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Abstract:

Purpose: Hub location problems have been utilized in various applications including rail transportation
network planning, where hub serves as a key transit point within the network. In this paper, we focus on
determining the optimal location for a rail transportation hub, where cost and service ate trade-off.

Design/methodology/approach: The problem is formulated as a multi-objective programming model
with the objectives of minimizing total transportation costs and minimizing maximum travel time. A case
study of rail transportation network hub planning in Thailand is presented. Given the complexity and large
scale of the real-world case study, we develop and compare the Multi-Objective Tabu Search (MOTS) and
Non-Dominated Sorting Genetic Algorithm II (NSGA-II) to solve the problem.

Findings: The proposed algorithms yield efficient performance in terms of computational time and
solution quality. Performance comparison is further analyzed to see the difference in both algorithms.

Originality/value: The results offer valuable managerial insights for decision-makers in rail transportation
hub network design.

Keywords: multi-objective optimization, hub location problem, rail transportation network, tabu search, genetic
algorithm
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1. Introduction

Transportation hub network design is a complex process involving multiple factors such as location, passenger
demand, connectivity, operational efficiency, and budget constraints. A hub functions as a central transit point in a
transportation network model, facilitating the movement of passengers or goods by connecting various routes and
modes of transport, thereby optimizing efficiency and reducing travel times. The location of a transportation hub
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significantly influences passenger volume, as it affects accessibility, connectivity, and the convenience of travel
within the network. Strategically located hubs can attract higher passenger traffic by offering efficient transfer
points and reducing overall travel time. Conversely, pootly located hubs may deter usage due to inconvenient
connections or extended travel durations. Therefore, careful consideration of hub placement is a key factor for
optimizing passenger flow and enhancing the effectiveness of the transportation system.

Rail transport is recognized as an efficient mode of transportation, capable of moving substantial quantities of
goods and passengers. Furthermore, it is generally more economical when evaluating transportation costs per unit
compared to alternative modes of transport. However, rail transportation is subject to certain limitations, primarily
due to the fixed locations of origin and destination stations. Consequently, passengers are required to travel from
their residences to the train station and subsequently from the destination train station to their final destinations. In
many instances, the total travel time associated with train transport may exceed that of a direct trip from origin to
destination.

In this paper, we aim to determine the optimal location for a transportation hub in a railway network system. The
objectives are to minimize total transportation cost and minimize maximum travel time. Transportation costs are
comprised of three components: incoming transport to the train station, transit between train stations, and
outgoing transport from the train station. Travel time is categorized into two parts: the time taken to travel from the
origin to the destination and delay time. Several important factors are considered, including passenger demand, the
locations of passenger origins and destinations, and hub capacity. The problem is formulated as a multi-objective
programming model and applied to rail transportation hub network planning in Thailand. Given the complexity
and large size of the real-world case, we develop metaheuristic algorithms, specifically the Multi-Objective Tabu
Search (MOTS) and Non-Dominated Sorting Genetic Algorithm II (NSGA-II), to address the problem. The
proposed algorithms demonstrate efficient performance with acceptable solving times and high-quality solutions.

The remainder of the paper is organized as follows. Section 2 reviews the literature on existing studies of the Hub
Location Problem (HLP) and associated solution methods. Section 3 presents the proposed multi-objective HLP
model. Sections 4 and 5 describe the developed metaheuristic algorithms, namely MOTS and NSGA-II,
respectively. In Section 6, the two algorithms are evaluated on a real-world case study of rail transportation network
design, along with computational results and performance comparisons. Finally, Section 7 provides the conclusions
and directions of future research.

2. Literature Review
2.1. Hub Location Problems

A hub location network strategically designs transportation systems for goods and passengers by routing traffic
through centralized hubs instead of direct connections between origins and destinations. This consolidation at hubs
leverages economies of scale to reduce transportation costs. This model is applicable in logistics, distribution
centers, international transport, public transit, postal services, and optimizing locations for airports and bus
terminals to efficiently connect passengers to their final destinations (Wang, Liu & Yang, 2023; Attar, Irawan,
Akbari & Zhong, 2024; Ogazon, Anaya-Arenas & Ruiz, 2025; Wandelt, Wang & Sun, 2025).

