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Abstract:

Purpose: Hub location problems have been utilized in various applications including rail transportation
network planning, where hub serves as a key transit point within the network. In this paper, we focus on
determining the optimal location for a rail transportation hub, where cost and service are trade-off.

Design/methodology/approach: The problem is formulated as a multi-objective programming model
with the objectives of  minimizing total transportation costs and minimizing maximum travel time. A case
study of  rail transportation network hub planning in Thailand is presented. Given the complexity and large
scale of  the real-world case study, we develop and compare the Multi-Objective Tabu Search (MOTS) and
Non-Dominated Sorting Genetic Algorithm II (NSGA-II) to solve the problem.

Findings: The proposed algorithms yield efficient performance in terms of  computational  time and
solution quality. Performance comparison is further analyzed to see the difference in both algorithms.

Originality/value: The results offer valuable managerial insights for decision-makers in rail transportation
hub network design.

Keywords: multi-objective optimization, hub location problem, rail transportation network, tabu search, genetic
algorithm
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1. Introduction

Transportation hub network design is a complex process involving multiple factors such as location, passenger
demand, connectivity, operational efficiency, and budget constraints. A hub functions as a central transit point in a
transportation network model, facilitating the movement of  passengers or goods by connecting various routes and
modes of  transport, thereby optimizing efficiency and reducing travel times. The location of  a transportation hub
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significantly influences passenger volume, as it  affects accessibility,  connectivity,  and the convenience of  travel
within the network. Strategically  located hubs can attract higher passenger traffic by offering efficient transfer
points and reducing overall  travel time. Conversely,  poorly located hubs may deter usage due to inconvenient
connections or extended travel durations. Therefore, careful consideration of  hub placement is a key factor for
optimizing passenger flow and enhancing the effectiveness of  the transportation system.

Rail transport is recognized as an efficient mode of  transportation, capable of  moving substantial quantities of
goods and passengers. Furthermore, it is generally more economical when evaluating transportation costs per unit
compared to alternative modes of  transport. However, rail transportation is subject to certain limitations, primarily
due to the fixed locations of  origin and destination stations. Consequently, passengers are required to travel from
their residences to the train station and subsequently from the destination train station to their final destinations. In
many instances, the total travel time associated with train transport may exceed that of  a direct trip from origin to
destination.

In this paper, we aim to determine the optimal location for a transportation hub in a railway network system. The
objectives are to minimize total transportation cost and minimize maximum travel time. Transportation costs are
comprised  of  three  components:  incoming  transport  to  the  train  station,  transit  between  train  stations,  and
outgoing transport from the train station. Travel time is categorized into two parts: the time taken to travel from the
origin to the destination and delay time. Several important factors are considered, including passenger demand, the
locations of  passenger origins and destinations, and hub capacity. The problem is formulated as a multi-objective
programming model and applied to rail transportation hub network planning in Thailand. Given the complexity
and large size of  the real-world case, we develop metaheuristic algorithms, specifically the Multi-Objective Tabu
Search (MOTS) and Non-Dominated Sorting Genetic  Algorithm II (NSGA-II),  to address the problem. The
proposed algorithms demonstrate efficient performance with acceptable solving times and high-quality solutions.

The remainder of  the paper is organized as follows. Section 2 reviews the literature on existing studies of  the Hub
Location Problem (HLP) and associated solution methods. Section 3 presents the proposed multi-objective HLP
model.  Sections  4  and  5  describe  the  developed  metaheuristic  algorithms,  namely  MOTS  and  NSGA-II,
respectively. In Section 6, the two algorithms are evaluated on a real-world case study of  rail transportation network
design, along with computational results and performance comparisons. Finally, Section 7 provides the conclusions
and directions of  future research.

