.8612 0.0983 0.0487 0.0309 0.0235

C50 0.0938 1.0000 0.1786 0.0000 3.4301 0.0694 0.0725 0.0449 0.0398

C51 0.1037 0.6308 0.0000 1.0000 4.2657 0.0863 0.0997 0.0611 0.0532

C52 0.1058 0.9201 0.0000 1.0000 3.9895 0.0807 0.0951 0.0569 0.0512

Note: Cpt at = compute at.

Table 11. Computation of  rough BWM-CRITIC-TOPSIS (IoT)

Plant d – d + Closeness coefficient Rank

Plant 1 0.0199 0.0083 0.7058 1

Plant 2 0.0155 0.0149 0.5094 2

Plant 3 0.0132 0.0188 0.4126 3

Table 12. Distance, closeness coefficient and the rank of  each plant (IoT)

Criteria Subjective
weight

Plant 1 Plant 2 Plant 3 Cj Objective
weight

Integrated
weight

Vj
+ Vj

–

Cpt at. Step 1 Step 2 Step 3 Step 4

C53 0.0802 1.0000 0.2083 0.0000 0.8575 0.0997 0.0870 0.0549 0.0469

C54 0.0862 1.0000 0.8333 0.0000 0.6180 0.0719 0.0674 0.0403 0.0367

C55 0.1072 0.7199 1.0000 0.0000 1.6662 0.1938 0.2261 0.1334 0.1266

C56 0.0794 1.0000 0.5405 0.0000 0.3850 0.0448 0.0387 0.0241 0.0204

C57 0.1072 1.0000 0.7143 0.0000 0.4534 0.0527 0.0615 0.0368 0.0337

C58 0.0929 1.0000 0.3125 0.0000 0.6266 0.0729 0.0737 0.0473 0.0385

C59 0.0687 0.9895 1.0000 0.0000 1.0056 0.1170 0.0875 0.0540 0.0429

C60 0.0893 1.0000 0.3030 0.0000 0.6446 0.0750 0.0729 0.0454 0.0394

C61 0.0968 1.0000 0.0000 0.0000 1.5147 0.1762 0.1856 0.1141 0.1035

C62 0.0850 1.0000 0.7052 0.0000 0.4445 0.0517 0.0478 0.0296 0.0248

C63 0.1072 1.0000 0.5555 0.0000 0.3824 0.0445 0.0519 0.0310 0.0288

Note: Cpt at = compute at.

Table 13. Computation of  rough BWM-CRITIC-TOPSIS (advanced simulation)

Plant d – d + Closeness coefficient Rank

Plant 1 0.0223 0.0019 0.9218 1

Plant 2 0.0145 0.0146 0.4985 2

Plant 3 0.0000 0.0228 0.0000 3

Table 14. Distance, closeness coefficient and the rank of  each plant (advanced simulation)
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Criteria Subjective
weight

Plant 1 Plant 2 Plant 3 Cj Objective
weight

Integrated
weight

Vj
+ Vj

–

Cpt at. Step 1 Step 2 Step 3 Step 4

C64 0.1102 0.6000 0.0000 1.0000 1.5310 0.0886 0.1017 0.0615 0.0554

C65 0.0938 0.6000 0.0000 1.0000 1.5310 0.0886 0.0866 0.0518 0.0479

C66 0.1102 1.0000 0.0000 0.7143 0.9573 0.0554 0.0636 0.0381 0.0348

C67 0.0887 0.7200 0.0000 1.0000 1.3014 0.0753 0.0696 0.0420 0.0376

C68 0.0554 1.0000 0.1087 0.0000 3.0351 0.1757 0.1014 0.0623 0.0563

C69 0.1102 1.0000 0.0000 0.7895 0.9487 0.0549 0.0630 0.0381 0.0337

C70 0.1102 0.4286 0.0000 1.0000 2.0225 0.1171 0.1344 0.0805 0.0749

C71 0.1011 1.0000 0.0000 0.0000 2.8127 0.1628 0.1714 0.1032 0.0968

C72 0.1102 0.8500 0.0000 1.0000 1.1506 0.0666 0.0764 0.0455 0.0418

C73 0.1102 1.0000 0.0000 0.2000 1.9850 0.1149 0.1319 0.0809 0.0728

Note: Cpt at = compute at.