The foundational research on the p-hub median problem was first developed by O’Kelly (1987), who formulated it
as a quadratic mathematical model for the uncapacitated single p-hub median problem (USApHMP). Campbell
(1994) expanded this by introducing the uncapacitated multiple p-hub median problem (UMApHMP). Yaman
(2011) extended the hub location problem by introducing the uncapacitated r-allocation p-hub median problem
(UrApHMP), which simplifies to a single-allocation problem when r = 1 and becomes a multiple-allocation
problem when 1 < r < p. Peker, Kara, Campbell and Alumur (2016) contributed to this area by developing a
clustering-based approach to identify potential hub sets. They focused on selecting optimal hub locations based on
factors like flow volume and geographic data, particularly in major urban centers, while ensuring that hubs are not
located too closely together. Several approaches have been explored in hub location research. Ernst and
Krishnamoorthy (1996) developed an effective mathematical formulation for the single allocation p-hub median
problem and applied the Simulated Annealing algorithm to solve the USApHMP. They later expanded their work to
address the multiple-allocation version of the problem (Ernst, Hamacher, Jiang, Krishnamoorthy & Woeginger,
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2009). The p-hub median problem is known for its computational complexity and is classified as NP-hard (Kara &
Tansel, 2000). Since such problems require excessive computational effort to solve exactly, metaheuristic algorithms
are often preferred as solution methods.

2.2. Solution Methods for Hub Location Problems

Various metaheuristic techniques have been employed, including Genetic Algorithms (GA) by Kratica,
Stanimirovic, Tosic and Filipovic (2007) and Topcuoglu, Ergin, Ermis and Yilmaz (2005). Benaini, Berrajaa,
Boukachour and Oudani (2019) introduced a parallel genetic algorithm to solve the USApHMP. More recent
advancements include the Simheuristic Approach developed by Jost, Grochala, Schumacher, Ammoutiova & Juan
(2023). Tabu search (TS) has also been investigated in hub location research, particularly through the development
of the TABUHUB method by Skorin-Kapov and Skorin-Kapov (1994), which was later refined by Abyazi-Sani and
Ghanbari (2016). Additionally, Guan, Lin and Feng (2018) implemented a Learning-based Tabu Search (LTS) to
address the uncapacitated single allocation hub location problem.

Numerous studies have investigated multi-objective hub location problems. Ghaffarinasab (2020) introduced a bi-
objective hub location problem aimed at minimizing total costs while maximizing service levels by reducing the
longest path between origin and destination pairs. The author also developed a Tabu Search (TS) to efficiently solve
this problem. Soylu and Katip (2019) proposed a multi-objective hub-airport location problem for an aitline
network design, using p-median hub problem to minimize total transportation cost and 2-stop routes. A variable
neighborhood search (VNS) heuristic was proposed to solve the problem. Chobar, Adibi and Kazemi (2021)
proposed a bi-objective mathematical model focused on minimizing transportation costs and pollution emissions.
They utilized the Non-Dominated Sorting Genetic Algorithm (NSGA-II) and the Non-Dominated Ranking
Genetic Algorithm (NRGA) to identify optimal locations for tourist hubs. Li, Han, Zhou and Gu (2023) developed
a bi-objective mathematical model for food transportation within a hub location network during the COVID-19
pandemic, aiming to minimize both transportation time and cost. To solve the problem, they used Grey Wolf
Optimizer (GWO).

Previous studies indicate that TS has been successfully applied to hub location problems due to its intensification
capabilities and ability to generate effective allocation solutions (Skorin-Kapov & Skorin-Kapov, 1994; Abyazi-Sani
& Ghanbari, 2016). Meanwhile, NSGA-II is widely used for solving multi-objective problems because it effectively
preserves diversity points across the Pareto front (Chobar et al., 2021; Karimi-Mamaghan, Mohammadi, Pirayesh,
Karimi-Mamaghan & Irani, 2020). Since our study focuses on a multi-objective rail hub location problem, the most
suitable algorithm remains unclear. Moreover, no previous study has compared these two algorithms for railway
hub location problems under a bi-objective model minimizing total cost and maximum travel time. Therefore, we
develop both NSGA-II and TS and evaluate their performance on a real-world case study.

