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Abstract:

Purpose: This paper aims to propose  a new model called the stochastic  green capacitated  p-median
problem with a simulation-based optimisation approach.  An integer linear programming mathematical
model is built considering the total emission produced by vehicles and the uncertain parameters including
the travel cost for a vehicle to travel from a particular facility to a customer and the amount of  CO 2

emissions produced. We also develop a simulation-based optimisation algorithm for solving the problem.

Design/methodology/approach: The authors proposed new algorithms to solve the problem. The
proposed algorithm is a hybridisation of  Monte Carlo simulation and a Variable Neighbourhood Search
matheuristic.  The proposed model and method are evaluated using instances that are available in the
literature.

Findings: Based on the results produced by the computational experiments, the developed approach can
obtain interesting results. The obtained results display that the proposed method can solve the problems
within a short computational time and the solutions produced have good quality (small deviations).

Originality/value: To the best of  our knowledge, there is no paper in the previous literature investigating
the simulation-based optimisation for the stochastic green capacitated p-median problem. There are two
main contributions in this paper. First, to build a new model for the capacitated p-median problem taking
into account the environmental impact. Second, to design a simulation-based optimisation approach to
solve the stochastic green capacitated p-median problem incorporating VNS-based matheuristic and Monte
Carlo simulation.
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1. Introduction

The p-median problem (PMP) formulation was developed by ReVelle and Swain (1970), where the problem is to select
the optimal location of  n facilities from m potential sites. The objective of  the problem is to minimise the total
distances between customers and facilities, which is known as the minisum location problem. The PMP is assumed
that the facilities have unlimited capacity meaning that the customers will be assigned to the nearest facilities. This
problem is considered as NP-hard, which is hard to solve (Kariv & Hakimi, 1979). In contrast to the PMP, the CPMP
(capacitated  p-median problem) considers a fixed capacity for each potential facility. An open facility must satisfy
customer demand without exceeding its capacity. The CPMP has a higher degree of  complexity than the PMP due to
this capacity constraint. Therefore, the CPMP is considered as NP-hard (Garey & Johnson, 1990). 

Currently, the concern on the environmental impact of  business operations is increasing. Many companies now realise
that carbon emissions produced by their operations need to be reduced as the emissions have a significant impact on
global warming and severe negative effects on business and society. In this study, to measure the environmental
impact, we consider the amount of  CO2 emissions produced when transporting products from the facilities  to
customers. According to The World Meteorological Organization (2009), CO2 is the single most human-emitted
greenhouse gas emission accounting for about 63.5% of  the total global warming. Moreover, CO2 is a very popular
environment index and also easily measured (Wang, Lai & Shi, 2011). Another decision that has to be made beside the
location of  the facility is to determine the type of  vehicle used by each facility considering CO2 emissions produced.
Therefore, here, we develop a problem called the green capacitated p-median problem (GCPMP). 

In many real case applications, some uncertain parameters need to be considered to get the best location for the
facilities. Those parameters include the travel cost from a facility to a customer and the amount of  CO2 emissions
produced.  To  deal  with  the  problem  with  uncertainty,  a  simulation-based  optimisation  is  proposed  where
hybridisation of  Monte Carlo simulation and a Variable Neighbourhood Search-based algorithm is developed. To
the  best  of  our  knowledge,  there  is  no  paper  in  the  previous  literature  investigating  the  simulation-based
optimisation for the stochastic GCPMP. 

There are two main contributions in this paper. First, to build a new model for the capacitated p-median problem
taking into account the environmental impact. Second, to design a simulation-based optimisation approach to solve
the  stochastic  green  capacitated  p-median  problem  incorporating  VNS-based  matheuristic  and  Monte  Carlo
simulation. 

This paper is organised as follows. In Section 2, a review of  the previous studies related to the CPMP is presented.
Section 3 describes the new CPMP mathematical models along with the new deterministic GCPMP. In Section 4,
the ingredient of  the proposed method for the stochastic GCPMP is given. Section 5 provides computational
results using dataset available in the literature. The last section summarises our findings and presents some research
avenues for future research.

