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Abstract:

Purpose: The research studies the production system having multiple items being processed on the same
production line. The objectives are to (1) investigate the influence of  production sequence on the optimal
value of  production run size, (2) explore the effect of  production sequence on the maximum inventory
level, which can affect the storage space required, and (3) propose a method to determine the proper
production sequence in order to minimize the required storage space.

Design/methodology/approach: Finding that the optimal production sequence, which yields the lowest
storage space required, is independent of  the production run size, the research problem is divided into two
independent  subproblems.  The  first  subproblem is  to  determine  the  optimal  production  run  size  to
minimize the total variable cost. Here, the solution obtained from the classical multiple items EPQ model
still holds. The second subproblem is to explore the proper production sequence in order to minimize the
storage space required. The relationship between the production sequence and the value of  maximum
inventory  level  is  determined and formulated.  To explore  the  proper  production  sequence,  a  genetic
algorithm is developed. For the performance evaluation, two experimental studies are conducted. The first
experiment is to compare the solution obtained from the proposed method with the optimal solution
yielded from the enumeration method on 360 small size problems. The second experiment is conducted
on 180 large size problems. The result obtained from the proposed method is compared with the result
yielded from the Largest Pi First (LPF) heuristic constructed by arranging the production of  each item
according to its production rate in non-increasing order.

Findings: It has been found that the optimal production sequence is independent of  the production run
size. Nonetheless, different production sequences yield different required storage spaces. With the proper
production sequence, the manufacturer can reduce the total space required to keep its inventory. The
proposed genetic algorithm can be applied to determine the proper production sequence in a reasonable
amount of  time. For the small size problem of  8 and 10 production items, the 95% confidence interval on
mean of  the percentage deviation between the solution yielded from the proposed genetic algorithm and
the optimal solution is (0.0015, 0.0123). For the large size problem of  15 production items, the proposed
genetic algorithm provides the better solution than the LPF heuristic for 158 out of  180 problems with the
95% confidence interval on mean of  the percentage deviation of  (5.5629, 7.0435). For those remaining 22
problems, the two methods yield the same results. In comparison to the LPF heuristic, the benefit of
genetic algorithm is more pronounced when the slack proportion is getting smaller.

Research  limitations/implications: According  to  the  research  model,  no  shortages  are  allowed.
Therefore, the model is applicable for the production system having the summation value of  the ratio
between demand rate and production rate for all items not greater than one.
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Originality/value: Those traditional research involving the determination of  optimal production run size
and production sequence in the system having multiple items being produced on the same production line
differs from each other in their production environments. However, most of  them still have the objective
function of  minimizing the total system cost incurred. To the best of  our literature searching, none of
them discussed the influence of  production sequence on the total inventory level, which directly affects the
required storage space, one of  the critical issues facing by many manufacturers. The originality of  this work
is to show that different production sequence yields different total storage space required and proposed the
method to determine proper production sequence.
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1. Introduction

The problem relevant to the lot size determination, for either making or buying decisions, is one crucial issue facing
most organizations. One of  the oldest pieces of  research involving the lot size determination is the work of  Harris
(1990). In his work, a well-known economics order quantity (EOQ) model was presented to determine the optimal
replenishment lot size. The optimal ordered quantity was calculated by taking the first derivative of  the annual total
cost respected to the ordered quantity.  In the past several decades,  plenty of  research has been developed by
relaxing the assumption of  the basic EOQ model in several ways. A literature survey on the evolution of  Harris’s
EOQ model was presented by Andriolo, Battini, Grubbström, Persona, and Sgarbossa (2014).

An essential extension of  the EOQ model is the case when the system has a finite rate of  replenishment. This
condition  can  be  found  in  most  production  environments.  Taft  (1918)  proposed  the  economics  production
quantity (EPQ) model to determine the optimal production quantity by relaxing the assumption of  the infinite
production rate of  the EOQ model. The research assumes that the finite production rate is known and constant.
With a finite production rate, the replenishment item is produced and added to the system gradually rather than all
at  once.  The EPQ model  and its  variants  have gained much attention  from many researchers.  Misra  (1975)
discussed an EPQ model for a system with a deteriorating inventory. The cost of  inventory deterioration was
included in the total variable cost. For the case of  constant deterioration rate, the optimum production cycle length
and production lot size were determined by taking the derivative of  total variable cost. A numerical method was
suggested to determine the solution when the inventory deterioration rate is Weibull distributed.  Darwish (2008)
studied the relationship between the setup cost and the production run length in the EPQ model. The research
assumes that the setup cost is a function of  the production run length defined by a setup cost shape factor. The
total cost functions associated with two different cases, EPQ models with and without backorders, were proved to
be convex. The optimal solution is, then, determined by separately taking the partial derivative of  the total cost
function respected to the production cycle length and the backorder level. The result obtained from the numerical
experiment shows that the optimal production cycle length increases when the setup cost shape factor approaches
zero.  Cárdenas-Barrón (2011)  presented the basic concepts of  analytic geometry and algebra to determine the
optimal lot size and backorders level for the system having both linear and fixed backordering costs. The economic
production quantity  model with backordering cost  and imperfect  items was discussed by  Hayek and Salameh
(2001). The model assumes that, for each production cycle, there are two portions of  production time: the regular
production time and the production time required to rework those nonconforming items occurred. The optimal
production lot size and backordering quantity were determined by taking the partial derivative of  the expected value
of  the total cost function. Similar research with multiple shipments was examined by  Chiu, Lin, Wu, and Yang
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(2011). Unlike the traditional  EPQ model,  which assumes a continuous inventory issuing policy,  the research
investigated the realistic case of  multiple shipments in each production cycle. The optimal production lot size and
number of  deliveries are determined by taking partial derivatives of  a long-run average total cost function respected
to those corresponding decision variables.