3. Mathematical Model

In this section, we introduce a mathematical model to determine the optimal location and allocation of hub in a
network. The proposed multi-objective Hub Location Problem (HLP) model is formulated as follows. Let
G = (N, A) is a connected graph, where N={1, 2, ..., #} represents a set of nodes, 7 is the number of nodes, p is
the number of hubs, and A4 represents a set of arcs. The indices 4, /, £, 7z € N, where 7 and j denote nodes, and £
and 7 denote hubs. Parameters are defined as follows. There are two types of cost; C; indicates transportation
cost from node 7 to node j via hubs £ and 7, where C” = Cy + aCy, + C,;. The transportation cost is composited
of the cost from node to hub, hub to hub, and hub to node, respectively, where « is the discount for transport via
hub to hub. F, indicates fixed cost of establishing hub 4. IV indicates the amount of flow from node 7 to node j.
The travel time is defined based on the travel time and delay time, where T,/ indicates traveling time from node 7 to
node j. T/ = Ty + fTy, + T,, + S + S, where Ty indicates the traveling time between node 7 to hub £, S,
indicates delay time at hub £, and § indicates the discount factor for traveling time between a hub link (hub to hub).
The hub capacity is also considered, where H indicates the maximum capacity of hub £. Decision variables are
defined as follows; X/ represents amount of flow that is routed from node 7 through hubs £ and 7, X, represent
hub location, where X, = 1 if node £ is selected to be hub, X, = 0 otherwise. The mathematical model is detailed
as the following,
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The first objective in Equation (1) is to minimize the total transportation cost, which is composed of two types of
costs: the variable cost Cf”’ and the fixed cost F,. The variable cost is associated with travelled distance and consists
of three components, which ate the collection cost, the distribution cost, and the transfer cost between hub atcs
represented by the discount factor o. The fixed cost is the cost of establishing hubs. The second objective in
Equation (2) is to minimize the maximum travel time of a passenger in the system. The travel time is composed of
the traveling time from origin to destination including delay time at hubs. Note that the traveling time is associated
with a distance traveling through hubs gets a discount factor . Constraint (3) ensures that flow (from 7 to /) at each
node is allocated to exactly one pair of hub locations (& and 7). Constraints (4) - (5) allow assigning flow to a pair
of hub locations after they have been located (& and  are selected as a hub). Constraint (6) restricts the amount of
incoming and outgoing flow from nodes to a capacitated hub. Constraint (7) limits on the number of hubs that
should be opened. Constraints (8) - (9) are the non-negativity and binary requirements, respectively. This problem is
complex since the size of decision variables is of O(N*) and the second objective (Z») is not a linear function, so
these make the whole problem hard to solve. Therefore, it is necessary to develop a metaheuristic algorithm for
solving the problem.

4. Multi-Objective Tabu Search (MOTS)

We present an approach grounded in the Tabu Search (TS) algorithm, originally developed by Glover (1989)
coupled with dominance principles, to address multi-objective optimization problems. Our MOTS method
leverages the strengths of TS, particularly its ability to explore local neighborhoods effectively, enhancing efficiency
when identifying solutions with superior objective values. Simultaneously, the Tabu Search mechanism mitigates the
risk of premature convergence to local optima, enabling a more robust exploration of the solution space and
facilitating the discovery of optimal Pareto frontiers (Gendreau & Potvin, 2010). The main step of the proposed
MOTS consists of 4 parts.
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4.1. Initial Solution

For solution representation, we use the permutation representation, as illustrated in Figures 1 and 2. In this
structure, each index represents a node, while the corresponding value indicates the hub to which that node is
allocated. This approach allows for clear and efficient mapping of nodes to hubs, facilitating the computation of
the solution’s objective functions.

Hubs: n

Allocation: |4 |4 [a]a]7]7]7[7]7]7]

1 2 3 4 5 6 7 8 9 10

Figure 1. Solution representation

[

Figure 2. The hubs and nodes in the network have represented in Figure 1

The initialization phase is crucial as it significantly impacts both the convergence speed and the likelihood of
finding the optimal solution. To ensure a robust start, we ptioritize nodes with higher potential to become hubs
based on their total weight (inbound and outbound). After calculating the total weight for each node, we rank them
accordingly and select the top # nodes as initial hubs for the first solution. This method enhances the efficiency and
effectiveness of the algorithm’s search process. The steps of selecting the initial hub based on total weights are
described in pseudocode of Algorithm1.

Algorithm 1 Select Potential Hubs

Require: Number of nodes n, weight matrix weights
Ensure: Dictionary of potential hubs

1: Initialize an empty dictionary potential_hub

2: Create a list of nodes from 0 to n — 1

3: for each node 7 in nodes do

4 Compute the sum of weights for the current node i:
5. sum_weights « 3"}
6
it
8

" weights[j, 1] + Z;:Ol weightsli, j|
Set potential,hub[i]]% sum_weights

: end for

: return potential _hub

Once the initial hubs are selected, the next step is to focus on node allocation. We use the nearest distance method,
where each node is assigned to the hub that is closest in distance. This ensures that each node is efficiently
connected to a hub, minimizing the overall travel distance. After completing this process, we obtain a fully
initialized solution, consisting of both the selected hubs and the corresponding node allocations. The steps of
allocating nodes to the p potential hubs are described in pseudocode of Algorithm 2.
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Algorithm 2 Allocate nodes to p potential hubs

Require: Number of nodes n, number of hubs p, weight matrix weights, distance matrix distances
Ensure: Selected hubs hubs and allocation for each node allocation
: Compute potential hubs using the Algorithms 1: Select Potential Hubs
: Sort potential hubs based on their weights
: Select the top p hubs from the sorted list
. Initialize allocation list
: for each node 7 in range 0 to n — 1 do
Assign the closest hub to node i:
allocation[t] < argming ¢, distances[d][h]
end for
: return hubs, allocation

4.2. Generating Neighborhood

At each iteration, a new solution is generated based on the current solution’s neighborhood. To generate a
neighborhood, we explore a modification to the hub set. We retain one hub from the current solution and replace
the remaining hubs with nodes. This strategy broadens the search space, allowing for a more comprehensive
exploration of potential optimal solutions. For allocation, we continue to apply the nearest distance method, as it
remains efficient even with large-scale inputs. The steps of generating a neighborhood are described in pseudocode
of Algorithm 3.