2. Literature Review
2.1. Hub Location Problems

A hub location network strategically designs transportation systems for goods and passengers by routing traffic
through centralized hubs instead of  direct connections between origins and destinations. This consolidation at hubs
leverages economies of  scale to reduce transportation costs.  This model is  applicable in logistics,  distribution
centers,  international  transport,  public  transit,  postal  services,  and  optimizing  locations  for  airports  and  bus
terminals to efficiently connect passengers to their final destinations (Wang,  Liu & Yang, 2023; Attar,  Irawan,
Akbari & Zhong, 2024; Ogazon, Anaya-Arenas & Ruiz, 2025; Wandelt, Wang & Sun, 2025).

The foundational research on the p-hub median problem was first developed by O’Kelly (1987), who formulated it
as a quadratic mathematical model for the uncapacitated single  p-hub median problem (USApHMP). Campbell
(1994) expanded this  by  introducing the uncapacitated multiple  p-hub median problem (UMApHMP). Yaman
(2011) extended the hub location problem by introducing the uncapacitated  r-allocation  p-hub median problem
(UrApHMP),  which  simplifies  to  a  single-allocation  problem when  r  = 1  and becomes  a  multiple-allocation
problem when 1 <  r  ≤  p.  Peker,  Kara, Campbell  and Alumur (2016) contributed to this area by developing a
clustering-based approach to identify potential hub sets. They focused on selecting optimal hub locations based on
factors like flow volume and geographic data, particularly in major urban centers, while ensuring that hubs are not
located  too  closely  together.  Several  approaches  have  been  explored  in  hub  location  research.  Ernst  and
Krishnamoorthy (1996) developed an effective mathematical formulation for the single allocation  p-hub median
problem and applied the Simulated Annealing algorithm to solve the USApHMP. They later expanded their work to
address the multiple-allocation version of  the problem (Ernst,  Hamacher, Jiang, Krishnamoorthy & Woeginger,
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2009). The p-hub median problem is known for its computational complexity and is classified as NP-hard (Kara &
Tansel, 2000). Since such problems require excessive computational effort to solve exactly, metaheuristic algorithms
are often preferred as solution methods.

2.2. Solution Methods for Hub Location Problems

Various  metaheuristic  techniques  have  been  employed,  including  Genetic  Algorithms  (GA)  by  Kratica,
Stanimirovic,  Tosic  and Filipovic (2007)  and  Topcuoglu,  Ergin,  Ermis  and Yilmaz (2005).  Benaini,  Berrajaa,
Boukachour  and Oudani (2019) introduced a parallel  genetic  algorithm to solve the USApHMP. More recent
advancements include the Simheuristic Approach developed by Jost, Grochala, Schumacher, Ammouriova & Juan
(2023). Tabu search (TS) has also been investigated in hub location research, particularly through the development
of  the TABUHUB method by Skorin-Kapov and Skorin-Kapov (1994), which was later refined by Abyazi-Sani and
Ghanbari (2016). Additionally, Guan,  Lin  and Feng (2018) implemented a Learning-based Tabu Search (LTS) to
address the uncapacitated single allocation hub location problem. 

Numerous studies have investigated multi-objective hub location problems. Ghaffarinasab (2020) introduced a bi-
objective hub location problem aimed at minimizing total costs while maximizing service levels by reducing the
longest path between origin and destination pairs. The author also developed a Tabu Search (TS) to efficiently solve
this  problem.  Soylu  and Katip (2019)  proposed  a  multi-objective  hub-airport  location  problem for  an airline
network design, using p-median hub problem to minimize total transportation cost and 2-stop routes. A variable
neighborhood search (VNS) heuristic  was proposed to solve the problem. Chobar, Adibi  and Kazemi (2021)
proposed a bi-objective mathematical model focused on minimizing transportation costs and pollution emissions.
They  utilized  the  Non-Dominated  Sorting  Genetic  Algorithm (NSGA-II)  and  the  Non-Dominated  Ranking
Genetic Algorithm (NRGA) to identify optimal locations for tourist hubs. Li, Han, Zhou and Gu (2023) developed
a bi-objective mathematical model for food transportation within a hub location network during the COVID-19
pandemic, aiming to minimize both transportation time and cost. To solve the problem, they used Grey Wolf
Optimizer (GWO).