For the intermittent production processes, a number of  products are generally required to share the same equipment
on a rotating basis. Different production items are produced on a regular cycle in predetermined production lot sizes
(Tersine, 1994).  This situation leads to the research area known as the multiple items EPQ model. Some of  those
earliest research involving the multiple item EPQ model with the objective of  production cycle length determination
can be found in the works of  Bomberger (1966), Goyal (1973), and Eilon (1985). Taleizadeh, Najafi, and Akhavan
Niaki (2010) addressed the problem of  multiple items EPQ model with imperfect quality. The defective rate of  each
item is a random variable and all defective items must be scrapped. Shortages are allowed and fully backordered. The
optimal production cycle length and backordered quantities of  each item were determined by equating the partial
derivatives of  the total cost function with zero. The research was later extended by Taleizadeh, Cárdenas-Barrón, and
Mohammadi (2014)  to the case when some imperfect items can be reworked.  Pirayesh and Poormoaied (2015)
discussed the research relevant to multiple items EPQ model with production capacity limitation. In order to prevent
shortages, those items that cannot be supplied by the production must be procured from outside suppliers. The meta-
heuristic based on genetic algorithm and particle swarm optimization is presented to search for a good problem
solution. In the situation that many jobs must be processed on the same production line, the determination of  proper
production sequence is another research area that has gained a lot of  attention from many researchers. Comprehensive
reviews on the production sequencing and scheduling with job sequence-dependent setup time and/or cost can be
found in the works of  Allahverdi, Gupta, and Aldowaisan (1999) and Zhu and Wilhelm (2006). Gilmore and Gomory
(1964) considered the job sequencing problem on a single machine with sequence-dependent changeover cost as the
shortest path traveling salesman problem. Barnes and Vanston (1981) discussed the job sequencing problem for the
production system having sequence-dependent setup cost and delay penalty cost. The Dynamic Programming/Branch
and Bound (DPBB) algorithm was employed to search for the problem solution. Ángel-Bello, Álvarez, Pacheco, and
Martínez (2011)  studied a single machine scheduling problem with sequence-dependent setup time and preventive
machine maintenance. Here, both time between two consecutive maintenance activities and maintenance time are
known and constant. Besides those regular jobs to be processed, each maintenance activity is considered as a job with
sequence-dependent maintenance preparing time. The mixed-integer linear model was introduced to determine the
solution for the objective of  make-span minimization.  Dolgui, Kovalyov, and Shchamialiova (2011)  presented the
multiple items EPQ model with sequence-dependent setup time and imperfect machine. Two different problem cases
are considered. While the first one assumes that all product demands are satisfied and the objective is to minimize the
make-span, the second one allows some demands to be unsatisfied and has the objective of  total dissatisfaction cost
minimization.

Traditionally,  that research involving the multiple items EPQ model do not consider the effect of  production
sequence on the total inventory level, which is varied over the time of  production. In fact, the maximum value of
total  inventory level  can directly  affect  the storage space required,  a significant constraint concerned by most
organizations. Unlike traditional research, this research studies the influence of  production sequence on the total
inventory level and the optimal production run size. The genetic algorithm is presented to determine the proper
production sequence with the objective of  minimizing the required storage space.