2. Literature Review
The p-median problem is one of  the models that involves the location of  n facilities on the networks and it is one
of  the popular location problems in the literature. This classical problem is commonly identified to minimize the
total distance in serving all demands. Mulvey and Beck (1984) can be considered as the earliest ones who work on
the CPMP. They proposed two algorithms to solve the capacitated clustering problems. Osman and Christofides
(1994) put forward a hybridisation of  simulated annealing and tabu search method to solve the CPMP. A bionomic
algorithm was designed by Maniezzo, Mingozzi and Baldacci (1998) as a local search to address the CPMP. A set
partitioning formulation method for the CPMP was developed by Baldacci,  Hadjiconstantinou,  Maniezzo and
Mingozzi (2002). Lorena and Senne (2004) developed a column-generation technique to deal with the CPMP. A
hybridisation of  the Adaptive Memory Programming and the Greedy Random Adaptive Search Procedure for
tackling the CPMP was proposed by Ahmadi and Osman (2005). 

Scheuerer and Wendolsky (2006) solved the CPMP by using the scatter search heuristic. A hybridisation of  scatter
search algorithm and path relinking was developed by Díaz and Fernàndez (2006), whereas Fleszar and Hindi
(2008) built an effective VNS for tackling the CPMP. A hybrid heuristic which is referred to it as clustering search
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was introduced by Chaves, Correa and Lorena (2007). Boccia, Sforza, Sterle and Vasilyev (2008) put forward an
efficient  cutting  plane  algorithm to  reduce  the  integrality  gap  in  solving  the  CPMP.  Genetic  algorithms and
harmony search method were  proposed  by Landa-Torres,  Ser,  Salcedo-Sanz,  Gil-Lopez,  Portilla-Figueras  and
Alonso-Garrido (2012) to address the CPMP. 

A heuristic approach based on the local branching and relaxation induced neighbourhood search methods was
developed by Ghoseiri and Ghannadpour (2013). Yaghini, Karimi and Rahbar (2013) put forward an algorithm that
hybridises a tabu search metaheuristic and a cutting-plane neighbourhood structure for the CPMP. A three-stage
matheuristic method introduced by Stefanello, Araujo and Muller (2014) to solve the CPMP.  Three methods were
applied by El Amrani, Benadaa and Gendron (2016), namely a branch and cut algorithm, large neighbourhood
search,  and greatest  customer demand first  to address  the  CPMP considering the  budget  constraint  into the
problem. Irawan, Imran and Luis (2017) proposed the bi‐objective CPMP with the fixed cost for opening the new
facility and its capacities that can be utilized by potential facilities. The problem is solved by using a compromise
programming approach. CPMP has many various types and different characteristics for each case. There are some
studies that identify the stochastic aspect in the CPMP model, and others try to find a best solution of  dynamic and
complex CPMP.

The stochastic CPMP considering the environmental aspect which has not been covered by the papers cited above
is addressed in this study. We also propose a simulation-based optimisation to deal with such a problem. Here, the
hybridisation of  Monte Carlo simulation and VNS-based matheuristic are proposed. 

3. The Green Capacitated p-Median Problem (GCPMP)
The objective of  CPMP is to locate p facilities (medians) so as to minimize the sum of  the distances from each
demand point to its nearest facility. Bramel and Simchi-Levi (1995), Klein and Aronson (1991) and Mulvey and
Beck  (1984)  are  among  the  first  who  investigate  this  problem.  The  proposed  mathematical  model  for  the
deterministic green capacitated p-median problem (GCPMP) is given in this section. The model is developed from
the mathematical model of  the classical CPMP.