Algorithm 3 Generate Neighborhood
Require: List of hubs hubs, number of nodes n, distance matrix distances
Ensure: List of neighborhood solutions neighborhood

1: Initialize an empty list neighborhoods

2: Create a set of hubs hub_set

3: Identify non-hub nodes as the difference between all nodes and hub_set

4: for each hub in hubs do

5. for each non-hub in non_hubs do

6 Create a copy of current hubs new_hubs
7 Remove the current hub from new_hubs
8
9

Add the non-hub to new_hubs
Compute new assignments based on new_hubs:

10: new_assignments(i] <— argming, ¢ ..., pups déstances[i][h] for each node i
il Append the tuple (new_hubs, new_assignments) to neighborhoods

12:  end for

13: end for

14: return netghborhoods

4.3. Identifying Pareto Frontier

To be able to identify the Pareto Frontier, solutions are classified into two groups; dominated solutions and non-
dominated solutions. First, we check the dominance of the current solution whether the current solution dominates
any neighboring solution—if it does, that neighbor is discarded. If not, we retain the neighbor. The steps of
checking the dominance are described in pseudocode of Algorithm 4.

Algorithm 4 Dominates Function

Require: Two solutions soll = (costl,timel) and sol2 = (cost2,time2)
Ensure: Boolean result indicating if soll dominates sol2
1: Extract costl and timel from soll
2: Extract cost2 and time2 from sol2
3: return (costl < cost2 and timel < time2) or (costl < cost2 and timel < time2)
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After the non-dominated neighboring solutions are successfully generated, we further refine the set of Pareto
Frontier by classifying the remaining non-dominated neighbors. Any solution dominated by another in this subset is
also removed. This process ensures that the final set consists of superior solutions that are non-dominated by both
the current solution and other neighboring solutions. The steps of removing dominated solutions are described in
pseudocode of Algorithm 5.

Algorithm 5 Remove Dominated Solutions

Require: A list of solutions solutions
Ensure: A list of non-dominated solutions

1: Initialize an empty list non_dominated

2: for each solution candidate in solutions do
3:  Set dominated < False

4:  Initialize an empty list to_remove

5: for each solution other in non_dominated do
6: if candidate dominates other then

7: Add other to to_remove

8: else if other dominates candidate then
9: Set dominated < True
10: break the loop
11: end if
12:  end for
13:  if dominated = False then
14: Add candidate to non_dominated
15:  end if
16: for each solution sol in to_remove do
17: Remove sol from non_dominated
18: end for
19: end for

20: return non_dominated

4.4. Main Algorithm of MOTS

In the main algorithm of our proposed MOTS, we have input data, which are number of nodes, number of hubs,
distance matrix, flow matrix or weights, hub capacity, and discount factors; «, . The initial solution is firstly
generated and set as a Pareto Frontier. It is important to note that the initial solution is critical as it directly affects
the performance of the algorithm. A pootly generated initial solution may lead to suboptimal outcomes and extend
the time required to reach optimality, thereby increasing computational costs and complexity. Next, we improve the
current solution by generating a neighborhood solution, where the number of neighborhood solutions at each
iteration is 2(#-p). Then, we check for dominance between the current solution and its neighbors. Once new
neighboring solutions are generated, we also check for dominance among all neighboring solutions. The tabu tenure
list and the Pareto Frontier set is updated at each iteration. The tabu tenure is set at 15 based on Silva and Cunha
(2017) and preliminary tests (5, 10, 15) to maintain intensification. The process is continued until the algorithm
reaches the maximum iterations at 50 iterations or show no improvement for 10 consecutive iterations. The steps
of the main algorithm of MOTS are demonstrated in Figure 3.