2. Problem Description

The research study the production system having multiple items being produced on the same production line. Each
item has its own setup cost, holding cost, demand rate, and production rate. The shortage is not allowed and,
hence, the production rate of  each item must be greater than or equal to its demand rate. The total production time
required to satisfy the total annual demand of  all items must be less than or equal to the available working time per
year. The production of  all items is conducted in the production cycle. For each production cycle, different items
may have different amounts of  production quantity to be produced. Nonetheless, each production cycle produces
the same amount of  each item and has the same production sequence. For any production item, each unit being
produced  requires  one  cubic  volume  of  storage  space.  The  research  objective  is  to  determine  the  proper
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production  run  size  and  production  sequence  in  such  a  way  that  the  total  variable  cost,  composed  of  the
production setup cost and the inventory holding cost, and the required storage space are minimized. The following
notations are applied throughout the paper.

n number of  production items

T production cycle length (years)

m number of  production runs (cycles/year);  

Di annual demand of  item i (units); for i = 1, 2, …, n

D[i] annual demand of  item being produced at position i (units); for i = 1, 2, …, n

R total annual demand of  all items (units); R = ∑n
i=1 Di 

πi annual production rate of  item i (units); for i = 1, 2, …, n

π[i] annual production rate of  item being produced at position i (units); for i = 1, 2, …, n

Hi holding cost of  item i (dollars per unit per year); for i = 1, 2, …, n

Si production setup cost (dollars per production setup of  each item); for i = 1, 2, …, n

Qi production quantity of  item i (units); for i = 1, 2, …, n

Q[i] production quantity of  item being produced at position i (units); for i = 1, 2, …, n

tp production time of  item i (years/cycle); for i = 1, 2, …, n

tp[i] production time of  item being produced at position i (years/cycle); for i = 1, 2, …, n

tslack slack time; tslack = T –∑n
i=1 tp[i]

ji production item i; for i = 1, 2, …, n

j[i] production item being produced at position i of  the sequence; for i = 1, 2, …, n

I[0] total inventory level at the beginning of  each production run (units)

I[i] total inventory level after the production of  the item being produced at position i is ended (units); for i = 1, 
2, …, n

Imax maximum value of  I[i] (units); for i = 1, 2, …, n

V[i] total inventory changing amount from I[i–1] to I[i] (units); V[i] = I[i] – I[i–1]; for i = 1, 2, …, n

ρi ratio of  Di to πi; for i = 1, 2, …, n

ρ[i] ratio of  D[i] to π[i]; for i = 1, 2, …, n

ρslack slack proportion which is the ratio between remaining time per production cycle and the production cycle 
length; ρslack  = tslack/T or ρslack = 1 –∑n

i=1 ρi

N number of  parent chromosomes

rx probability of  crossover

rm probability of  mutation

Fp fitness value of  the chromosome p; for p = 1, 2, …, 2N

Pp probability that the chromosome p is selected; for p = 1, 2, …, 2N

The problem characteristics can be illustrated as shown in example 1.

Example 1: Given that there are five items to be produced on the same production line. The information regarding
annual demand, annual production rate, holding cost rate, and setup cost of  each production item is demonstrated
in Table 1. Here, the total available number of  working days per year is assumed to be 250.
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Item i Di πi Hi Si

1 5,000 25,000 1.60 40

2 10,000 100,000 1.40 25

3 7,000 87,500 0.60 30

4 15,000 50,000 1.15 27

5 4,000 25,000 1.65 80

Table 1. Parameters of  each production item

One possible  solution  is  to  have ten  production  runs in  a  year  (m = 10)  with  the  production  sequence  of
1→3→5→2→4 for each production run (note that this solution may not be optimal). The production quantity of
each item (Qi) in each production cycle can be calculated by dividing the annual demand by the annual number of
production runs. The production time of  each item (tpi) for each production cycle can be determined by dividing its
production quantity by its annual production rate. The result of  production quantity and production time of  each
item, in each production cycle, can be calculated as shown in Table 2.

Item i Qi (units) tpi (years)

1 5,000/10 = 500 500/25,000 = 0.02

2 10,000/10 = 1,000 1,000/100,000 = 0.01

3 7,000/10 = 700 700/87,500 = 0.008

4 15,000/10 = 1,500 1,500/50,000 = 0.03

5 4,000/10 = 400 400/25,000 = 0.016

Table 2. Production quantity and production time of  each item for each cycle

The total annual system cost is the summation of  annual setup cost and annual inventory holding cost of  all items,
as shown in equation (1).

(1)

According to equation (1), the annual setup cost and the annual inventory holding cost of  the solution mentioned
earlier can be calculated as shown in Table 3. Here, the total annual cost is 2,020.00 + 2,024.15 = 4,044.15 dollars.