In the new mathematical model of  the GCPMP, the presence of  truck/vehicle types is considered where set V is
used to represent the set of  vehicles. Here, the vehicle type used by each open facility j  J the decision variable
(Yjv). Note that an open facility only uses one type of  vehicle. Each vehicle v  V has a different travel cost per unit
distance (Cv) and produces a different amount of  CO2 emissions (ev). An additional constraint is added to ensure
that total emissions produced do not exceed emax. In addition to opening facility decision (Ŷj), the model aims to
solve the allocation problem to determine whether open facility j  J serves customer i  I using vehicle v  V
(Xvij). In summary, the following notations for sets, decision variables, and parameters are used:

Set

I customer set (i  I = {1, …, n}, n = |I|) 

J potential site set (j  J = {1, …, m}, m = |J|) 

V vehicle (truck) types

Parameters

dij the distance between customer i  I and facility j  J

wi the demand from customer i  I

bj the facility capacity that is located at the site j  J

p the number of  open facilities

cv the travel cost per unit distance to deliver one unit product using vehicle v  V

ev the amount of  CO2 emissions produced per unit distance caused by delivering one unit product using vehicle
v  V

emax the maximum CO2 emissions produced
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Decision Variables

Xvij =
1, if  facility j serves customer i using vehicle v;
0, otherwise

Yjv =
1, if  the facility is situated at site j using vehicle v;
0, otherwise

Ŷj =
1, if  the facility is situated at site j 
0, otherwise

The proposed model aims to find the optimal solution for both the vehicle and facilities’ location. The problem can
be modelled as follows: 

Minimise

(1)

Subject to

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

The objective function (1) describes the total travel cost from demand points to their corresponding facilities.
Constraints (2) make sure each customer demand must be fulfilled by only one facility. Constraints (3) ensure that
facility only uses one vehicle type. Constraint (4) guarantees that p open facilities are opened. Constraints (5) ensure
that the capacity of  an open facility will not be exceeded. Constraints (6) ensure that each customer can only be
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assigned to an open facility. Constraint (7) makes sure that the total CO2 emissions produced do not exceed emax.
The last three constraints state the decision variables binary conditions.

4. Simulation-Based Optimisation for the Stochastic GCPMP
A simulation-based optimisation approach is developed to deal with the stochastic GCPMP. In this study, two
parameters are considered as stochastic parameters which are as follows: 

• cv         the travel cost per unit distance to deliver one unit product using vehicle v  V

• ev the amount of  CO2 emissions produced per unit distance caused by delivering one unit product using
vehicle v  V

Those parameters are assumed to follow a normal distribution and the realisations of  that assumption have a good
outcome. In the routing problem, normal distribution is widely used to estimate the travel time or travel cost (Li,
Tian & Leung, 2010; Shen, Xu, Wu & Ni, 2019; Bakach, Campbell, Ehmke & Urban, 2021). In our approach, the
VNS-based matheuristic technique given in the next subsection is applied to address the deterministic problem to
determine  the  facilities’  location  and customers’  allocation,  together  with  their  responding  vehicle.  Here,  the
parameter that has a stochastic characteristic is transformed into deterministic value when solving this deterministic
problem. Once the facility configuration has been obtained, the Monte Carlo simulation is implemented to attain
the total cost estimation, including the stochastic parameters.

The main procedure of  the simulation-based optimisation method is presented in Figure 1, where hybridisation of
a VNS-based matheuristic and Monte Carlo simulation is put forward. In the initial step, parameters θ, B, S and L
are defined. Parameter θ represents the θ%-quantile total cost data in the simulation that will be used to determine
the expected total cost. A higher value of  θ will generate a robust solution for the worse scenario.

Figure 1. The proposed simulation-based optimisation for the stochastic GCPMP

The  algorithm  of  Figure  1  comprises  two  phases  which  are  developed  based  on  the  literature  of  Irawan,
Eskandarpour, Ouelhadj and Jones (2021). The initial stage is an iteration process where the proposed VNS-based
matheuristic method is used to find the facility configuration (Yjv). Here, the stochastic parameters  cv and  ev are
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treated as deterministic parameters. The first iteration of  Phase 1 determines those parameters based on their
average values. In the remaining iterations, the values of  those parameters are calculated based on the λ%-quantile
data produced from Monte Carlo simulation in the previous iteration. The value of  λ is adjusted systematically
using the following formula: λ = (α – 1)10. Once the facility configuration (Yjv) has been fixed, the Monte Carlo
simulation is conducted to determine the total cost (Z), including the stochastic parameters. The Monte Carlo
simulation procedure is given in the next subsection. In Phase 1, The simulation is executed S times which can be
seen as short simulation (e.g., S = 10,000). This short simulation procedure is repeated B times, and the best facility
configuration (Yjv) that provides the lowest total cost (Z*) is chosen. As the simulation-based optimisation approach
needs to solve the deterministic model iteratively (several times), therefore, a VNS-based matheuristic method is
developed to solve the problem within a short time while delivering good quality solution.