Table 15. Computation of  rough BWM-CRITIC-TOPSIS (universal integration)

Plant d – d + Closeness coefficient Rank

Plant 1 0.0148 0.0045 0.7647 1

Plant 2 0.0007 0.0169 0.0373 3

Plant 3 0.0118 0.0110 0.5164 2

Table 16. Distance, closeness coefficient and the rank of  each plant (universal integration)

Criteria Subjective
weight

Plant 1 Plant 2 Plant 3 Cj Objective
weight

Integrated
weight

Vj
+ Vj

–

Cpt at. Step 1 Step 2 Step 3 Step 4

C74 0.0990 1.0000 0.0000 0.4545 1.8141 0.0587 0.0672 0.0408 0.0369

C75 0.0727 1.0000 0.6818 0.0000 2.7140 0.0878 0.0739 0.0465 0.0374

C76 0.0844 1.0000 0.9722 0.0000 4.2359 0.1370 0.1338 0.0794 0.0729

C77 0.0990 1.0000 0.4167 0.0000 1.8633 0.0603 0.0691 0.0416 0.0383

C78 0.0990 0.6941 0.0000 1.0000 4.9624 0.1605 0.1838 0.1144 0.0946

C79 0.0742 1.0000 0.6757 0.0000 2.6882 0.0869 0.0746 0.0464 0.0386

C80 0.0983 1.0000 0.0000 0.5932 2.1899 0.0708 0.0805 0.0493 0.0431

C81 0.0990 0.9111 0.0000 1.0000 4.2965 0.1389 0.1591 0.0982 0.0798

C82 0.0457 1.0000 0.0000 0.0562 1.5441 0.0499 0.0264 0.0173 0.0140

C83 0.0772 1.0000 0.0000 0.1515 1.5101 0.0488 0.0436 0.0276 0.0236

C84 0.0802 1.0000 0.0961 0.0000 1.5521 0.0502 0.0466 0.0290 0.0256

C85 0.0713 1.0000 0.1389 0.0000 1.5529 0.0502 0.0414 0.0264 0.0222

Note: Cpt at = compute at.

Table 17. Computation of  rough BWM-CRITIC-TOPSIS (big data)

Plant d – d + Closeness coefficient Rank

Plant 1 0.0279 0.0063 0.8160 1

Plant 2 0.0104 0.0292 0.2632 3

Plant 3 0.0274 0.0161 0.6303 2

Table 18. Distance, closeness coefficient and the rank of  each plant (big data)
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Criteria Subjective
weight

Plant 1 Plant 2 Plant 3 Cj Objective
weight

Integrated
weight

Vj
+ Vj

–

Cpt at. Step 1 Step 2 Step 3 Step 4

C86 0.0383 1.0000 0.0000 1.0000 2.0394 0.1200 0.0455 0.0264 0.0261

C87 0.1150 1.0000 0.0000 0.8491 1.5568 0.0916 0.1043 0.0628 0.0559

C88 0.1150 1.0000 0.0000 0.1851 1.0464 0.0616 0.0701 0.0418 0.0396

C89 0.1150 1.0000 0.0000 0.4386 0.9067 0.0533 0.0607 0.0372 0.0329

C90 0.1150 1.0000 0.3677 0.0000 2.0346 0.1197 0.1363 0.0847 0.0734

C91 0.1150 1.0000 0.0000 0.7447 1.2925 0.0760 0.0865 0.0519 0.0471

C92 0.1150 1.0000 0.4167 0.0000 2.1827 0.1284 0.1462 0.0900 0.0792

C93 0.0421 1.0000 0.0000 0.1351 1.1189 0.0658 0.0274 0.0166 0.0153

C94 0.1150 0.6001 0.0000 1.0000 3.0571 0.1799 0.2049 0.1205 0.1157

C95 0.1150 1.0000 0.2586 0.0000 1.7601 0.1036 0.1180 0.0729 0.0645

Note: Cpt at = compute at.