Item i Annual setup cost (dollars) Annual holding cost (dollars)

1 (10)(40) = 400.00
(1.60)(5,000)(25,000 – 5,000)

(2) (10) (25,000)
= 320.00

2 (10)(25) = 250.00
(1.40)(10,000)(100,000 – 10,000)

(2) (10) (100,000)
= 630.00

3 (10)(30) = 300.00
(0.60)(7,000)(87,500 – 7,000)

(2) (10) (87,500)
= 193.20

4 (10)(27) = 270.00
(1.15)(15,000)(50,000 – 15,000)

(2) (10) (50,000)
= 603.75

5 (10)(80) = 800.00
(1.65)(4,000)(25,000 – 4,000)

(2) (10) (25,000)
= 277.20

Total 2,020.00 2,024.15

Table 3. Annual setup cost and annual holding cost of  each production item
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Consider the production sequence of  1→3→5→2→4 and the production time of  each item (tpi) calculated in
Table 2, the inventory level of  each item and the total inventory level can be illustrated as shown in Figure 1. It can
be seen that the maximum total inventory level occurs after the production of  the item being produced at the last
position (I[5] = I4) is finished. Here, the required storage space should be assigned large enough to keep all 2,158
units, the maximum total inventory level.

Figure 1. Inventory levels for the production sequence of  1→3→5→2→4

End of  example

3. Problem Analysis
3.1. The Effect of  Production Sequence on Maximum Inventory Level

Given that there are n items to be produced in each production cycle, the total inventory level, I[i] (i = 1, 2, …, n), is
the sum of  inventory levels of  all items after the production of  the item being produced at the position i is ended.
Here, the (I[0] is  defined as the total inventory level at the beginning of  each production run. The maximum
inventory level, Imax, is the maximum value of  I[0], I[1], I[2], …, I[n]. Note that the storage space required should be set
equal to the maximum inventory level. Consider the changes in the amount of  total inventory level from I[i–1] to I[i]

as  V[i], the relationship between the  V[i] and  I[i] for the system having five production items is demonstrated as
shown in Figure 2.

Figure 2. Inventory levels for the production sequence of  1→3→5→2→4
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From Figure 2, there are five items to be produced on the same production line with the sequence of  j[1] =  j1,
j[2] = j3,  j[3] = j5,  j[4] = j2, and j[5] = j4. The relationship between the I[i] and the V[i] can be written as follows.

(2)

According to equation (2), the calculation of  I[i] relevant to the I[0] is shown in equation (3).

(3)

Consider Figure 2, the value of  I[0] can be calculated as shown below.

(4)

The  tp[k],  the time required to produce the item placed at  the position  k of  the production sequence can be
calculated as follows.

(5)

The changes in the amount of  total inventory level (V[i]) is the increasing amount of  the item produced during the
production time (tp[i]) subtracted by the demand of  other items during that time. The calculation can be shown as
follows.

(6)

The following example illustrates the use of  equations (3), (4), and (6) to determine the total inventory levels of  the
problem mentioned in example 1.

Example 2: Given the data provided in Tables 1 and 2 of  example 1, the value of  I[0] can be calculated using
equation (4) as follows.

I[0] = (7,000)(0.02) + (4,000)(0.02 + 0.008) + (10,000)(0.02 + 0.008 + 0.016)+(15,000)(0.02 + 0.008 + 0.006 + 0.01)

I[0] = 1,502 units

Reveal the data related to the production rate, demand rate, and production time of  each item in example 1, the
values of  total inventory level changing amount (V[1] to V[5]) can be determined using equation (6) as follows.

V[1] = (25,000 – 41,000)(0.02) = –320 units

V[2] = (87,500 – 41,000)(0.008) = 372 units

V[3] = (25,000 – 41,000)(0.016) = –256 units

V[4] = (100,000 – 41,000)(0.01) = 590 units

V[5] = (50,000 – 41,000)(0.03) = 270 units

Applying equation (3), the values of  total inventory levels (I[1] to I[5]) can, then, be calculated as shown below.

I[1] = 1,502 + (–320) = 1,182 units
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I[2] = 1,502 + (–320 + 372) = 1,554 units

I[3] = 1,502 + (–320 + 372 – 256) = 1,298 units

I[4] = 1,502 + (–320 + 372 – 256 + 590) = 1,888 units

I[5] = 1,502 + (–320 + 372 – 256 + 590 + 270) = 2,158 units

Consider  all  total  inventory levels  (I[0] to  I[5]),  the  maximum value occurs  at  I[5] = 2,158 units.  Here,  for  the
production sequence of  1→3→5→2→4, the storage space should be designed such that it can keep the maximum
inventory level of  2,158 units.

End of  example

In fact,  different production sequences can result in different storage spaces required. Figure 3 illustrates two
different production sequences of  the problem mentioned in example 1. Note that the maximum total inventory
levels obtained from both production sequences are not the same. While the maximum total inventory level for the
production sequence of  1→3→5→2→4 is 2,158 units, the maximum total inventory level for the production
sequence of  2→1→3→5→4 is 1,878 units. Here, the optimal production sequence should be the one that yields
the minimum value of  the maximum total inventory level.