5. Non-Dominated Sorting Genetic Algorithm IT (NSGA-II)

NSGA-II was introduced by Deb, Pratap, Agarwal and Meyarivan (2002). It gained prominence due to its supetior
performance in solving multi-objective optimization problems. Building on the foundation of NSGA, NSGA-II
inherits and preserves beneficial mechanisms such as retaining the best solutions. Additionally, it optimizes the
complexity of non-dominated sorting, simplifies the calculation of crowding distance, and enhances efficiency in
maintaining population diversity. As a result, NSGA-II can tackle larger problems and deliver better outcomes. The
main step of NSGA-II consists of 6 parts.
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Initial Solution

v

Evaluation

v

Generate
Neighborhoods

Non-Dominated Check
across Pareto Set

Delete
Neighborhoods
Add to Pareto Set
Update Tabu List

!

Meet the terminate
criteria?

Figure 3. Flowchart of Multi-Objective Tabu Search

5.1. Initial Population

We use a permutation representation for the hub location problem. A solution is represented as an array, where the
array’s length corresponds to the number of nodes in the problem. Each element in the array represents a node,
and from the set of nodes, a certain number of nodes is selected to serve as hubs, with the number of hubs
determined by the specific problem requirements. The value of each element in the array indicates the hub to
which the corresponding node will be allocated.

Population initialization is an important step in NSGA-II, significantly influencing the quality of subsequent
generations. The better the quality of the initial population, the easier it is to reach the global optimum. The first
population must ensure diversity, essential for effective crossover and mutation processes. A population that
contains many high-quality solutions will make exploring the solution space more efficient.

First and foremost, the population initialization step must ensure that all solutions generated are feasible. For the
hub location problem, solutions must satisfy constraints such as hub capacity, number of nodes, and the number of
hubs. During the initialization process, solutions are generated with a predetermined number of hubs and nodes.
These solutions are then checked for constraints to ensure they are feasible. Additionally, to increase the likelihood
of good solutions in the population, a fixed number of solutions will be created based on elite nodes selected as
hubs, while the rest of the solutions will be generated by randomly selecting hubs. The allocation of each node will
be based on the nearest hub. Figure 4 illustrates the initial population.

After the new population is initialized, we evaluate the fitness and check the feasibility of each solution within the
population. The fitness of the solution is based on the objective functions, which are minimizing total
transportation cost and maximum travel time. The feasibility is based on the validation of all constraints of the
problem. The population size is set to 200 based on Demir, Ergin and Kiraz (2016) and preliminary tests (50, 100,
200), as smaller sizes reduce diversity and increase the risk of local optima.
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Allocate to nearest hub

_
‘2‘2‘2‘2‘2‘54‘ ......... ‘54‘54‘54‘
- ‘3‘3‘3‘3‘3‘53‘ ‘53‘53‘53‘
Initial
population
‘4‘4‘4‘4‘4‘52‘ ......... ‘52‘52‘52‘
~—

Figure 4. Initial population

5.2. Non-Dominated Sorting

In this step, we classify solutions based on dominance. Each solution has to be compared with other solutions,
whether it dominates other solutions or it is dominated by any solution. We set up 2 vectors for non-dominated
sorting; dominance count and dominated list. The dominance count records the number of solutions that
dominate a given solution. A lower count means the solution is closer to the Pareto Front. The dominated list is a
set of solutions that are dominated by a given solution. The steps of non-dominated sorting are as follows.

Step 1: Compare each solution pair. If solution A is at least as good as solution B in all objectives and better in at
least one, then A dominates B. We update B’s dominance count and add B to A’s dominated list.

Step 2: Solutions with a dominance count of 0 are ranked as Rank 1 (Pareto Front).

Step 3: For each solution, reduce the dominance count of the solution in its dominated list. Solutions with a new
dominance count of 0 are moved to Rank 1. Solutions with a high number of dominance counts are put in Rank 2,
and Rank 3, respectively. Keep doing this until all solutions are ranked, ensuring that every solution is placed in the
correct tier based on its dominant relationship with others.

The steps of non-dominated sorting are described in pseudocode of Algorithm 6.

5.3. Crowding Distance Calculation

The calculation of crowding distance plays a critical role in ensuring population diversity. It helps prevent the
algorithm from prematurely converging to local optima and getting stuck there. For each rank, the first step in
calculating crowding distance is identifying the boundary solutions with the smallest and largest values for each
objective function using negative infinity and positive infinity, respectively. The solution with the smallest value for
an objective function is assigned a crowding distance of negative infinity. This assighment ensures that the
algorithm recognizes it as a boundary solution, which is crucial for preserving the extremities of the Pareto Front.
Similarly, the solution with the largest value for an objective function is assigned a crowding distance of positive
infinity.

By assigning these extreme values, the algorithm effectively sets boundaries for the solution space, ensuring that the
solutions at the edges ate retained in the next generation. For solutions that are not at the boundaties, the crowding
distance is calculated based on the distance between adjacent solutions in the objective space. This calculation helps
quantify how isolated a solution is compared to its neighbors. For example: to calculate the crowding distance for
solution 7, we consider its immediate neighbor’s solutions /—1 and 7+1.