Table 19. Computation of  rough BWM-CRITIC-TOPSIS for autonomous systems

Plant d – d + Closeness coefficient Rank

Plant 1 0.0204 0.0019 0.9138 1

Plant 2 0.0065 0.0157 0.2925 3

Plant 3 0.0086 0.0181 0.3209 2

Table 20. Distance, closeness coefficient and the rank of  each plant (autonomous systems)

Most urgent pillar Least urgent pillar Most consistent pillar Least consistent pillar

Industry 4.0 P4 P1 P4 P3

Table 21. Descriptive statistics of  pillars at the organization level.

Aspect Most urgent
criterion

Least urgent
criterion

Most consistent
criterion

Least consistent
criterion

AM C5 C9 C2 C9

Cloud Computing C13 C18 C13 C21

AR C28 C22 C24 C22

Cybersecurity C32 C36 C40 C36

IoT C47 C49 C43 C49

Advanced Simulation C55 C59 C55 C59

Universal Integration C70 C68 C71 C69

Big Data C78 C82 C77 C82

Autonomous Systems C86 C93 C86 C90

Table 22. Descriptive statistics of  criteria at the organization level based on pillars.

7. Discussion
Three members in senior management, including the vice-president of  the organization reviewed the results in a
focus group session and agreed on the findings. They also provided the insights that help to explain the findings. In
the discussion, the plants are first compared in terms of  emphasis in the nine pillars of  Industry 4.0. Table 1 shows
the computation of  BWM-CRITIC-TOPSIS, and Table 2 presents the distance, closeness coefficient, and the rank
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of  each plant. In Table 2, Plant 1 is at the highest maturity level among the three manufacturing plants. This result
indicates that Plant 1 has the highest receptiveness among the tactical level management in implementing the nine
pillars of  Industry 4.0. The maturity of  Plant 2 ranks second followed by Plant 3.

The plants are then compared in terms of  emphasis in the criteria for each pillar of  Industry 4.0. Tables 3, 5, 7, 9,
11, 13, 15, 17, and 19 show the computation of  BWM-CRITIC-TOPSIS, and Tables 4, 6, 8, 10, 12, 14, 16, 18, and
20 present the distance, closeness coefficient, and the rank of  each plant. The ranking between the plants is directly
linked to the maturity in rolling out a horizontal integration of  various systems. In seeking for improvement, Plants
2 and 3 would have more exposure and infrastructure setup on Industry 4.0 elements. From another perspective,
Plant 1 has always been more labor-intensive and higher product mix. Not until recently, a roadmap with a more
prescriptive path of  Industry 4.0 is determined in Plant 1 to improve its competitiveness. The initial efforts of  the
roadmap were placed to integrate and digitize performance measures at the plant level. Management discussion and
awareness workshops on Industry 4.0 were regularly conducted. The results show that Plant 1 is rather consistent in
pursuing all pillars of  Industry 4.0. From another perspective, the findings also provided empirical evidence that
advanced infrastructure would lead to organization inertia (in this case, Plants 2 and 3) to further aggressively
pursue technological change. Harraf, Soltwisch and Talbott (2016) noted that the newly invested technologies and
capabilities  may become the source of  complacency for the organizations  as they become less responsive to
opportunities and threats in their environment. Therefore, the top management would require to plan and deploy a
long-term strategy to inspire tactical level management under such a scenario to break the organization’s inertia.

From the perspective of  the AM aspect, Table 4 shows that Plant 1 has the highest urgency in implementing AM
technology, and Plant 3 has a relatively lesser urgency to adopt AM technology. This result is expected because the
AM technology is mainly beneficial for small lot sizes with a high focus on customization. This context would
perfectly fit into the job shop discrete manufacturing architype implemented in Plant 1. Plants 2 and 3 represent a
repetitive  architype,  in  which,  in  combination  with  a  low variety  and  big  production  volumes,  a  competitive
advantage is not yet expected when applying AM technologies. From the perspective of  the cloud computing
aspect, Table 6 shows that Plant 2 has the highest urgency in adopting cloud computing technology. Considering
the high degree of  automation in Plant 2, considerable data are generated and collected daily for further processing.
The usage of  cloud computing is foreseen to lift efficiency in such a production environment. From the perspective
of  AR (Table 8) and cybersecurity (Table 10) aspects, the results show that Plant 1 has the highest urgency in
adopting  the  technology,  whereas  Plant  3  has  the  lowest  urgency  in  implementing  technology  of  AR  and
cybersecurity. AR is applied mainly in Plant 1 today already as a digital assistant system for manual operations. The
potential however also had been explored in Plant 3, in which the main application can be found for maintenance
activities. The urgency of  cybersecurity can be concluded as a result of  system interconnectivity projects running in
each of  the plants.