Figure 3. Inventory levels of  the example problem for two different sequences

3.2. The Relationship between Optimal Production Sequence and Number of  Production Runs

To determine the relationship between the optimal production sequence and the number of  production runs,
replace the value of  I[0] and V[i] from equations (4) and (6), respectively, to equation (3). The result is shown in the
following equation.

(7)

The production time of  the item processed at the position i, tp[i], is the value of  the production quantity of  that item
divided by its production rate. Knowing that the production quantity is the annual demand divided by the number
of  production runs in a year, the relationship between the production time of  the item processed at the position i
and the number of  production runs can be determined as shown in equation (8).

(8)

Replacing equation (8) in equation (7), the calculation of  each I[i] can be rearranged as shown in equation (9).
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(9)

Consider  equation  (9),  the  value  of  total  inventory  level  can  be  decreased  (or  increased)  according  to  the
multiplication factor 1/m. Here, when there are m production cycles in a year, the total inventory level of  any item
in the sequence can be calculated as 1/m times the inventory level of  the item when there is only one production
cycle per year. Therefore, it can be concluded that the optimal production sequence is independent of  the number
of  production runs.

4. Methodology

From the previous section, the optimal production sequence is independent of  the number of  production runs. In
other words,  determining the proper solution for the research problem can be divided into two independent
subproblems. The first subproblem is to determine the optimal number of  production runs in such a way that the
total  system  variable  cost  composing  of  inventory  holding  cost  and  setup  cost  is  minimized.  The  second
subproblem is to search for the optimal production sequence with the objective of  minimizing the required storage
space.

In order to determine the  solution for the first  subproblem, the  traditional  multi-item economics production
quantity model may be applied. Taking the derivative of  equation (1) respected to the number of  production runs,
the optimal number of  production runs can be determined as shown in equation (10). Equation (11) demonstrates
the calculation of  the production quantity of  each item at the specific number of  production runs.

(10)

(11)

Since the optimal production sequence is independent of  the number of  production runs per year, to determine
the optimal production sequence for the first subproblem, the production cycle length of  T = 1 year may be
considered. Note that this is the situation when there is only one production cycle in a year. With the value of
m = 1, equation (9) can be rewritten as shown in equation (12).

(12)

The research presents the genetic algorithm to determine a proper production sequence in a reasonable amount of
time. The procedure is to, with the assumption of  one production cycle in a year, search for a proper production
sequence via the evolutionary mechanism. Here, equation (12) is integrated to determine the total inventory level by
the time that the production of  each item in the sequence is finished. Then, the concept of  multiple items EPQ
model is applied to determine the optimal number of  production runs per year, as shown in equation (10). Finally,
with the optimal number of  production runs per year, equation (9) can be applied to calculate the total inventory
level after the production of  the item being produced at the position i is ended.

5. Genetic Algorithm

The genetic algorithm is a powerful metaheuristic that imitates the biological evolutionary concept to search for a
proper solution to the problem. It is suitable to be applied to the problem with a large size possible solution set.
Figure 4 illustrates the structure of  the genetic algorithm employed in this research.
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Figure 4. Structure of  the genetic algorithm

5.1. Chromosome Representation and Initialization

A chromosome, a one-dimensional array of  the integers, is used to represent a production sequence. There are n
genes in each chromosome. Each gene represents the job being processed at each position. As an example of  the
chromosome representation, the array of  [1 3 5 2 4] represents a production sequence that starts from item 1 and
follows by item 3, item 5, item 2, and item 4, respectively. Here, the initial population is randomly created from the
permutation of  genes until the number of  initial chromosomes is equal to the predetermined population size.

5.2. Crossover

A crossover is an operator being used to exchange information between a pair of  parent chromosomes “Parent 1”
and “Parent 2”. As claimed by Lee and Choi (1995) and Supithak and Plongon (2011), the uniform order-based
crossover is proper to implement with the job sequencing problem. The research is, therefore, select this technique
as the genetic crossover operator. In order to conduct the uniform order-based crossover, a pair of  different
chromosomes is randomly selected from the parent population. An array of  binary numbers (0, 1) with the same
size as the parent chromosome is generated. The parent chromosomes exchange their genes according to the array
to create two offspring. The mechanism of  the uniform order-based crossover is illustrated as shown in Figure 5.

For each parent selection, the chance that the crossover will occur is equal to the rx, the probability of  crossover. In
order to make this happen, a random number (0, 1) is generated. The crossover will be applied only when the
random number value is less than or equal to the rx. The crossover process must recursively occur until the number
of  generated children equals the number of  parents.