For each objective function, we calculate the difference in objective values between solutions /—1 and /+1. The
crowding distance for solution 7 is then determined by summing these differences across all objective functions.
This sum gives a measure of how much the solution is “crowded” by its neighbors. The steps of calculating
crowding distance are described in pseudocode of Algorithm 7.
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Algorithm 6 Non-Dominated Sorting
Require: Cost values (cost_value), Maximum time values (maz_time_value), Population size
(pop_size)

Ensure: Sorted fronts (fronts)

1: fronts < [[]]

2. domination_count « [0,0,...,0]

& dominated_solutions + [[] for each solution in population]
4: for each solution p in population do
BN
6

for each solution ¢ in population do
if (costwaluelp] < costovaluelq] N maz_timevaluelp] <  mazx_time_valuelg]) Vv
(cost_value[p] < cost_value|g] A maz_time_value[p] < maz_time_value[q]) then

7: dominated_solutions|p].append(q)

& else if (cost_valuelq] < cost_valuelp] A maz_time_valuelg] < maz_time_value[p]) v
(cost_valuelq] < cost_value[p] A maz_time_value(g] < maz_time_value[p]) then

9: domination_count[p] + domination_count[p] + 1

10: end if

11: end for

12: if domination_count[p] == 0 then

13: [ronts[0].append(p)

14: end if

15: end for

16: 2 0

17: while fronts[i] is not empty do

18: next_front + ||

19: for each solution p in fronts[i] do

20: for each solution q in dominated_solutions[p] do

21: domination_count|q] + domination_count|q] — 1

22: if domination_count|q] == 0 then

23 next_front.append(q)

24: end if

25: end for

26 end for

27 it 1

28: [ronts.append(next_front)

29: end while

30: fronts.pop() > Remove the last empty front

31: return fronts

Algorithm 7 Calculate Crowding Distance
Require: Front of solutions front, Cost values cost_value, Maximum time values maz_time_value
Ensure: Crowding distances distance
I: distance < [0,0,...,0] - Initialize distance array
2: sorted_by_cost + sort(front,by cost values)
& sorted_by_time + sort( front, by time values)
. distance[sorted_by_cost[0]] + oo
. distance[sorted_by_cost|—1]] + oo
. distance[sorted_by_time[0]] + oo
. distance[sorted_by_time[—1]] + oo
: for each solution i in 1 to |front| — 2 do
distanee[sorted_by_cost|i]| — distanee[sorted_by_cost[i]] +

cost_value[sorted_by_cost[i+ 1] - cost_value[sorted_by_cost[i—1]]
max{cost_valwe | — minfcost_value)
10: distanee[sorted_by_timeli]| o distance[sorted_by_timeli]| +
mar_lime value[sorled by time[it )] - moes_time_value[sorted gy _Limme[i— 1]]
max (s _Lime_valee) —min(maz_Lime_valee)

11: end for
12: return distance

5.4. Parent Selection

To select parents for the crossover and mutation processes, the goal is to choose the best solutions to undergo
these operations. We select 4 solutions from the population and pair them into two groups. Each pair is then
compared based on their rank in the non-dominated sorting and their crowding distance values. The two solutions
that are selected will become the parents. This process is repeated until the number of parents (equal to the number
of offspring that will be created) equals the number of solutions in the population.
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5.5. Crossover and Mutation

To increase solution diversity, crossover and mutation are applied to the parents selected in the previous step. For
each pair of parents, random crossover points are chosen, and crossover is performed to produce two offspring.
For each offspring, a random position is selected for mutation, after which all generated offspring are added to the
offspring set. The crossover rate (P) and mutation rate (P,) are set at 0.9 and 0.3 based on Demir et al. (2016) and
preliminary tests (P:0.7, 0.8, 0.9; P,:0.1, 0.2, 0.3), respectively, to maximize diversity.

5.6. Next Generation

The next step in the NSGA-II algorithm involves integrating the newly generated offspring with the current
population to form a combined set of solutions. This process allows us to consider both the best solutions from
the previous generation (200 solutions) and the new offspring set (100 solutions). By combining these two sets, we
create a more diverse and comprehensive pool of potential solutions that can be evaluated and ranked to identify
the most optimal solutions for the next generation.

We evaluate the solutions in this combined set once again using the two methods: non-dominated sorting and
crowding distance, just as before. We then initialize a new population by adding solutions based on priority—first
by rank (from lowest to highest) and then by crowding distance (from highest to lowest). Only 200 solutions are
selected to be the new population. The termination critetion is set at 50 maximum iterations or no improvement
for 10 consecutive iterations. The steps of the procedure of the NSGA-II are demonstrated as a flow chart in
Figure 5.