From  the  perspective  of  IoT  and  advanced  simulation,  Plant  1  has  the  highest  urgency  in  adopting  these
technologies compared with the other two plants, whereas Plant 3 has the lowest urgency in implementing these
technologies. From the perspective of  the universal integration aspect, Table 16 shows that Plant 1 has the highest
urgency, whereas Plant 2 has the least urgency in adopting universal integration. The main contribution for this
difference is linked to the inventory replenishment system applied in the various plants. Plant 1 is directly linked to
the customer needs as the inventory is comparably low and a fast reaction time on customer peak demands is
required. Plant 2 however reacts on a forecast planning with a relatively stable demand distributed on the various
products produced. From the perspective of  big data and autonomous systems, Tables 18 and 20 show that Plant 1
has the highest sense of  urgency in implementing these technologies, whereas Plant 2 has the lowest sense of
urgency. Given the highly mature automation level in Plant 2, the usage of  big data and autonomous systems had
become the normal practice, which stands in comparison to Plant 1, in which a manual operation represents the
majority of  the shop floor.

The study also reveals the urgency of  pillars and criteria at the organization level. In Table 21, the most urgent pillar
is “Cybersecurity (P4).” This result underlines the commitment of  the tactical level management to be vigilant on
data management and data security within the organization. Additionally, the organization mandates regular training
on handling data safely and appropriately,  which explains the most consistent criterion from the cybersecurity
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aspect being the “Integrity (C40).” The constant emphasis on cybersecurity may explain why the most urgent
criterion for the organization to implement cybersecurity is “Reliability (C32),” the most urgent criterion for the
organization to implement IoT is “Security and privacy issues (C47),” the most urgent criterion for the organization
to implement universal integration is “Data integration (C70),” and the most urgent criterion for the organization to
implement big data is “Value (C78).” Generally, the cost and efficiency of  the underlying process (backend process)
are often not highly considered by the middle-level management as the least urgent criterion for cybersecurity is
“Economic returns (C36).” The impact of  a cybersecurity incident may be viewed as costlier than the investment.

The result  reveals that  the least  urgent pillar is  AM(P1),” indicating the general  concerns by the tactical level
management on the maturity of  AM technology to produce reliable and quality high-end medical products. The
current  development  of  AM  only  accommodates  small  quantity  production  and  customization  approach.
Therefore, the technology of  AM is explored cautiously by the organization through preliminary and small-scale
exploratory studies to support research and development.  As urgent manufacturing of  products in Plant 1 is
observed, AM is rather seen as a possibility to manufacture spare parts or fixtures in Plants 2 and 3. The most
consistent criterion from the AM aspect is “Material usage (C2),” and the most urgent criterion for the organization
in AM technology is “Product quality (C5).”