Figure 5. Illustration of  the uniform ordered-based crossover procedure
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5.3. Mutation

A mutation is a significant operator that operates on the child chromosome of  the latest generation to create some
mutant  children  and,  hence,  increase  the  population  variety.  In  the  proposed  genetic  algorithm,  the  random
exchanging mutation is implemented. Two positions of  a chromosome are randomly selected and interchange their
genes. Each child chromosome has the chance of  rm to be mutated. Here, a random number (0, 1) is generated. The
mutation will  occur only when the value of  the random number is  less than or equal  to the  rm.  Some child
chromosomes are still nonmutant.

5.4. Evaluation

The evaluation process aims to measure the quality of  each chromosome, simply called the fitness value (Fp). Since
the objective of  production sequencing is to minimize the maximum inventory level, a chromosome having a low
value of  maximum inventory level should have a high fitness value. Equation (13) demonstrates the calculation of
the fitness value.

(13)

5.5. Selection

A roulette wheel selection method is applied to the proposed GA to imitate the natural selection. Those better suit
chromosomes should be selected as members of  the next generation. According to the roulette wheel selection
method, a circle is divided into 2N pies of  unequal size. Each piece of  the pie represents the chromosome in the
considered generation. The size of  each pie is related to the chromosome’s fitness. A better chromosome should
have a higher probability of  being chosen. The probability that the pth chromosome is selected can be calculated as
shown in equation (14).

(14)

After calculating the values of  probability of  selection, all chromosomes must be reindexed in ascending order of
their selection probability values. In order to simulate a roulette wheel spinning, the random number (rand( )) within
the range of  [0, 1] is randomly generated. This random number represents the cumulative probability. The first
chromosome satisfying the condition of  ∑i

p=1 Pp ≥ rand( ) is selected as a member of  the next generation. Here, the
roulette wheel must be spun for N times to create N parent chromosomes of  the next generation.

5.6. Parameter Setup

To determine the proper parameters, the GA is run on 30 problems of  10 production items at three levels of
crossover rate (rx  = 0.7, 0.8, 0.9), two levels of  mutation rate (rm = 0.1, 0.2), and two levels of  population size
(2N =  1000, 2000). It was found that, among all 3  × 2  × 2 = 12 combinations, the combination of  (rx  = 0.8,
rm = 0.1, and 2N = 2000) yields the best result. In comparison to the optimal solution searched by the enumeration
method, this combination provides the optimal solution for 28 out of  30 problems and, therefore, it has been
chosen for further study.

6. Experimental Result
Two  numerical  experiments  are  conducted  to  evaluate  the  performance  of  the  proposed  GA.  The  first
experiment is to compare the solutions obtained from the GA, the Largest Demand First (LDF) heuristic, the
Largest Pi First (LPF) heuristic, and the Largest Rho First (LRF) heuristic with the optimal solution determined
by the enumeration method on 360 small size problems. From the first experiment, the best heuristic among all
threes (LDF, LPF, and LRF) is selected for further study. The second experiment is to compare the solution
yielded from the GA with the  solution acquired by the selected heuristic  on 180 large size problems.  The
proposed GA is coded using C programming language in the CodeBlocks IDE version 20.03 and run on the
Intel Xeon Six-Core CPU. The proposed GA is terminated by two criteria. For the first criterion, the GA is
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terminated when the improvement after 300 consecutive iterations is less than 0.01 percent. The second criterion
stops the search when the number of  generations reaches 10,000. Here, the GA is terminated when any of  the
two criteria is met.

For the numerical experiment setup, the unit cost of  each item is randomly generated from a discrete uniform
random number of  [100, 200]. The holding cost fraction is randomly chosen from a discrete uniform random
number of  [0.15, 0.30] (with 0.01 unit of  incremental value). The annual demand of  each item is randomly selected
from a discrete uniform random number of  [5000, 20000]. The annual production rate of  each item is determined
according to the ratio between the annual demand rate and the annual production rate, ρi. Here, the ρi is randomly
generated in such a way that it has a value between 0 and 1, and the summation of  all  ρi in each problem must
conform to the definition of  slack proportion (ρslack = 1 – ∑n

i=1 ρi). For the first experiment, the three factors to be
evaluated are the number of  production items (8 items, 10 items), the setup cost to holding cost ratio (10, 20), and
the slack proportion (0.2, 0.4, 0.6). The second experiment is conducted on 15 production items and, hence, the
remaining two factors to be evaluated are the setup cost to holding cost ratio (10, 20) and the slack proportion (0.2,
0.4, 0.6). The setup parameters are shown in Table 4.