Previous studies indicate that TS has been successfully applied to hub location problems due to its intensification
capabilities and ability to generate effective allocation solutions (Skorin-Kapov & Skorin-Kapov, 1994; Abyazi-Sani
& Ghanbari, 2016). Meanwhile, NSGA-II is widely used for solving multi-objective problems because it effectively
preserves diversity points across the Pareto front (Chobar et al., 2021; Karimi-Mamaghan, Mohammadi, Pirayesh,
Karimi-Mamaghan & Irani, 2020). Since our study focuses on a multi-objective rail hub location problem, the most
suitable algorithm remains unclear. Moreover, no previous study has compared these two algorithms for railway
hub location problems under a bi-objective model minimizing total cost and maximum travel time. Therefore, we
develop both NSGA-II and TS and evaluate their performance on a real-world case study.

3. Mathematical Model
In this section, we introduce a mathematical model to determine the optimal location and allocation of  hub in a
network.  The  proposed  multi-objective  Hub  Location  Problem  (HLP)  model  is  formulated  as  follows.  Let
G = (N, A) is a connected graph, where N={1, 2, …, n} represents a set of  nodes, n is the number of  nodes, p is
the number of  hubs, and A represents a set of  arcs. The indices i, j, k, m  N, where i and j denote nodes, and k
and m denote hubs. Parameters are defined as follows. There are two types of  cost;  Cij

km indicates transportation
cost from node i to node j via hubs k and m, where Cij

km = Cik + αCkm + Cmj. The transportation cost is composited
of the cost from node to hub, hub to hub, and hub to node, respectively, where α is the discount for transport via
hub to hub. Fk indicates fixed cost of  establishing hub k. Wij indicates the amount of  flow from node i to node j.
The travel time is defined based on the travel time and delay time, where Tij

km indicates traveling time from node i to
node  j.  Tij

km =  Tik +  βTkm +  Tmj +  Sk +  Sm, where  Tik indicates the traveling time between node  i to hub  k,  Sk

indicates delay time at hub k, and β indicates the discount factor for traveling time between a hub link (hub to hub).
The hub capacity is also considered, where Hk indicates the maximum capacity of  hub k. Decision variables are
defined as follows; Xij

km represents amount of  flow that is routed from node i through hubs k and m, Xk represent
hub location, where Xk = 1 if  node k is selected to be hub, Xk = 0 otherwise. The mathematical model is detailed
as the following.
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Minimize (1)

Minimize (2)

Subject to:

(3)

(4)

(5)

(6)

(7)

(8)

(9)

The first objective in Equation (1) is to minimize the total transportation cost, which is composed of  two types of
costs: the variable cost Cij

km and the fixed cost Fk. The variable cost is associated with travelled distance and consists
of  three components, which are the collection cost, the distribution cost, and the transfer cost between hub arcs
represented by the discount factor  α. The fixed cost is the cost of  establishing hubs. The second objective in
Equation (2) is to minimize the maximum travel time of  a passenger in the system. The travel time is composed of
the traveling time from origin to destination including delay time at hubs. Note that the traveling time is associated
with a distance traveling through hubs gets a discount factor β. Constraint (3) ensures that flow (from i to j) at each
node is allocated to exactly one pair of  hub locations (k and m). Constraints (4) - (5) allow assigning flow to a pair
of  hub locations after they have been located (k and m are selected as a hub). Constraint (6) restricts the amount of
incoming and outgoing flow from nodes to a capacitated hub. Constraint (7) limits on the number of  hubs that
should be opened. Constraints (8) - (9) are the non-negativity and binary requirements, respectively. This problem is
complex since the size of  decision variables is of  O(N4) and the second objective (Z2) is not a linear function, so
these make the whole problem hard to solve. Therefore, it is necessary to develop a metaheuristic algorithm for
solving the problem.