The most consistent criterion from the cloud computing aspect is “Availability (C13),” whereas the least consistent
criterion is “Contribution to design and prototyping (C18).” The main reason for the consistency of  “Availability
(C13)” can be linked to a centralized training approach and the common user experience in cloud computing across
the various plants. On the contrary, the functional linkage to design and prototyping differs from plant to plant,
explaining the least consistent criterion for (C18). The most consistent criterion from the AR aspect is “Training
(C24),” which confirms again the experiences at the organization level, whereas the least urgent and consistent
criterion is “Human–robot collaboration (C22).” The latter criterion is undermining the heterogeneous level of
automation in the different plants, and with this, the variation needs further human–robot interactions. The most
consistent criterion from the IoT aspect is “Automation control (C43),” underlining not only the central training
approach  but  also  the  user  experience  in  all  plants.  By  contrast,  the  least  consistent  criterion  is  “Energy
consumption (C49),” which directly links to the inconsistent impact of  energy consumption in the individual plants.
The most urgent criterion for the organization to implement advanced simulation is “Reliability (C55),” as the
results must be fully proven because of  the huge impact on, for example, quality, costs, and delivery. Moreover, the
least urgent criterion is “Process design (C59).” The most consistent criterion from the universal integration aspect
is “system integration (C71)” as this underlines the consistent user experience in all plants. The least consistent
criterion is “Integration of  management systems (C69),” which links back again to the variation on the level of
automation and transparency in the various plants.  The most consistent criterion from the big data aspect is
“Velocity (C77),” confirming the overall expected capability for fast decision making, whereas the least consistent
criterion is “Volatility (C82).” The most urgent and most consistent criterion for the organization to implement
autonomous systems is “Efficiency (C86).” This result confirms the effectiveness of  the strategic target setting
process, which is aligned across the organization and cascaded down to the various plants, driving the common
understanding and synergies of  an expected outcome for autonomous systems. The least consistent criterion from
the autonomous systems aspect is “Robustness (C90),” and the least urgent criterion is “Investment (C93),” which
testify once more to the heterogeneous level of  automation in the various plants.

The  results  have  been  corroborated  by  the  senior  management,  and  therefore  suggest  the  suitability  of
BWM-CRITIC-TOPSIS to provide ranking in this comparative study to elicit perception-based information. The
three constituent methods in BWM-CRITIC-TOPSIS play different roles. BWM leads to reliable subjective weights
in group decision-making where respondents may be from diverse backgrounds. Taking in the same set of  inputs,
CRITIC takes into account of  the contrast intensity and the conflicting relationship held by individual criteria to
generate objective weights (Peng, Zhang & Luo, 2020). Consequently, higher weight is assigned to a criterion with a
higher degree  of  conflict  or  a  lower degree  of  redundancy.  Finally,  TOPSIS has demonstrated the  ability  to
integrate  weights,  which  provides  moderation  effects  to  the  subjective  and  objective  weights.  In  a  simple
mathematical form, the integrated weights provide a final scalar value to rank the criteria based on the sense of
urgency to implement each I4.0 pillar.
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8. Conclusion

The  research  conducted  a  comparative  study  to  survey  and  compare  the  sense  of  urgency  of  tactical-level
management in three sister plants to adopt different Industry 4.0 technologies, based on a comprehensive list of
related criteria. To cater for varying knowledge and judgment of  participants to certain pillars and criteria, the rough
BWM-CRITIC-TOPSIS method which considered objective and subjective weights in the analysis was used to rank
the plants based on the urgency to adopt a particular technology. The results indicate that a high-mix, low-volume,
and labor-intensive  plant  (Plant  1)  is  at  the  highest  urgency  level  among  the  three  plants,  whereas  a  largely
automated plant (Plant 3) has the lowest urgency in adopting Industry 4.0 technologies. Despite recent Industry 4.0
awareness programs in Plant 1 contributing to the findings,  the finding also provides empirical  evidence that
advanced  infrastructure  would  lead  to  organization  inertia  (in  the  case  of  Plant  3)  to  aggressively  pursuing
technological change. Among the nine pillars of  Industry 4.0, the most urgent pillar is cybersecurity, and the least
urgent one is AM. This result outlines the concern over cyber threats when the product information is increasingly
integrated  into  the  supply  chain  and  the  technology  immaturity  of  AM in  production.  In  term of  research
contribution, the study demonstrated differing senses of  urgency of  tactical level management of  different sister
plants  in  technology adoption.  The research  also  demonstrated the  usefulness  of  BWM-CRITIC-TOPSIS to
generate an integrated hence fairer weights to rank Industry 4.0 pillars and the sister plants. The results help the
company management to understand the position of  tactical level management and potentially facilitate a better
Industry 4.0 strategy planning. The limitation of  the research is that the data collection was obtained exclusively
from an identified groups of  employees from different plants in the  manufacturing organization.  The results
therefore are empirical and may reflect the idiosyncrasy of  the organization.
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