There are 2 × 2 × 3 = 12 treatment combinations in the first experiment. With 30 replications of  each treatment
combination,  there  are  totally  360  randomly  generated  problems.  This  experiment  aims  to  evaluate  the
performances of  the proposed GA and three other heuristics: the LDF heuristic, the LPF heuristic, and the LRF
heuristic.  Here,  the  LDF,  LPF,  and LRF heuristics  are  to arrange the  production sequence according to  the
non-increasing order of  the demand rate (Di), the production rate  (πi), and the ratio between demand rate and
production rate (ρi), respectively. The experiment is conducted by comparing the solutions yielded from the GA,
LDF heuristic, LPF heuristic, and LRF heuristic with the optimal solution obtained from the enumeration method.
For  the  numerical  comparison,  the  percentage  deviations  between the  solution  yielded from each  considered
method and the optimal solution (%DevGA–OPT, %DevLDF–OPT, %DevLPF–OPT, and %DevLRF–OPT) are calculated as shown in
the following equations.

Characteristics Value

Number of  production items (n) Experiment 1: 8 items, 10 items
Experiment 2: 15 items

Unit cost (Ci) Discrete uniform [100, 200]

Holding cost fraction (hi) Discrete uniform [0.15, 0.30] 

Holding cost of  item (Hi) hiCi

Setup cost (Si) to holding cost (Hi) ratio (10, 20)

Annual demand (Di) Discrete uniform [5000, 20000]

Annual production rate (πi) Di/ρi

Ratio between Di and πi (ρi) [rand( ) × (1 – ρslack)]/∑n
i=1 ρi

Slack proportion (ρslack) 0.2, 0.4, 0.6

Table 4. Setup parameters for the experimental problems

(15)

(16)

(17)
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(18)

Where,

 is the maximum inventory of  the optimal solution obtained from the enumeration method.

 is the maximum inventory of  the solution obtained from the GA.

 is the maximum inventory of  the solution obtained from the LDF heuristic.

 is the maximum inventory of  the solution obtained from the LPF heuristic.

 is the maximum inventory of  the solution obtained from the LRF heuristic.

The result on the 95% confidence intervals on mean of  percentage deviation, the number of  optimal solutions
found (from 360 problems), and the average computational times obtained from the GA, LDF, LPF, and LRF is
shown in Table 5.

According to the result obtained from the first experiment, the proposed GA performs better than the other three
heuristics. Here, the GA provides the optimal solutions for 340 out of  360 problems. The 95% confidence interval
on mean of  the percentage deviation is (0.0015, 0.0123). The average computational time for the GA is 1.69
seconds. Besides the proposed GA, among all three heuristics (LDF, LPF, and LRF), the LPF heuristic yields the
preferable solution. The LPF delivers the optimal solutions for 78  out of  360 problems. The 95% confidence
interval on mean of  the percentage deviation is (4.7084, 5.7989).

Method
Percentage deviation 

(95% confidence interval)
Number of  optimal solutions

found(from 360 problems)
Average computational

time

GA (0.0015, 0.0123) 340 1.69 sec.

LDF (10.0365, 11.5154) 0 < 0.1 sec.

LPF (4.7084, 5.7989) 78 < 0.1 sec.

LRF (26.0249, 28.0284) 0 < 0.1 sec.

Table 5. Result of  95% confidence intervals on mean of  percentage deviation, number of  optimal 
solutions found, and average computational times

For further analysis of  the first experiment, the nonparametric statistical tests are conducted to determine the main
effect of  the three factors (the number of  production items, the  setup cost to holding cost ratio, and the slack
proportion) on the performance of  the proposed GA. The results are shown below.

Consider the result obtained from the Mann-Whitney test, at the 95 percent confidence interval, while there is no
statistically  significant  difference  between  the  two  levels  of  setup  cost  to  holding  cost  ratio  factor
(p-value = 0.6663), the main effect of  the number of  production items factor  is significant (p-value = 0.0000).
Here, out of  180 experimental problems conducted in the first experiment, the number of  optimal solutions found
when there are 8 and 10 production items are 179 and 161, respectively. The Kruskal-Wallis test result indicates
significant differences at different levels of  the slack proportion factor (p-value = 0.000). Consider the number of
optimal solutions found at each level of  the slack proportion factor (ρslack), out of  120 experimental problems at
each level, the number of  optimal solutions found at the values of  ρslack of  0.2, 0.4, and 0.6 are 100, 120, and 120,
respectively. It can be inferred that the performance of  the proposed GA is increased as the value of  ρslack is getting
larger.

The second experiment is conducted on the large size problem of  15 production items. The experiment aims to
study the main effects of  two factors: the setup cost to holding cost ratio (10, 20) and the slack proportion (0.2, 0.4,
0.6). There are totally 2 × 3 = 6 treatment combinations. With 30 replications for each treatment, 180 experimental
problems are randomly generated. Here, from the result of  the first experiment, the LPF heuristic outperforms the
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LRF and LDF heuristics. With the small value of  percentage deviation mean, having a 95% confidence interval of
(4.7084, 5.7989) in the first experiment, the LPF is selected as the benchmark to compare with the GA in the
second experiment. The percentage deviation between the solution obtained from the GA and the solution yielded
from the LPF heuristic is considered as the response variable and can be calculated as shown in equation 19.