In Phase 2, Monte Carlo simulation is executed based on (Yjv) to determine the final total cost (Z*). Here, a long
simulation is performed to obtain the expected total cost. The number of  iterations (L) for this long simulation is
set to a high value (e.g., L = 100,000).

4.1. The VNS Based Matheuristic

Brimberg and Mladenović (1995) presented VNS to tackle location-allocation problems that have a continuous
characteristic.  However,  Variable  Neighborhoud  Search  (VNS)  was  first  formally  formulated  by  Hansen  and
Mladenović (1997) when they apply it to address the  p-median problem. More information on VNS types and
applications can be found in Hansen, Mladenovic and Perez (2008), and Hansen and Mladenović (2001). Basically,
VNS  consists  of  two  elements,  namely  neighbourhood  search  and  local  search.  The  neighbourhood  search
objective is to help the search process escape from the local optima while the local search tries to obtain local
optimality.  If  the  search  process  cannot  find  any  improvement,  the  neighbourhood  search  applies  the  next
neighbourhood  (a  larger  one),  otherwise,  it  reverts  to  the  smaller  neighbourhood.  In  this  study,  VNS-based
matheuristic is constructed based on the one proposed by Irawan et al. (2017). The VNS matheuristic main steps
can be seen in Figure 2.

The main objective of  the proposed method is to obtain the best solution (S) that yields the smallest total cost (z)
together with the vehicle configuration (K). The parameters needed by the proposed matheuristic approached are
defined in  the  Initialisation  step.  The  parameters  include  T (the  number  of  iterations)  to  solve  the  reduced
problems, μ as the number of  reduced potential facilities, the %Gap for CPLEX for solving the reduced problems
(τ) and kmax as the VNS last neighbourhood.

The next step is an iteration approach and aims to produce a good initial solution. A reduced problem set is
constructed and solved by the exact method (CPLEX). The number of  reduced problems is the same as the
number of  iterations (T) that has been set up in the initialisation step. In a reduced problem, the number of
potential facility sites is reduced to (μ) locations out of  m locations. Here, μ facility sites consist of  randomly chosen
facilities and set  S,  which is the promising sites obtained from the previous iterations.  The reduced problem
consists of  n customers, and (μ) potential facility sites are then solved by CPLEX and will be terminated once it
reached  τ% gap.  S and  K  denote the facility sites configuration and their corresponding vehicle.  The solution
obtained is then used to successive iteration as the promising potential sites part. Repeat the process T times, and in
the  VNS algorithm,  the  best  solution  produced  by  this  step  will  be  used.  This  solution  method  has  good
performance for solving large p-median and p-centre problem (Irawan, Salhi & Scaparra, 2014; Irawan & Salhi, 2013;
Irawan, Salhi & Drezner, 2016). 

Step 5 is first performed by calculating the distance criterion d̂j,  j  S'. Parameter d̂j is determined based on the
average distance between facility  j and the customers allocated to this facility. A facility, say facility  j k ≤ kmax is
randomly chosen, where facility j is assigned to a customer located in site j. If  the distance between facility j and j
(dj,j) is less than d̂ then facility j is replaced by facility j. This is done to avoid the solution perturbed too much. This
procedure is conducted  k times. Then, the allocation problem represented by Equations (11-18) is solved using
CPLEX based on solution S'. The objective function value (z') and vehicle configuration (set K') are obtained.
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Figure 2. The VNS-based matheuristic procedure

Minimise

(11)

Subject to

(12)

(13)

(14)

(15)
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(16)

(17)

(18)

In Step 6, we propose a local search to improve the solution quality, which is described in the next subsection. Step
7 is conducted where if  the local search procedure can improve the solution, the smallest neighbourhood (k=1) will
be applied; otherwise, a larger neighbourhood is systematically used (k = k + 1). Once the value of  k reaches kmax,
the algorithm terminates and the best results are taken. 