Initial Population
Evaluate Fitness

| Non-Dominated Sorting ‘

¥

| Calculate Crowding Distance |

I
v «
Select Solutions '
for Next Select Parent
Generation
Create Offsprings

Meet the maximum No
number of offsprings?

Meet the
terminate criteria?

Figure 5. Flowchart of NSGA-II
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6. Computational Results
6.1. A Case Study of Rail Network Planning

The main rail network in Thailand is constructed from the north to the south. In this study, we use a north route
line, which starts from Bangkok to Chiang Mai. The total number of stations is more than 100, however, only 54
stations are considered to be a candidate of rail hub. In this problem, we aim to determine the optimal location of
rail hub in this network. The proposed metaheuristics algorithms, MOTS and NSGA-II are implemented to find
the optimal solutions. The number of passengers, the distance between stations and nodes are given, the number of
nodes (#) is fixed at 54, the number of hubs (p) is varied from 2 to 10. The experiments are conducted and run on a
computer with Intel Core i5-12450H 2.0 GHz CPU, 8GB RAM, and 512GB memory. The results are shown in
Table 1, where the minimum solution of each case is reported. According to total transportation costs (minimizing)
and maximum travel time (minimizing), both algorithms provide competitive solutions. Both MOTS and NSGA-II
are similarly capable of finding the lowest total cost, while MOTS is more likely to find the lowest maximum travel
time. However, NSGA-II tends to perform faster than MOTS, especially when number of hubs is increased.

Total Cost Max Travel Run Time
(baht) Time (min) (s)
MOTS 5,40 28,707,690 594.17 23.36
g NSGA-1I 440 28,741,786 600.14 252.46
MOTS 1,21,40 21,128,862 531.41 51.98
’ NSGA-II 1,21,40 21,128,862 531.41 255.24
MOTS 4,24 46,52 21,188,402 420.83 210.22
! NSGA-II 1,22,40, 54 17,423,540 494.80 259.57
MOTS 1,13,31,46,52 16,118,298 371.67 144.89
> NSGA-1I 1,12,22,40,54 14,765,891 488.37 261.35
MOTS 3,12,22,37,47 52 13,701,317 359.66 74.05
¢ NSGA-II 1,12,22,34,47 54 13,132,487 414.96 261.43
MOTS 1,12,22,27 37 47,52 12,159,936 363.38 117.19
’ NSGA-II 1,12,22,30,40,47,54 11,844,744 414.96 256.07
MOTS 1,6,12,22,27,37 47,52 11,229,865 349.30 113.25
i NSGA-1I 1,6,12,22,32,40,47 54 10,822,743 401.19 261.24
MOTS 1,6,12,22,27 34,40,47,52 10,215,346 349.30 217.51
i NSGA-II 1,34,6,40,12,47,22,54 27 9,939,782 401.19 264.09
MOTS 1,5,12,22,27 34,40,47,51,54 9,624,971 345.14 649.78
1 NSGA-II 1,6,12,22,27,30,34,40,47,54 9,480,293 398.27 267.59

Table 1. Hub set solutions of MOTS and NSGA-II

The two main objectives that we considering are total transportation cost and maximum travel time. These
objectives often conflict, as solutions with lower transportation costs may lead to longer travel times due to more
complex routing. Conversely, achieving shorter overall travel time may result in higher costs. The Pareto Front
obtained of both algorithms are graphically presented in Figures 6-8, which illustrate the trade-off between the two
objectives. The non-dominated solutions across the three cases show notable differences. For the case with 3 hubs,
NSGA-II tends to outperform MOTS by producing lower objective values. In contrast, for the cases with 5 and 7
hubs, MOTS performs slightly better than NSGA-II. To draw more robust conclusions, the next section presents a
statistical hypothesis test to further analyze these differences.

-588-



Journal of Industrial Engineering and Management — https://doi.org/10.3926/jiem.8938

-~ Pareto Plot for n=54, p=3
----- MOTS
st ‘ 77777 NSGA-II
5S
A
5.0 '1
A
as
= ®
35
P A
“%_. = .
30 .‘, o
25 i
[ & P A
%o "00'—70}_;%
@
20
420 440 460 480 500 520
Max Travel Time
Figure 6. Pareto Fronts of the NSGA-II and MOTS for 54 nodes and 3 hubs
17 Pareto Plot for n=54, p=5
————— MOTS
77777 NSGAI
19
18
g
°
E 17
pu
16 |
..
L e
15 o S — °
_____________________________ .
30 30 400 20 a0 50 80
Max Travel Time
Figure 7. Pareto Fronts of the NSGA-II and MOTS for 54 nodes and 5 hubs
%d Pareto Plot for n=54, p=7
77777 MOTS
A} 77777 NSGAI
140
=
|
4 \ *
8 4
g 130
£ Q
A
125
aod— 0} ] e L
777777777777777777777777777777 "
340 350 360 370 380 390 400 410
Max Travel Time