According to the experimental result, in comparison to the LPF heuristic, the GA provides a better solution for 158
out of  180 problems. For the remaining 22 problems, both GA and LPF yield the same solutions. The 95%
confidence interval on mean of  the percentage deviation is (5.5629, 7.0435). The average and maximum values of
percentage deviation are 6.3032 and 17.6680 percent, respectively. Three statistical nonparametric techniques, the
Mann-Whitney, the Kruskal-Wallis, and the Wilcoxon signed rank tests, are conducted to determine the main effect
of  each factor on the GA performance. The test results are shown in Figures 7 and 8.

From Figure 7, the Mann-Whitney statistic is 8148.5, and the associated p-value is 0.9931. It can be concluded that,
at 95 percent confidence level, there is no statistically significant difference between the two levels of  the setup cost
to  holding  cost  ratio  factor.  According  to  the  result  obtained  from the  Wilcoxon  signed  rank  test,  the  two
confidence intervals have their ranges overlap to each other. This condition emphasizes the result concluded by the
Mann-Whitney test.

To evaluate the main effect of  the slack proportion (ρslack) factor, the Kruskal-Wallis test has been conducted. As
shown in Figure 8, at 95 percent confidence level, the values of  test statistic and  p-value are 137.74 and  0.000,
respectively. It can be concluded that at least one level of  the factor has a different median from the other two. The
inequality  is  further  examined by the  Wilcoxon signed rank test.  The result  shows that the  three  confidence
intervals  for  the  population  medians  do  not  overlap  with  each  other.  This  situation  indicates  that  there  are
significant differences among all three levels of  the factor. According to the confidence intervals, in comparison to
the LPF heuristic, the GA is more outstanding at smaller values of  slack proportion.

Figure 6. Nonparametric test results of  the first experiment

(19)
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Figure 7. Nonparametric test result for the main effect of  Si/Hi factor

Figure 8. Nonparametric test result for the main effect of  slack proportion factor

7. Conclusion
The research is to determine the proper production sequence and the number of  production runs in the system
composing of  multiple items being produced on the same production line. While the objective of  a number of
production  runs  determination  is  to  reduce the  total  variable  cost  composed  of  inventory  holding  cost  and
production setup cost, the production sequence should be arranged in such a way that the storage space required is
minimized.  It  has  been  found that  the  two subproblems are  independent  of  each  other  and  can be solved
separately. For the first subproblem, the determination of  optimal number of  production runs, the traditional
multiple  items  EPQ model  can  still  be  applied.  In  order  to  search  for  the  proper  solution  of  the  second
subproblem, the production sequencing, the genetic algorithm (GA) is proposed. The calculation of  the maximum
total inventory level for each production sequence is presented and integrated with the proposed GA. For the
performance evaluation of  the proposed GA, two experiments are conducted. The first experiment is to compare
the solution obtained from the GA with the optimal solution for the small size problem. Three factors are to be
investigated:  number  of  items (2  levels:  8,  10),  setup cost  to  holding  cost  ratio  (2  levels:  10,  20),  and  slack
proportion (3 levels: 0.2, 0.4, 0.6). The result shows that the GA can provide the optimal solution for 340 out of
360 randomly generated problems. The 95% confidence interval on mean of  the percentage deviation is (0.0015,
0.0123). The main effects of  the setup cost to holding cost ratio factor is not found to be significant on the GA
performance. The other two factors, the number of  production items and the slack proportion, are statistically
significant.  The performance of  the proposed GA is  increased at  lower and higher levels  of  the number of
production items and the slack proportion, correspondingly. The second experiment is conducted on those large
size problems of  15 production items. The objective is to study the main effects of  setup cost to holding cost ratio
(2 levels:  10, 20) and  slack proportion (3  levels:  0.2,  0.4,  0.6)  factors.  The solution obtained from the GA is
compared with the solution yielded from the Largest Pi First (LPF) heuristic. The result indicates that the GA
provides the better solution for 158 out of  160 experimental problems. The 95% confidence interval on mean of
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the percentage deviation is (5.5629, 7.0435). The average and maximum percentage deviations are 6.3032 and
17.6680, respectively. While the main effect of  setup cost to holding cost ratio is not remarkable, the main effect of
slack proportion is found to be significant. In comparison to the LPF heuristic, the GA performance is more
pronounced as the value of  slack proportion is decreased.
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