4.2. The Local Search

The procedure of  the local search used in the VNS algorithm is explained in this section. Figure 3 shows the
procedure of  the proposed local search where the best improvement strategy is used. The main objective of  the
proposed algorithm is to seek a location site (in set J) to be swapped with a facility site used in the current
solution (set S).  Once the best improvement is found, the swap process is performed, and the new vehicle
configuration  is  obtained.  The  distance  criterion  between  facilities  (d̂j  )  in  the  current  solution (S)  is  first
determined as a criterion to see if  we can swap a facility site in the current solution with other potential facility
site or not. Here, we do not want to swap a facility in the current solution with a potential facility which is very
far from that facility. 

Figure 3. The local search main steps

We also evaluate each potential facility to be inserted in the solution by solving the allocation problem presented in
Equations (19-22) using CPLEX (Step 3d). Here, when facility j is replaced by facility j, the vehicle type used by
facility j is based on the one used by facility j. In other words, there is no change in vehicle configuration. 
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Minimise

(19)

Subject to

(20)

(21)

(22)

Once the best improvement is found (Step 4), the allocation problem (11-18) is solved using CPLEX. We may have
a different vehicle configuration, and the maximum emissions constraints are met. We repeat the procedure until
there is no improvement found.

4.3. Monte Carlo Simulation

In this subsection, the Monte Carlo simulation approach is described. Monte Carlo simulation is a repeated process
where, for each replication, the random number is generated to represent the uncertainty or stochastic parameters
(travel cost and emission produced). For each replication, as the emission produced per vehicle per unit distance is
randomly generated, there is a chance that the solution of  the problem is not feasible because the total emissions
produced is greater than the maximum emissions produced allowed. Therefore, we propose an emission cost per
unit for not meeting the maximum emissions, which is considered as the recourse cost. Here, we add a parameter
represented by ce. It represents the emission cost of  one unit of  emissions produced higher than the maximum one.

Once the facility location, customer allocation and the vehicle configurations are fixed (which is represented by set
S and K respectively), the decision variables Yjv and Xvij are treated as a parameter. Here, we transform variables Yjv

and Xvij to parameters Yjv and X̃vij, respectively. The total cost for random values of  stochastic parameters can be
obtained by calculating the  total  travel  cost  and the emission cost  if  it  occurs.  The total  cost,  including the
simulation emission cost, is formulated as follows:

(23)

Figure 4 presents the Monte Carlo procedure used for the GCPMP where the simulation is executed  T̃ times
(replications). For each replication, parameters  cv and  ev are randomly generated based on their distribution. By
calculating Equation (23), the total cost considering the emission cost is determined. The expected total cost is
taken from the γ%-quantile total assignment cost (zt).

Figure 4. The procedure of  Monte Carlo simulation
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5. Computational Study

In this study, the proposed approach performance is examined by conducting extensive experiments. The algorithm is
programmed in C++.Net 2017. The IBM ILOG CPLEX version 12.8 Concert Library is also used to get a solution
with an exact method. The computational experiments are executed on a PC with an Intel Xeon W-2133 CPU @3.60
GHz processor and 64.00 GB of  RAM. The dataset used to evaluate the proposed solution method is constructed
based on Irawan et al. (2021) for the customer locations and Al-e-hashem and Rekik (2014) for the travel cost and
emission produced by each type of  vehicle. Three datasets are considered with n = 300 up to 600 (increment value is
150). The potential facilities location are located in the customer sites,  i.e.  |J| =  m =  n,  in this computational
experiment. Each potential facility has two possible vehicle types (|V| = 2, j  J). The capacity of  each potential
facility (bj) and the maximum total emissions produced (emax) are generated differently for each instance. The value of  p
(the open facilities number) varies from 3 to 6 with an increment of  1. Dataset can be obtained from the first author.

