A QoS aware services mashup model for cloud computing applications

Yee Ming Chen, Yi Jen Peng

Abstract


Purpose: With the popularity of cloud computing, cloud services have become to be application programming platform where users can create new applications mashup(composing) the functionality offered byothers.By composing of distributed, cloud services dynamicallyto provide more complex tasks, services mashup provides an attractive way for building large-scale Internetapplications.Oneof the challenging issues of cloud services mashup is how to find service paths to route the service instances provider through whilemeeting the applications’ resource requirements so that the QoS constraints are satisfied. However, QoS aware service routing problem istypically NP-hard.The purpose of this paper is to propose a QoS Aware Services Mashup(QASM) model to solve this problem more effectively.

Design/methodology/approach: In this paper, we focus on the QoS aware services selection problem in cloud services mashup, for example, given the user service composition requirements and their QoS constraint descriptions, how to select the required serviceinstances and route the data flows through these instances so that the QoS requirements are satisfied. We design a heuristic algorithm to find service paths to route the data flows through whilemeeting the applications’ resource requirements and specific QoS constraints.

Findings: This study propose a QoS Aware Services Mashup(QASM) model to solve this problem more effectively. Simulations show that QASM can achieve desired QoS assurances as well as load balancing in cloud services environment.

Originality/value: This paperpresent a QASM model for providing high performance distributedapplications in the cloud computing systems.


Keywords


QoS, cloud services, mashup, optimization

Full Text:

PDF HTML


DOI: http://dx.doi.org/10.3926/jiem.472


Licencia de Creative Commons 

This work is licensed under a Creative Commons Attribution 4.0 International License

Journal of Industrial Engineering and Management, 2008-2019

Online ISSN: 2013-0953; Print ISSN: 2013-8423; Online DL: B-28744-2008

Publisher: OmniaScience