Figure 8. Pareto Fronts of the NSGA-II and MOTS for 54 nodes and 7 hubs
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6.2. Performance Comparison

This section we perform the statistical comparison between 2 algorithms. The statistical results show in Table 2.
Although NSGA-II obtains the lower mean of the first objective (total transportation cost) compare to MOTS, the
statistics show not significantly different at the significance level of 0.05 with p-value 0.805. For the second
objective (maximum travel time), MOTS obtains the lower mean compare to NSGA-II, however the statistics show
not significantly different at the significance level of 0.05 with p-value 0.205. Therefore, the performance of
algorithm in term of quality of solution of both algorithms are the same. For performance of computational time,
the statistics show not significantly different at the significance level of 0.05 with p-value 0.212. However, the
standard deviation of NSGA-II is very low, indicating that its time performance is more consistent than MOTS. In
contrast, the run times of MOTS tend to increase as the number of hubs increases.

Metric Algorithm Mean SD t P
MOTS 16,008,298.56 6,438,273.64 0.251 0.805
Total transportation cost
NSGA-II 15,253,347.56 6,311,854.05
MOTS 409.42 91.19 -1.321 0.205
Maximum travel time
NSGA-IT 460.58 72.05
MOTS 178.02 188.66 -1.301 0.212
Run time
NSGA-II 259.89 4.67

Table 2. Statistical comparison of algorithms

Next, we analyze the Pareto Front generated by the MOTS and NSGA-II algorithms, comparing the diversity of
solutions and the effectiveness in achieving optimal solutions. The deviation of solutions from both algorithms in
each objective at different numbers of hubs are showed in Figures 9-10. There is a high diversity of solutions in the
case of fewer number of hubs (p=2, 3, and 4) in both algorithms as indicated by the wide range of the boxplots.
Although, MOTS has variety of solutions in the total cost objective (p=3), however, NSGA-II has more diversity
of solutions in overall cases. So, in the case of solving multi-objective problems, the more number of optimal
solutions means more alternatives to decision makers. Therefore, NSGA-II is able to provide more alternatives for
decision makers.

1e7 Deviation of Total Cost (n=54) Deviation of Max Travel Time (n=54)
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Figure 9. Deviation of solutions from MOTS at different numbers of hubs
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Figure 10. Deviation of solutions from NSGA-II at different numbers of hubs

7. Conclusion

This research presents a railway transportation network planning approach that addresses the selection of the
most suitable location for a railway transportation hub, considering both cost and service. The problem is
formulated as a multi-objective model with the objectives of minimizing total transportation cost and maximum
travel time, and applied to a real-world case study in Thailand. Due to the size and complexity of the problem,
we develop two metaheuristics algorithms; MOTS and NSGA-IL, to solve the problem. Computational results
indicate that both algorithms perform efficiently in terms of solution quality and computational time. MOTS
tends to perform better by yielding lower non-dominated solutions for the first objective (cost), while NSGA-II
performs better by yielding lower non-dominated solutions for the second objective (service). The findings
support the effectiveness of MOTS (Ghaffarinasab, 2020; Ying & Junping, 2014) and NSGA-II (Demir et al.,
2016; Karimi-Mamaghan et al., 2020) for solving multi-objective hub location problems, consistent with previous
studies. However, at the 0.05 significance level, there is no statistically significant difference between MOTS and
NSGA-II. Regarding computational time, both algorithms perform equally well with no significant difference,
although NSGA-II tends to achieve higher solution diversity, as also reported in prior studies (Karimi-
Mamaghan et al., 2020).

The proposed multi-objective model extends the classical single-objective hub location problem model that focuses
only on minimizing transportation cost. Instead of providing a single optimal solution, it highlights the trade-off
between cost and travel time, thus offering decision-makers more alternatives for railway hub network design. This
contributes to both the construction phase of new rail networks and the improvement phase for redesigning or
expanding existing hubs, with the potential to enhance efficiency, service quality, and passenger satisfaction. The
decision-makers can balance cost efficiency and service performance, making the findings valuable for both
policymakers and railway operators.

For future research, there are several directions. First, demand in this study is assumed to be deterministic;
incorporating demand uncertainty or time-dependent passenger flows could make the model more realistic. Second,
adding a third objective such as coverage or profit could further enrich the analysis. Finally, testing other advanced
optimization methods or extending the framework to multimodal transportation systems could enhance both the
robustness and applicability of the proposed approach.
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