4. Multi-Objective Tabu Search (MOTS)

We present an approach grounded in the Tabu Search (TS) algorithm,  originally  developed by Glover (1989)
coupled  with  dominance  principles,  to  address  multi-objective  optimization  problems.  Our  MOTS  method
leverages the strengths of  TS, particularly its ability to explore local neighborhoods effectively, enhancing efficiency
when identifying solutions with superior objective values. Simultaneously, the Tabu Search mechanism mitigates the
risk of  premature convergence to local optima, enabling a more robust exploration of  the solution space and
facilitating the discovery of  optimal Pareto frontiers (Gendreau & Potvin, 2010). The main step of  the proposed
MOTS consists of  4 parts.
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4.1. Initial Solution

For solution representation,  we use  the  permutation representation,  as illustrated in  Figures  1  and 2.  In this
structure, each index represents a node, while the corresponding value indicates the hub to which that node is
allocated. This approach allows for clear and efficient mapping of  nodes to hubs, facilitating the computation of
the solution’s objective functions.

Figure 1. Solution representation

Figure 2. The hubs and nodes in the network have represented in Figure 1

The initialization phase is  crucial as it  significantly  impacts both the convergence speed and the likelihood of
finding the optimal solution. To ensure a robust start, we prioritize nodes with higher potential to become hubs
based on their total weight (inbound and outbound). After calculating the total weight for each node, we rank them
accordingly and select the top n nodes as initial hubs for the first solution. This method enhances the efficiency and
effectiveness of  the algorithm’s search process. The steps of  selecting the initial hub based on total weights are
described in pseudocode of  Algorithm1.

Once the initial hubs are selected, the next step is to focus on node allocation. We use the nearest distance method,
where each node is  assigned to the hub that is  closest  in distance.  This ensures that each node is  efficiently
connected  to  a  hub,  minimizing  the  overall  travel  distance.  After  completing  this  process,  we  obtain  a  fully
initialized solution, consisting of  both the selected hubs and the corresponding node allocations. The steps of
allocating nodes to the p potential hubs are described in pseudocode of  Algorithm 2.
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4.2. Generating Neighborhood

At each  iteration,  a  new solution  is  generated  based  on the  current  solution’s  neighborhood.  To  generate  a
neighborhood, we explore a modification to the hub set. We retain one hub from the current solution and replace
the remaining hubs with nodes. This strategy broadens the search space, allowing for a more comprehensive
exploration of  potential optimal solutions. For allocation, we continue to apply the nearest distance method, as it
remains efficient even with large-scale inputs. The steps of  generating a neighborhood are described in pseudocode
of  Algorithm 3.

4.3. Identifying Pareto Frontier

To be able to identify the Pareto Frontier, solutions are classified into two groups; dominated solutions and non-
dominated solutions. First, we check the dominance of  the current solution whether the current solution dominates
any neighboring solution—if  it  does, that neighbor is discarded. If  not, we retain the neighbor. The steps of
checking the dominance are described in pseudocode of  Algorithm 4. 
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After the non-dominated neighboring solutions are successfully generated, we further refine the set of  Pareto
Frontier by classifying the remaining non-dominated neighbors. Any solution dominated by another in this subset is
also removed. This process ensures that the final set consists of  superior solutions that are non-dominated by both
the current solution and other neighboring solutions. The steps of  removing dominated solutions are described in
pseudocode of  Algorithm 5. 

4.4. Main Algorithm of  MOTS

In the main algorithm of  our proposed MOTS, we have input data, which are number of  nodes, number of  hubs,
distance matrix,  flow matrix or weights,  hub capacity,  and discount factors;  α,  β.  The initial  solution is  firstly
generated and set as a Pareto Frontier. It is important to note that the initial solution is critical as it directly affects
the performance of  the algorithm. A poorly generated initial solution may lead to suboptimal outcomes and extend
the time required to reach optimality, thereby increasing computational costs and complexity. Next, we improve the
current solution by generating a neighborhood solution, where the number of  neighborhood solutions at each
iteration is  2(n-p).  Then,  we check for dominance between the current solution and its  neighbors. Once new
neighboring solutions are generated, we also check for dominance among all neighboring solutions. The tabu tenure
list and the Pareto Frontier set is updated at each iteration. The tabu tenure is set at 15 based on Silva and Cunha
(2017) and preliminary tests (5, 10, 15) to maintain  intensification. The process is continued until the algorithm
reaches the maximum iterations at 50 iterations or show no improvement for 10 consecutive iterations. The steps
of  the main algorithm of  MOTS are demonstrated in Figure 3.