In this subsection, the Monte Carlo simulation approach is described. Monte Carlo simulation is a repeated process
where, for each replication, the random number is generated to represent the uncertainty or stochastic parameters
(travel cost and emission produced). For each replication, as the emission produced per vehicle per unit distance is
randomly generated, there is a chance that the solution of  the problem is not feasible because the total emissions
produced is greater than the maximum emissions produced allowed. Therefore, we propose an emission cost per
unit for not meeting the maximum emissions, which is considered as the recourse cost. Here, we add a parameter
represented by ce. It represents the emission cost of  one unit of  emissions produced higher than the maximum one.

5.1. The Experimental Results on the Deterministic GCPMP

The experiments on the deterministic GCPMP are first conducted to evaluate the proposed VNS matheuristic. The
deterministic GCPMP is tackled by two solution approaches, namely the exact method (EM) and the proposed
VNS. The proposed VNS evaluation is performed by comparing the proposed approach solutions with the exact
method solutions using CPLEX. The exact method (EM) implementation is conducted by using CPLEX.  As the
problem is relatively hard to solve by the EM, the CPLEX computational time is limited (three hours for each
problem)  where  lower  bound  (LB)  and  upper  bound  (UB)  are  obtained.  The  proposed  solution  method
performance is assessed by the deviation (Gap) between the z value obtained by the proposed VNS and the lower
bound obtained by the exact method.  The Gap (%) is computed as follow:

(24)

where zp represents the objective function value with the feasible solution found by either the proposed VNS or the
exact method. 

The T parameter = min(10, 2p), μ = min(50,4p), τ = 2% and kmax = min(p, 5) were chosen based on the preliminary
experiments. The T, μ, and τ values affect the initial solution quality produced. The larger the T and μ values with the
smaller τ, the greater chance to get better initial solution quality. However, it will increase the computational time. 

Table 1 presents experimental results on the deterministic GCPMP using the proposed VNS and the exact method
(EM). The first two columns refer to the potential facilities /customers number and the open facilities number. For
the EM, the table presents UB, LB, %Gap, and CPU. Similarly, the results of  the proposed VNS are also given in
the table representing by the objective function value (Z), %Gap and CPU time (in seconds). 

Based on Table 1, CPLEX can get optimal solutions (0% gap, recorded in bold) only for seven instances within 3
hours. Based on the average deviation, the proposed VNS produces a smaller average gap than the exact method.
The average gap of  the proposed VNS is 0.4841, and the exact method average gap is 0.5034. In general, the VNS
based matheuristic can be considered as the better performer for solving the GCPMP as it produced the smallest
gap. It also can find a solution much faster than the EM as the EM needs more than forty times longer to solve the
problem compared to  the  VNS based matheuristic.  Therefore,  the  proposed VNS can be very  useful  to  be
incorporated in the proposed simulation-based optimisation method for solving the GCPMP. This approach needs
an optimiser (solution method) to be executed iteratively. It can be fulfilled by introducing a powerful optimiser that
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runs very fast while producing good solutions. The EM is not practical as it consumes a long computational time,
especially for large problems (n = 600).