5. Non-Dominated Sorting Genetic Algorithm II (NSGA-II)

NSGA-II was introduced by Deb, Pratap, Agarwal and Meyarivan (2002). It gained prominence due to its superior
performance in solving multi-objective optimization problems. Building on the foundation of  NSGA, NSGA-II
inherits and preserves beneficial mechanisms such as retaining the best solutions. Additionally, it optimizes the
complexity of  non-dominated sorting, simplifies the calculation of  crowding distance, and enhances efficiency in
maintaining population diversity. As a result, NSGA-II can tackle larger problems and deliver better outcomes. The
main step of  NSGA-II consists of  6 parts.
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Figure 3. Flowchart of  Multi-Objective Tabu Search

5.1. Initial Population

We use a permutation representation for the hub location problem. A solution is represented as an array, where the
array’s length corresponds to the number of  nodes in the problem. Each element in the array represents a node,
and from the set of  nodes, a certain number of  nodes is selected to serve as hubs, with the number of  hubs
determined by the specific problem requirements. The value of  each element in the array indicates the hub to
which the corresponding node will be allocated.

Population  initialization  is  an important  step  in  NSGA-II,  significantly  influencing  the  quality  of  subsequent
generations. The better the quality of  the initial population, the easier it is to reach the global optimum. The first
population  must  ensure  diversity,  essential  for  effective  crossover  and mutation  processes.  A population  that
contains many high-quality solutions will make exploring the solution space more efficient.

First and foremost, the population initialization step must ensure that all solutions generated are feasible. For the
hub location problem, solutions must satisfy constraints such as hub capacity, number of  nodes, and the number of
hubs. During the initialization process, solutions are generated with a predetermined number of  hubs and nodes.
These solutions are then checked for constraints to ensure they are feasible. Additionally, to increase the likelihood
of  good solutions in the population, a fixed number of  solutions will be created based on elite nodes selected as
hubs, while the rest of  the solutions will be generated by randomly selecting hubs. The allocation of  each node will
be based on the nearest hub. Figure 4 illustrates the initial population.

After the new population is initialized, we evaluate the fitness and check the feasibility of  each solution within the
population.  The  fitness  of  the  solution  is  based  on  the  objective  functions,  which  are  minimizing  total
transportation cost and maximum travel time. The feasibility is based on the validation of  all constraints of  the
problem. The population size is set to 200 based on Demir, Ergin and Kiraz (2016) and preliminary tests (50, 100,
200), as smaller sizes reduce diversity and increase the risk of  local optima.
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Figure 4. Initial population

5.2. Non-Dominated Sorting

In this step, we classify solutions based on dominance. Each solution has to be compared with other solutions,
whether it dominates other solutions or it is dominated by any solution. We set up 2 vectors for non-dominated
sorting;  dominance  count  and  dominated  list.  The  dominance  count  records  the  number  of  solutions  that
dominate a given solution. A lower count means the solution is closer to the Pareto Front. The dominated list is a
set of  solutions that are dominated by a given solution. The steps of  non-dominated sorting are as follows.

Step 1: Compare each solution pair. If  solution A is at least as good as solution B in all objectives and better in at
least one, then A dominates B. We update B’s dominance count and add B to A’s dominated list.

Step 2: Solutions with a dominance count of  0 are ranked as Rank 1 (Pareto Front).

Step 3: For each solution, reduce the dominance count of  the solution in its dominated list. Solutions with a new
dominance count of  0 are moved to Rank 1. Solutions with a high number of  dominance counts are put in Rank 2,
and Rank 3, respectively. Keep doing this until all solutions are ranked, ensuring that every solution is placed in the
correct tier based on its dominant relationship with others. 

The steps of  non-dominated sorting are described in pseudocode of  Algorithm 6.

5.3. Crowding Distance Calculation

The calculation of  crowding distance plays a critical role in ensuring population diversity.  It helps prevent the
algorithm from prematurely converging to local optima and getting stuck there. For each rank, the first step in
calculating crowding distance is identifying the boundary solutions with the smallest and largest values for each
objective function using negative infinity and positive infinity, respectively. The solution with the smallest value for
an  objective  function  is  assigned  a  crowding  distance  of  negative  infinity.  This  assignment  ensures  that  the
algorithm recognizes it as a boundary solution, which is crucial for preserving the extremities of  the Pareto Front.
Similarly, the solution with the largest value for an objective function is assigned a crowding distance of  positive
infinity. 

By assigning these extreme values, the algorithm effectively sets boundaries for the solution space, ensuring that the
solutions at the edges are retained in the next generation. For solutions that are not at the boundaries, the crowding
distance is calculated based on the distance between adjacent solutions in the objective space. This calculation helps
quantify how isolated a solution is compared to its neighbors. For example: to calculate the crowding distance for
solution i, we consider its immediate neighbor’s solutions i−1 and i+1.

For each objective function, we calculate the difference in objective values between solutions  i−1 and  i+1. The
crowding distance for solution  i is then determined by summing these differences across all objective functions.
This sum gives a measure of  how much the solution is “crowded” by its neighbors. The steps of  calculating
crowding distance are described in pseudocode of  Algorithm 7.

-585-



Journal of  Industrial Engineering and Management – https://doi.org/10.3926/jiem.8938

5.4. Parent Selection

To select parents for the crossover and mutation processes, the goal is to choose the best solutions to undergo
these operations. We select 4 solutions from the population and pair them into two groups. Each pair is then
compared based on their rank in the non-dominated sorting and their crowding distance values. The two solutions
that are selected will become the parents. This process is repeated until the number of  parents (equal to the number
of  offspring that will be created) equals the number of  solutions in the population.
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5.5. Crossover and Mutation

To increase solution diversity, crossover and mutation are applied to the parents selected in the previous step. For
each pair of  parents, random crossover points are chosen, and crossover is performed to produce two offspring.
For each offspring, a random position is selected for mutation, after which all generated offspring are added to the
offspring set. The crossover rate (Pc) and mutation rate (Pm) are set at 0.9 and 0.3 based on Demir et al. (2016) and
preliminary tests (Pc:0.7, 0.8, 0.9; Pm:0.1, 0.2, 0.3), respectively, to maximize diversity. 

5.6. Next Generation

The next step in the NSGA-II algorithm involves integrating the newly generated offspring with the current
population to form a combined set of  solutions. This process allows us to consider both the best solutions from
the previous generation (200 solutions) and the new offspring set (100 solutions). By combining these two sets, we
create a more diverse and comprehensive pool of  potential solutions that can be evaluated and ranked to identify
the most optimal solutions for the next generation.

We evaluate the solutions in this combined set once again using the two methods: non-dominated sorting and
crowding distance, just as before. We then initialize a new population by adding solutions based on priority—first
by rank (from lowest to highest) and then by crowding distance (from highest to lowest). Only 200 solutions are
selected to be the new population. The termination criterion is set at 50 maximum iterations or no improvement
for 10 consecutive iterations. The steps of  the procedure of  the NSGA-II are demonstrated as a flow chart in
Figure 5.