n p

EM VNS

UB LB %Gap CPU Z %Gap CPU

300

3 1,262,725.18 1,262,725.18 0.0000 804 1,262,725.18 0.0000 28

4 1,011,448.84 1,011,448.84 0.0000 706 1,011,448.84 0.0000 26

5 907,078.79 907,078.79 0.0000 1,257 907,078.79 0.0000 48

6 888,009.75 875,640.61 1.3929 10,801 885,675.77 1.1331 94

450

3 3,026,386.79 3,026,386.79 0.0000 5,113 3,036,122.43 0.3207 40

4 2,368,389.88 2,368,389.88 0.0000 2,367 2,368,389.88 0.0000 54

5 2,131,473.77 2,131,473.77 0.0000 2,787 2,131,473.77 0.0000 153

6 1,957,662.08 1,957,662.08 0.0000 2,852 1,958,724.12 0.0542 92

600

3 5,287,729.68 5,179,072.92 2.0549 10,805 5,287,220.80 2.0455 68

4 4,252,100.68 4,239,119.95 0.3053 10,804 4,252,100.68 0.3053 93

5 3,927,965.09 3,883,596.95 1.1295 10,809 3,914,641.78 0.7930 312

6 3,756,667.34 3,713,140.26 1.1587 10,803 3,756,629.58 1.1577 636

0.5034 5,826 0.4841 137

Table 1. Experimental results on the deterministic CPMP

5.2. The Experimental Results on the Stochastic GCPMP

Computational experiments were used for evaluating the performance of  the simulation-based optimisation method.
Here, the instances provided in the previous subsection are used. The standard deviation of  travel cost and emission
produced for each vehicle is added, whereas their average data is based on data on the deterministic problem. The
standard deviation of  each stochastic parameter is set to 20% of  the average data. In the Monte Carlo simulation, the
emission cost is also added if  the total emissions produced are higher than the maximum emissions allowed. 

In this experiment, parameter B, S, and L are set to 10, 10000 and 100000 respectively. We varied the value of  θ to
50%, 70% and 90% in the experiments conducted. It can be said that the expected total cost is obtained by using
50%, 70%, and 90% quantiles. Table 2 shows the experimental results for the stochastic GCPMP summary when
the number of  open facilities is set to 3 and 4. The deterministic results in Table 2 are found by solving the
deterministic GCPMP presented in the previous section. The mean values are used for the stochastic parameters.
The table also reveals the results of  the stochastic GCPMP when 50%, 70% and 90% quantiles are applied. In
Table 2, we can also see the difference (%) between the deterministic GCPMP solution and the stochastic GCPMP
solution.  If  the value of  θ increases,  it  can be noted that the difference increases. A difference of  1.3286%,
11.3229% and 15.9561% yielded for 50%, 70% and 90% quantiles. 

n p

Z Deterministic Quantile (50%) Quantile (70%) Quantile (90%)

Problem Z Diff. (%) Z Diff. (%) Z Diff. (%)

300
3 1,262,725.18 1,293,570.13 2.3845 1,443,528.42 12.5251 1,542,802.43 18.1538

4 1011448.842 1,018,246.44 0.6676 1,127,217.69 10.2703 1,145,993.63 11.7404

450
3 3026386.787 3,099,779.65 2.3677 3,481,866.50 13.0815 3,720,396.92 18.6542

4 2368389.875 2,399,914.54 1.3136 2,663,932.92 11.0942 2,759,959.47 14.1875

600
3 5287220.797 5,310,051.12 0.4299 5,838,230.68 9.4380 6,264,854.08 15.6050

4 4252100.684 4,286,759.51 0.8085 4,806,167.41 11.5282 5,147,562.70 17.3958

1.3286 11.3229 15.9561

Table 2. The experimental results summary on the stochastic CPMP
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6. Conclusions

This paper addresses the stochastic green capacitated  p-median problem by using hybridisation of  Monte Carlo
simulation and a VNS based matheuristic. A mathematical model for the capacitated p-median problem taking into
account the environmental impact is developed. As the EM experiences problems to find the optimal solutions, a
simulation-based  optimisation  algorithm is  developed.  It  is  a  hybridisation  of  Monte  Carlo  and  VNS based
matheuristic.  The proposed  algorithm includes  a  Monte  Carlo  simulation,  the  VNS algorithm,  and the  exact
method. To measure the performance of  the proposed algorithm, data sets from the literature were solved and the
results obtained are compared with the results of  the exact method. The obtained results display that the proposed
method can solve the problems within a short computational time and the solutions produced have good quality
(small deviations). 

For future research, the following research directions might be deserving of  investigation. To obtain faster results, a
pure metaheuristic method can be used to solve the GCPMP. In this paper, a deterministic demand is used, in the
future investigation, the formulation can be developed by considering the stochastic demand. In terms of  method,
instead of  using a simulation-based method, a scenario based-method can be applied to get a better solution. This
model can be further developed into multi-objective optimisation. Besides that, several aspects can be included for
the future model, such as logistic product priority, refuelling station for the vehicle, and also perishable product
condition.
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