Figure 5. Flowchart of  NSGA-II
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6. Computational Results 
6.1. A Case Study of  Rail Network Planning

The main rail network in Thailand is constructed from the north to the south. In this study, we use a north route
line, which starts from Bangkok to Chiang Mai. The total number of  stations is more than 100, however, only 54
stations are considered to be a candidate of  rail hub. In this problem, we aim to determine the optimal location of
rail hub in this network. The proposed metaheuristics algorithms, MOTS and NSGA-II are implemented to find
the optimal solutions. The number of  passengers, the distance between stations and nodes are given, the number of
nodes (n) is fixed at 54, the number of  hubs (p) is varied from 2 to 10. The experiments are conducted and run on a
computer with Intel Core i5-12450H 2.0 GHz CPU, 8GB RAM, and 512GB memory. The results are shown in
Table 1, where the minimum solution of  each case is reported. According to total transportation costs (minimizing)
and maximum travel time (minimizing), both algorithms provide competitive solutions. Both MOTS and NSGA-II
are similarly capable of  finding the lowest total cost, while MOTS is more likely to find the lowest maximum travel
time. However, NSGA-II tends to perform faster than MOTS, especially when number of  hubs is increased.

p Algorithm Hub Set
Total Cost 

(baht)
Max Travel
Time (min)

Run Time
(s)

2
MOTS 5,40 28,707,690 594.17 23.36

NSGA-II 4,40 28,741,786 600.14 252.46

3
MOTS 1,21,40 21,128,862 531.41 51.98

NSGA-II 1,21,40 21,128,862 531.41 255.24

4
MOTS 4,24,46,52 21,188,402 420.83 210.22

NSGA-II 1,22,40, 54 17,423,540 494.80 259.57

5
MOTS 1,13,31,46,52 16,118,298 371.67 144.89

NSGA-II 1,12,22,40,54 14,765,891 488.37 261.35

6
MOTS 3,12,22,37,47,52 13,701,317 359.66 74.05

NSGA-II 1,12,22,34,47,54 13,132,487 414.96 261.43

7
MOTS 1,12,22,27,37,47,52 12,159,936 363.38 117.19

NSGA-II 1,12,22,30,40,47,54 11,844,744 414.96 256.07

8
MOTS 1,6,12,22,27,37,47,52 11,229,865 349.30 113.25

NSGA-II 1,6,12,22,32,40,47,54 10,822,743 401.19 261.24

9
MOTS 1,6,12,22,27,34,40,47,52 10,215,346 349.30 217.51

NSGA-II 1,34,6,40,12,47,22,54,27 9,939,782 401.19 264.09

10
MOTS 1,5,12,22,27,34,40,47,51,54 9,624,971 345.14 649.78

NSGA-II 1,6,12,22,27,30,34,40,47,54 9,480,293 398.27 267.59

Table 1. Hub set solutions of  MOTS and NSGA-II

The two main  objectives  that  we  considering  are  total  transportation  cost  and  maximum travel  time.  These
objectives often conflict, as solutions with lower transportation costs may lead to longer travel times due to more
complex routing. Conversely, achieving shorter overall travel time may result in higher costs. The Pareto Front
obtained of  both algorithms are graphically presented in Figures 6-8, which illustrate the trade-off  between the two
objectives. The non-dominated solutions across the three cases show notable differences. For the case with 3 hubs,
NSGA-II tends to outperform MOTS by producing lower objective values. In contrast, for the cases with 5 and 7
hubs, MOTS performs slightly better than NSGA-II. To draw more robust conclusions, the next section presents a
statistical hypothesis test to further analyze these differences.
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Figure 6. Pareto Fronts of  the NSGA-II and MOTS for 54 nodes and 3 hubs

Figure 7. Pareto Fronts of  the NSGA-II and MOTS for 54 nodes and 5 hubs 

Figure 8. Pareto Fronts of  the NSGA-II and MOTS for 54 nodes and 7 hubs
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6.2. Performance Comparison

This section we perform the statistical comparison between 2 algorithms. The statistical results show in Table 2.
Although NSGA-II obtains the lower mean of  the first objective (total transportation cost) compare to MOTS, the
statistics  show not  significantly  different at  the significance  level  of  0.05 with  p-value  0.805.  For  the  second
objective (maximum travel time), MOTS obtains the lower mean compare to NSGA-II, however the statistics show
not  significantly  different  at  the  significance  level  of  0.05  with  p-value 0.205.  Therefore,  the  performance of
algorithm in term of  quality of  solution of  both algorithms are the same. For performance of  computational time,
the statistics show not significantly different at the significance level of  0.05 with  p-value 0.212. However, the
standard deviation of  NSGA-II is very low, indicating that its time performance is more consistent than MOTS. In
contrast, the run times of  MOTS tend to increase as the number of  hubs increases. 

Metric Algorithm Mean SD t p

Total transportation cost
MOTS 16,008,298.56 6,438,273.64 0.251 0.805

NSGA-II 15,253,347.56 6,311,854.05

Maximum travel time
MOTS 409.42 91.19 -1.321 0.205

NSGA-II 460.58 72.05

Run time
MOTS 178.02 188.66 -1.301 0.212

NSGA-II 259.89 4.67

Table 2. Statistical comparison of  algorithms

Next, we analyze the Pareto Front generated by the MOTS and NSGA-II algorithms, comparing the diversity of
solutions and the effectiveness in achieving optimal solutions. The deviation of  solutions from both algorithms in
each objective at different numbers of  hubs are showed in Figures 9-10. There is a high diversity of  solutions in the
case of  fewer number of  hubs (p=2, 3, and 4) in both algorithms as indicated by the wide range of  the boxplots.
Although, MOTS has variety of  solutions in the total cost objective (p=3), however, NSGA-II has more diversity
of  solutions in overall cases. So, in the case of  solving multi-objective problems, the more number of  optimal
solutions means more alternatives to decision makers. Therefore, NSGA-II is able to provide more alternatives for
decision makers.

Figure 9. Deviation of  solutions from MOTS at different numbers of  hubs
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Figure 10. Deviation of  solutions from NSGA-II at different numbers of  hubs

7. Conclusion

This research presents a railway transportation network planning approach that addresses the selection of  the
most  suitable  location for  a  railway transportation hub,  considering both cost  and service.  The problem is
formulated as a multi-objective model with the objectives of  minimizing total transportation cost and maximum
travel time, and applied to a real-world case study in Thailand. Due to the size and complexity of  the problem,
we develop two metaheuristics algorithms; MOTS and NSGA-II, to solve the problem. Computational results
indicate that both algorithms perform efficiently in terms of  solution quality and computational time. MOTS
tends to perform better by yielding lower non-dominated solutions for the first objective (cost), while NSGA-II
performs better  by  yielding lower non-dominated solutions  for  the second objective  (service).  The findings
support the effectiveness of  MOTS (Ghaffarinasab, 2020; Ying & Junping, 2014) and NSGA-II (Demir et al.,
2016; Karimi-Mamaghan et al., 2020) for solving multi-objective hub location problems, consistent with previous
studies. However, at the 0.05 significance level, there is no statistically significant difference between MOTS and
NSGA-II. Regarding computational time, both algorithms perform equally well with no significant difference,
although  NSGA-II  tends  to  achieve  higher  solution  diversity,  as  also  reported  in  prior  studies  (Karimi-
Mamaghan et al., 2020).

The proposed multi-objective model extends the classical single-objective hub location problem model that focuses
only on minimizing transportation cost. Instead of  providing a single optimal solution, it highlights the trade-off
between cost and travel time, thus offering decision-makers more alternatives for railway hub network design. This
contributes to both the construction phase of  new rail networks and the improvement phase for redesigning or
expanding existing hubs, with the potential to enhance efficiency, service quality, and passenger satisfaction. The
decision-makers  can  balance  cost  efficiency  and service  performance,  making  the  findings  valuable  for  both
policymakers and railway operators.

For  future  research,  there  are  several  directions.  First,  demand in  this  study  is  assumed to be  deterministic;
incorporating demand uncertainty or time-dependent passenger flows could make the model more realistic. Second,
adding a third objective such as coverage or profit could further enrich the analysis. Finally, testing other advanced
optimization methods or extending the framework to multimodal transportation systems could enhance both the
robustness and applicability of  the proposed approach.
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